0%

Book Description

Materials Science for Engineering Students offers students of introductory materials science and engineering, and their instructors, a fresh perspective on the rapidly evolving world of advanced engineering materials. This new, concise text takes a more contemporary approach to materials science than the more traditional books in this subject, with a special emphasis on using an inductive method to first introduce materials and their particular properties and then to explain the underlying physical and chemical phenomena responsible for those properties. The text pays particular attention to the newer classes of materials, such as ceramics, polymers and composites, and treats them as part of two essential classes, structural materials and functional materials, rather than the traditional method of emphasizing structural materials alone.

*Presents balanced coverage of both structural and functional materials.
*Types of materials are introduced first, followed by explanation of physical and chemical phenomena that drive their specific properties.
*Strong focus on engineering applications of materials
*The first materials science text to include a whole chapter devoted to batteries.
*Provides clear, mathematically simple explanations of basic chemistry and physics underlying materials properties.

Table of Contents

  1. Brief Table of Contents
  2. Table of Contents
  3. List of Figures
  4. List of Tables
  5. Copyright Page
  6. Dedication
  7. Preface
  8. Part I. The Classes of Materials
    1. Chapter 1. Types of Materials, Electron Energy Bands, and Chemical Bonds
      1. 1.1. The classes of materials
      2. 1.2. The structure of atoms
        1. 1.2.1. The Electrons in an Atom
        2. 1.2.2. The Pauli Exclusion Principle and the Number of Electrons in Each Orbital
        3. 1.2.3. Valence and Core Electrons
      3. 1.3. Atomic and molecular orbitals of electrons
      4. 1.4. The electronic structure of the solid: energy bands and chemical bonds
      5. 1.5. Metals
      6. 1.6. Ceramics
        1. 1.6.1. Covalent, Ionic, and Mixed Bonds
      7. 1.7. Polymers and secondary bonds
      8. 1.8. Bond energy and the distance between atoms
        1. 1.8.1. Elasticity
        2. 1.8.2. Thermal Expansion
      9. 1.9. Structural materials, functional materials, and biomaterials
      10. Summary
      11. Key Terms
      12. References for Further Reading
      13. Problems and Questions
  9. Part II. Structural Materials
    1. Chapter 2. The Strength of Materials
      1. 2.1. Stresses and Strains
      2. 2.2. Elastic Deformation
      3. 2.3. Plastic Deformation of Metals
        1. 2.3.1. The Tensile Test
        2. 2.3.2. The Stress-Strain Curve
        3. 2.3.3. Ductility
        4. 2.3.4. Resilience and Toughness
        5. 2.3.5. True Stress-True Strain and Engineering Stress and Strain
      4. 2.4. Residual Stresses
      5. 2.5. Hardness
      6. 2.6. Fracture
        1. 2.6.1. Ductile Fracture of Metals
        2. 2.6.2. Brittle Fracture of Metals and Ceramics
        3. 2.6.3. Cracks and Stress Concentrations
        4. 2.6.4. Fracture Toughness
      7. 2.7. The measurement of Fracture Resistance
        1. 2.7.1. Fracture Toughness
        2. 2.7.2. Indentation Toughness of Ceramics
        3. 2.7.3. Charpy and Izod Measurements of Notch Toughness
        4. 2.7.4. The Rupture Strength of Ceramics
      8. 2.8. Fatigue
      9. 2.9. Creep
        1. 2.9.1. Steady-State Creep
        2. 2.9.2. Creep Rupture
      10. Summary
      11. Key Terms
      12. References for Further Reading
      13. Problems and Questions
    2. Chapter 3. Deformation of Metals and Crystal Structure
      1. 3.1. The Plastic Deformation of Metals
      2. 3.2. The Crystal Structure of Metals
