Book Description

Vehicle rollover accidents have been a serious safety problem for the last three decades.

Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents.

In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.

Table of Contents

  1. Introduction
    1. What Is Vehicle Rollover?
    2. Risk of Vehicle Rollover Accidents
    3. Factors Affecting Vehicle Rollover
    4. Summary
  2. Dynamic Model of Vehicle Rollover
    1. Roll Plane Model
    2. Yaw-Roll Model
    3. Lateral-Yaw-Roll Model
    4. Yaw-Roll-Vertical Model
    5. Multi-Freedom Model (1/2)
    6. Multi-Freedom Model (2/2)
    7. Multi-Body Dynamic Model
    8. Summary
  3. Stability of Untripped Vehicle Rollover
    1. Roll Index of Untripped Vehicle Rollover
      1. Static Stability Factor
      2. Dynamics Stability Factor (1/2)
      3. Dynamics Stability Factor (2/2)
      4. Lateral Load Transfer Ratio (1/2)
      5. Lateral Load Transfer Ratio (2/2)
    2. Rollover Warning
      1. Time-to-Rollover
      2. Prediction Rollover Warning
    3. Summary
  4. Stability of Tripped Vehicle Rollover
    1. Roll Index of Tripped Vehicle Rollover
      1. Rollover Index on Uneven Roads
      2. Rollover Index on Banked Roads
    2. Energy Methods
    3. Summary
  5. Active Control for Vehicle Rollover Avoidance
    1. Anti-Roll Bar System
    2. Active Suspension System
    3. Active Steering System
      1. Active Front Steering Control
      2. Pulse Active Rear Steering
      3. Four-Wheel Steering
    4. Active Braking System
    5. Integrated Chassis System
    6. Summary
  6. Rollover Control Strategies and Algorithms
    1. Proportional-Integral-Derivative Control Method
    2. H-infinity Control Method (1/2)
    3. H-infinity Control Method (2/2)
    4. Model Prediction Control Method (1/2)
    5. Model Prediction Control Method (2/2)
    6. Linear Quadratic Regulator Control Method
    7. Sliding Mode Control Method
    8. Summary (1/2)
    9. Summary (2/2)
  7. Conclusions
  8. Notation
  9. Bibliography (1/2)
  10. Bibliography (2/2)
  11. Authors' Biographies
  12. Blank Page (1/2)
  13. Blank Page (2/2)