        1. 3.2.1. The Hexagonal Close-Packed Structure (HCP)
        2. 3.2.2. The Face Centered Cubic Structure (FCC)
        3. 3.2.3. The Body Centered Cubic Structure (BCC)
        4. 3.2.4. Atomic Radii
        5. 3.2.5. Atomic Packing Factor
        6. 3.2.6. The Density of the Material
        7. 3.2.7. Allotropy or Polymorphism
      3. 3.3. Coordinates of Atomic Positions, Directions, and Planes
        1. 3.3.1. Atomic Positions
        2. 3.3.2. Directions
        3. 3.3.3. Planes
      4. 3.4. Dense Planes and Directions
      5. 3.5. Defects in Crystalline Solids
        1. 3.5.1. Point Defects
        2. 3.5.2. Dislocations
        3. 3.5.3. Grain Boundaries
        4. 3.5.4. Microstructure and Crystal Structure
      6. 3.6. Mechanisms of Plastic Deformation
        1. 3.6.1. Slip Systems
        2. 3.6.2. Deformation of a Crystal in a Tensile Test
        3. 3.6.3. The Role of Dislocations in Plastic Deformation
      7. Summary
      8. Key Terms
      9. Problems and questions
    3. Chapter 4. Strengthening and Forming Metals
      1. 4.1. Strengthening a Metal
        1. 4.1.1. Solution Strengthening
        2. 4.1.2. Precipitation Strengthening or Precipitation Hardening
        3. 4.1.3. The Strength of Polycrystalline Materials
        4. 4.1.4. Strengthening by Grain Refinement
        5. 4.1.5. Nanostructured Materials
        6. 4.1.6. Highly Strained and Amorphous Metals
        7. 4.1.7. Strain Hardening
      2. 4.2. Increasing the Ductility by Annealing
      3. 4.3. Increasing Fracture Resistance
        1. 4.3.1. Materials Selection
        2. 4.3.2. Annealing
        3. 4.3.3. Introduce Compressive Residual Stresses
        4. 4.3.4. Fine Grain Structure
        5. 4.3.5. Polished Surfaces
        6. 4.3.6. Design for Fracture Resistance: Avoid Stress Concentrations
      4. 4.4. Increasing Fatigue Life
        1. 4.4.1. Avoid Stress Concentrators
        2. 4.4.2. Polished Surfaces
        3. 4.4.3. Residual Stresses
        4. 4.4.4. High Strength Surfaces
        5. 4.4.5. Homogeneous Material
        6. 4.4.6. Avoid Corrosion and Environmental Attack
      5. 4.5. Creep Resistance
      6. 4.6. Mechanical Forming of Metals
      7. 4.7. Cutting and Machining
      8. Summary
      9. Key Terms
      10. References for further reading
      11. Problems and Questions
    4. Chapter 5. Phase Diagrams
      1. 5.1. Behavior of Binary Alloys
      2. 5.2. Phases, Components, and Phase Diagrams
      3. 5.3. Solid Solutions
      4. 5.4. Analysis of Binary Phase Diagrams
        1. 5.4.1. Single Phase
        2. 5.4.2. Two Phase Mixture, Tie Line Construction, and Chemical Composition
        3. 5.4.3. Two Phase Mixture, Lever Rule, and Relative Phase Amounts
        4. 5.4.4. Coring
      5. 5.5. The binary Eutectic Phase Diagram
        1. 5.5.1. The Formation of Precipitates
      6. 5.6. Intermediate Compounds and Intermediate Phases
      7. 5.7. Peritectic Solidification
        1. 5.7.1. The Cu-Zn Phase Diagram
      8. 5.8. The Iron-carbon System and Steels
      9. Glossary
      10. Summary
      11. Key Terms
      12. References For Further Reading
      13. Problems and Questions
    5. Chapter 6. Reaction Kinetics and the Thermal Processing of Metals
      1. 6.1. Quenched and tempered steel
      2. 6.2. The kinetics of phase transformations
        1. 6.2.1. Nucleation
        2. 6.2.2. Diffusion Rates
      3. 6.3. Thermal processing of steel
        1. 6.3.1. The TTT Diagram (Time-Temperature-Transformation Curves)
        2. 6.3.2. Continuous Cooling Transformation (CCT)
        3. 6.3.3Hardenability of Steel
        4. 6.3.4. Standard Types of Steel
      4. 6.4. Heat treatment of aluminum hardening by precipitation
        1. 6.4.1. The Precipitation-Hardening Treatment
        2. 6.4.2. Some Precipitation-Hardened Alloys
      5. Summary
      6. Key Terms
      7. References For Further Reading
      8. Problems and Questions
    6. Chapter 7. Metallic Alloys and Their Use
      1. 7.1. types of alloys
      2. 7.2. Ferrous alloys
        1. 7.2.1. Steels
        2. 7.2.2 High-Strength Low-Alloy Steels (HSLA)
        3. 7.2.3. Cast Irons
      3. 7.3. Nonferrous alloys
        1. 7.3.1. Aluminum Alloys
        2. 7.3.2. Copper Alloys
        3. 7.3.3. Magnesium Alloys
        4. 7.3.4. Titanium Alloys
        5. 7.3.5. Superalloys
      4. 7.4. Solidification of metals
        1. 7.4.1. Casting
        2. 7.4.2. Control of Grain Size
        3. 7.4.3. Making Single Crystals
        4. 7.4.4. The Czochralski Single Crystal Pulling Method
        5. 7.4.5. Directional Solidification of Single Crystal Turbine Blades
      5. 7.5. Surface processing of structural materials
        1. 7.5.1. Diffusion Treatments
        2. 7.5.2. Laser Hardening
        3. 7.5.3. Coatings
      6. Summary
      7. Key Terms
      8. References for Further Reading
      9. Problems and Questions
    7. Chapter 8. Ceramics
      1. 8.1. The types of ceramics and their defining properties
        1. 8.1.1. Mechanical Performance of Ceramics
        2. 8.1.2. Thermal Properties of Ceramics
      2. 8.2. Traditional ceramics
        1. 8.2.1. Stone
        2. 8.2.2. Clay Products
        3. 8.2.3. Refractories
        4. 8.2.4. Abrasives
      3. 8.3. Synthetic high-performance ceramics
      4. 8.4. The crystal structures of ceramics
        1. 8.4.1. The Diamond, Zincblende, and Wurtzite Structures
        2. 8.4.2. The Structures of Compounds
        3. 8.4.3. Polymorphism or Allotropy
      5. 8.5. Glass
        1. 8.5.1. Structure and Composition
        2. 8.5.2. Solidification of Glassy Melts
      6. 8.6. Processing of ceramics
        1. 8.6.1. Forming the Green Body
      7. 8.6.2. Densification
        1. Firing
        2. Sintering
      8. 8.6.3. Fabrication of Glass Objects
        1. Strain Point
        2. Annealing Point
        3. Softening Point
        4. Working Point
        5. Pressing
        6. Blowing
        7. Casting
        8. Rolling and Float Molding
      9. 8.6.4. Tempered Glass
      10. 8.6.5. Glass Ceramic (Vitroceram or Pyroceram)
      11. 8.7. Cement and concrete
      12. Summary
      13. Key Terms
      14. References for Further Reading
      15. Problems and Questions
    8. Chapter 9. Polymers
      1. 9.1. Definition of a polymer
      2. 9.2. Synthesis of polymers
        1. 9.2.1. Addition Polymerization
        2. 9.2.2. Condensation or Step Polymerization
        3. 9.2.1. Molecular Weight
      3. 9.3. Polymers and secondary bonds; thermoplastics
      4. 9.4. Thermosets
        1. 9.4.1. Epoxy
        2. 9.4.2. Unsaturated Polyester
      5. 9.5. Rubber (elastomer)
        1. 9.5.1. Vulcanization
      6. 9.6. Polymer structure
        1. 9.6.1. Amorphous Polymers
        2. 9.6.2. Crystalline Polymers
      7. 9.7. Copolymers
      8. 9.8. Mechanical behavior of polymers
        1. 9.8.1. The Strength of Plastics
        2. 9.8.2. The Viscoelasticity of Elastomers
        3. 9.8.3. Fracture of Polymers
        4. 9.8.4. Creep of Polymers
      9. 9.9. Applications of polymers
      10. 9.10. Manufacture of polymeric objects
        1. 9.10.1. Extrusion
        2. 9.10.2. Injection Molding
        3. 9.10.3. Blow Molding
        4. 9.10.4. Compression Molding
        5. 9.10.5. Calendering
        6. 9.10.6. Thermoforming
      11. Summary
      12. Key Terms
      13. References for Further Reading
      14. Questions and problems
    9. Chapter 10. Composites
      1. 10.1. What are composites?
      2. 10.2. Polymer matrix composites
      3. 10.3. Fabricating polymer composites
        1. 10.3.1. Hand Lay-up Process
        2. 10.3.2. The Spray-up Process
        3. 10.3.3. Pulltrusion
        4. 10.3.4. The Filament Winding Process
        5. 10.3.5. Tape Prepregs
        6. 10.3.6. Sheet Molding
        7. 10.3.7. Injection Molding
      4. 10.4. Metal matrix composites (mmcs)
        1. 10.4.1. Cermets
        2. 10.4.2. Dispersion-Strengthened Alloys
        3. 10.4.3. Fibrous Composites
      5. 10.5. Ceramic matrix composites
      6. 10.6. Mechanical properties of composites
        1. 10.6.1. Young’s Modulus
      7. The Strength of Composites
        1. Continuous Fibers, Longitudinal Loading
        2. Effect of Fiber Length
        3. Transverse Loading
      8. Toughness of Ceramic Matrix Composites
      9. 10.7. Concrete
      10. 10.8. Wood
        1. 10.8.1. The Nature of Wood
        2. 10.8.2. Mechanical Properties of Wood
        3. 10.8.3. Plywood
      11. Summary
      12. Key Terms
      13. References for Further Reading
      14. Problems and Questions
  10. Part III. Functional Materials
    1. Chapter 11. Conductors, Insulators, and Semiconductors
      1. 11.1. Introduction
      2. 11.2. Basic concepts of electric conduction
        1. 11.2.1. Ohm’s Law
        2. 11.2.2. The Electric Current
      3. 11.3. The density of mobile electrons and the pauli exclusion principle
      4. 11.4. Electron scattering and the electric resistance of metals
        1. 11.4.1. Resistance Increase Due to Impurities and Alloying
        2. 11.4.2. Temperature-Dependence of the Electric Resistance of Metals
        3. 11.4.3. Superconductors
      5. 11.5. Insulators
        1. 11.5.1. Dielectric Strength
        2. 11.5.2. Dielectric Constant
        3. 11.5.3. Piezoelectricity
      6. 11.6. Semiconductors
        1. 11.6.1. n-type Semiconductors
        2. 11.6.2. p-type Semiconductors
        3. 11.6.3. Intrinsic Semiconductor
        4. 11.6.4. The p-n Junction
        5. 11.6.5. Applications of the p-n Junction
        6. 11.6.6. Transistors
        7. 11.6.7. Organic Semiconductors
      7. Summary
      8. Key Terms
      9. References for Further Reading
      10. Problems and Questions
    2. Chapter 12. Fabrication of Integrated Circuits and Micro Electro-Mechanical Systems (MEMS)
      1. 12.1. A chip and its millions of transistors
      2. 12.2. Growth of silicon single crystals
      3. 12.3. Photolithography
        1. 12.3.1. Fabrication of an NMOS Field Effect Transistor
      4. 12.4. Packaging
      5. 12.5. Oxide layers
      6. 12.6. Photoresist
      7. 12.7. The mask
      8. 12.8. Etching
      9. 12.9. Doping by ion implantation
        1. 12.9.1. Compensation
      10. 12.10. Deposition of interconnects and insulating films
        1. 12.10.1. Physical Vapor Deposition
        2. 12.10.2. Chemical Vapor Deposition
        3. 12.10.3. Epitaxy
      11. 12.11. Mems (micro electro-mechanical systems)
        1. 12.11.1. Sacrificial Layers
      12. Summary
      13. Key Terms
      14. References for Further Reading
      15. Problems and Questions
    3. Chapter 13. Optical Materials
      1. 13.1. Uses of optical materials
      2. 13.2. Light and vision
      3. 13.3. Interaction of light with electrons in solids
        1. 13.3.1. Absorption of Light
        2. 13.3.2. Color
        3. 13.3.3. Refraction
        4. 13.3.4. Reflection of Light
      4. 13.3.5. Total Internal Reflection
        1. Jewels and Cut Glass
      5. 13.3.6. Polarization
      6. 13.4. Dielectric optical coatings
        1. 13.4.1. Antireflection (AR) Coatings
        2. 13.4.2. Dielectric Reflectors
        3. 13.4.3. Filters
        4. 13.4.4. Phosphors
      7. 13.5. Electro-optical devices
        1. 13.5.1. The Photodiode
        2. 13.5.2. The Solar Cell
        3. 13.5.3. The Light-Emitting Diode (LED)
      8. 13.5.4. The Solid-State Laser
      9. 13.5.5. Electroluminescent Light Sources
      10. 13.5.6. Organic Light-Emitting Diode (OLED)
      11. 13.6. Optical recording
      12. 13.7. Optical communications
        1. 13.7.1. Optical Fibers
      13. 13.7.2. Fiber Fabrication
      14. Summary
      15. Key terms
      16. References for Further Reading
      17. Problems and Questions
    4. Chapter 14. Magnetic Materials
      1. 14.1. Uses of magnets and the required material properties
      2. 14.2. Magnetic fields, induction, and magnetization
        1. 14.2.1. Magnetic Fields
        2. 14.2.2. Induction
        3. 14.2.3. Magnetization
        4. 14.2.4. Hysteresis Curves
        5. 14.2.5. Energy Losses in an Alternating Magnetic Field
        6. 14.2.6. Soft Magnets
        7. 14.2.7. Hard Magnets
      3. 14.3. Ferromagnetic materials
        1. 14.3.1. Magnetic Moments
        2. 14.3.2. Ferromagnetism
        3. 14.3.3. Ferrimagnetism
        4. 14.3.4. Temperature-Dependence of Magnetism
        5. 14.3.5. Magnetic Domains
        6. 14.3.6. Interaction with a Magnetic Field and Hysteresis Curve
      4. 14.4. Properties and processing of magnetic materials
        1. 14.4.1. Soft Magnets
        2. 14.4.2. Hard Magnets
      5. 14.5. Illustration: magnetic recording
        1. 14.5.1. Giant Magnetoresistance (GMR)
      6. Summary
      7. Key terms
      8. References for Further Reading
      9. Problems and questions
    5. Chapter 15. Batteries
      1. 15.1. Batteries
      2. 15.2. Principles of electrochemistry
        1. 15.2.1. Open Circuit Voltage
        2. 15.2.2. Battery Discharge
        3. 15.2.3. Charging the Battery
        4. 15.2.4. Stored Charge and Stored Power (Faraday’s Law)
        5. 15.2.5. Standard Electrode Potentials
      3. 15.3. Primary batteries
        1. 15.3.1. The Leclanché Battery
        2. 15.3.2. The Alkali Battery
        3. 15.3.3. Lithium Batteries
      4. 15.4. Secondary or rechargeable batteries
        1. 15.4.1. Lead-Acid Battery
        2. 15.4.2. The Nickel-Metal Hydride Battery
        3. 15.4.3. The Rechargeable Lithium Ion Battery
      5. 15.5. Fuel cells
      6. 15.6. Ultracapacitors
      7. Summary
      8. Key Terms
      9. References for Further Reading
      10. Problems and Questions
  11. Part IV. Environmental Interactions
    1. Chapter 16. Corrosion and Wear
      1. 16.1. Some questions
      2. 16.2. The electrochemical nature of corrosion in liquids
        1. 16.2.1. The Mechanisms of Electrochemical Dissolution
      3. 16.3. Electrode potentials in variable ION concentrations
      4. 16.4. Cathodes in aqueous corrosion
      5. 16.5. Faraday’s law—corrosion rate
      6. 16.6. Manifestations of corrosion
        1. 16.6.1. Galvanic (Two Metal) Corrosion
        2. 16.6.2. Single-Metal Corrosion
      7. 16.7. Other forms of corrosion
        1. 16.7.1. Chlorine
        2. 16.7.2. Hydrogen
        3. 16.7.3. Ammonia
      8. 16.8. Preventing corrosion through design
      9. 16.9. Gaseous oxidation
        1. 16.9.1. Protective Oxide Layers
        2. 16.9.2. Oxidation Rates
      10. 16.10. Wear
        1. 16.10.1. Adhesive Wear
        2. 16.10.2. Abrasive Wear
        3. 16.10.3. Fatigue Wear
        4. 16.10.4. Corrosive Wear
        5. 16.10.5. Fretting Wear
        6. 16.10.6. Erosion
        7. 16.10.7. Cavitation
        8. 16.10.8. Wear in Cutting Tools
      11. Summary
      12. Key Terms
      13. References for Further Reading
      14. Problems and Questions
    2. Chapter 17. Biomaterials
      1. 17.1. Biomaterials
        1. 17.1.1. Requirements of Biomaterials
      2. 17.2. Metals
      3. 17.3. Ceramics
      4. 17.4. Polymers
        1. 17.4.1. Thermoplastics
        2. 17.4.2. Medical Fibers and Textiles
        3. 17.4.3. Hydrogels
        4. 17.4.4. Bioresorbable and Bioerodible Polymers
      5. Summary
      6. Key terms
      7. References for Further Reading
      8. Problems and Questions
  12. Part V. Nanomaterials and the Study of Materials
    1. Chapter 18. Nanomaterials
      1. 18.1. The unique properties of nanomaterials
        1. 18.1.1. Mechanical Properties
        2. 18.1.2. Electronic Structure
        3. 18.1.3. Optical Properties
        4. 18.1.4. Magnetic Properties
      2. 18.2. Nanostructured metals and composites
      3. 18.3. Carbon nanomaterials
        1. 18.3.1. Fullerenes
        2. 18.3.2. Graphene
        3. 18.3.3. Carbon Nanotubes
      4. 18.4. Metallic nanomaterials
        1. 18.4.1. Metallic Nanoparticles
        2. 18.4.2. Metallic Nanorods
      5. 18.5. Semiconductor nanoparticles—quantum dots
        1. 18.5.1. Synthesis of Quantum Dots
        2. 18.5.2. Applications
      6. 18.6. Two-dimensional systems
      7. 18.7. Safety concerns
      8. Summary
      9. key terms
      10. References for Further Reading
      11. Problems and questions
    2. Chapter 19. The Characterization of Materials
      1. 19.1. Measuring chemical composition: core electron spectroscopy
        1. 19.1.1. The X-Ray Source
        2. 19.1.2. Energy-Dispersed X-Ray Spectroscopy (EDX) in Electron Microscopes
        3. 19.1.3. X-Ray Fluorescence
        4. 19.1.4. Electron Energy-Loss Spectroscopy (EELS)
      2. 19.2. Determination of the Crystal Structure by Diffraction
        1. 19.2.1. Diffraction
        2. 19.2.2. X-Ray Diffraction
        3. 19.2.3. Electron Diffraction
      3. 19.3. Microscopy
        1. 19.3.1. The Optical Microscope
        2. 19.3.2. The Scanning Electron Microscope (SEM)
        3. 19.3.3. The Transmission Electron Microscope (TEM)
        4. 19.3.4. The Scanning Transmission Electron Microscope (STEM)
        5. 19.3.5. The Scanning Probe Microscopes (SPM)
        6. 19.3.6. The Scanning Tunneling Microscope (STM)
        7. 19.3.7. The Atomic Force Microscope (AFM)
      4. Summary
      5. Key Terms
      6. References for Further Reading
      7. Problems and Questions
  13. Appendix Answers to Selected Problems
13.58.252.8