0%

Book Description

  • This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection.
  • Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node.
  • This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter.
  • Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation
  • Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems
  • Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Table of Contents

  1. Cover
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. List of Contributors
  7. About the Editor-in-Chief
  8. Preface
  9. Acknowledgments
  10. 1: Introduction to electrical energy systems
    1. Abstract
    2. 1.1. Electrical energy systems
    3. 1.2. Energy and power
    4. 1.3. AC versus DC supply
    5. 1.4. Basic energy conversion processes
    6. 1.5. Review of the laws of thermodynamics
    7. 1.6. Photovoltaic energy conversion systems
    8. 1.7. Electrochemical energy conversion systems
    9. 1.8. Thermoelectric energy conversion systems
    10. 1.9. Electromechanical energy conversion systems
    11. 1.10. Energy storage
    12. 1.11. Efficiency and losses
    13. 1.12. Energy resources
    14. 1.13. Environmental considerations
  11. 2: Components of electric energy systems
    1. Abstract
    2. 2.1. Introduction
    3. 2.2. Power plants
    4. 2.3. Electric power generators
    5. 2.4. Transformers
    6. 2.5. Transmission lines
    7. 2.6. Relays and circuit breakers
    8. 2.7. Voltage regulators
    9. 2.8. Subtransmission
    10. 2.9. Distribution systems
    11. 2.10. Loads
    12. 2.11. Power capacitors
    13. 2.12. Control centers
    14. 2.13. Worldwide standards for household voltage and frequency
    15. 2.14. Representation of an electrical energy system
    16. 2.15. Equivalent circuits and reactance diagrams
    17. 2.16. Per-unit system
    18. 2.17. Summary
  12. 3: Solar energy
    1. Abstract
    2. 3.1. Introduction
    3. 3.2. Passive solar energy system
    4. 3.3. Active solar energy system (photovoltaic)
    5. 3.4. Ideal PV model
    6. 3.5. Practical PV model
    7. 3.6. Effect of irradiance and temperature on solar cells
    8. 3.7. PV module
    9. 3.8. Daily power profile of PV array
    10. 3.9. Photovoltaic system integration
    11. 3.10. Evaluation of PV systems
    12. 3.11. Advantages of solar energy
    13. 3.12. Disadvantage
    14. 3.13. Summary
  13. 4: Wind energy
    1. Abstract
    2. 4.1. Introduction
    3. 4.2. Wind turbine
    4. 4.3. Kinetic energy of wind
    5. 4.4. Aerodynamic force
    6. 4.5. Power output from practical turbines
    7. 4.6. Tip speed ratio
    8. 4.7. Coefficient of performance and turbine efficiency
    9. 4.8. Operating range of wind turbine
    10. 4.9. Classifications of wind turbines
    11. 4.10. Types of wind turbine generator systems
    12. 4.11. Wind farm performance
    13. 4.12. Advantages and disadvantages
    14. 4.13. Summary
  14. 5: Hydroelectricity
    1. Abstract
    2. 5.1. Introduction
    3. 5.2. Process of hydroelectricity
    4. 5.3. Basics of pumps and turbines
    5. 5.4. Electric generators and energy conversion schemes for hydroelectricity
    6. 5.5. Summary
  15. 6: Fuel cells
    1. Abstract
    2. 6.1. Introduction
    3. 6.2. Fuel cell fundamentals
    4. 6.3. Modeling of ideal fuel cells
    5. 6.4. Advantages and disadvantages of fuel cells
    6. 6.5. Power applications of fuel cells
    7. 6.6. FC and environment: hydrogen production and safety
    8. 6.7. Hydrogen economy
  16. 7: Geothermal energy
    1. Abstract
    2. 7.1. Introduction
    3. 7.2. Geothermal energy uses and types
    4. 7.3. Evaluation of geothermal power plant
    5. 7.4. Summary
    6. Nomenclature
    7. Acknowledgment
  17. 8: Utilization of bioresources as fuels and energy generation
    1. Abstract
    2. 8.1. Introduction
    3. 8.2. Biomass characterization
    4. 8.3. Pretreatment of biomass
    5. 8.4. Thermal conversion processes
    6. 8.5. Densification of biomass
    7. 8.6. Biomass gasification
    8. 8.7. Biodiesel fuels
    9. 8.8. Bioethanol from biomass
    10. 8.9. Present and future utilization scenario of biomass
    11. 8.10. Conclusions
  18. 9: Single-phase AC supply
    1. Abstract
    2. 9.1. Introduction
    3. 9.2. Alternating current waveform
    4. 9.3. Root mean square
    5. 9.4. Phase shift
    6. 9.5. Concept of phasors
    7. 9.6. Complex number analysis
    8. 9.7. Complex impedance
    9. 9.8. Electric power
    10. 9.9. Electrical energy
    11. 9.10. Advantages and disadvantages of a single-phase supply
    12. 9.11. Summary
  19. 10: Three-phase AC supply
    1. Abstract
    2. 10.1. Introduction
    3. 10.2. Generation of three-phase voltages
    4. 10.3. Connections of three-phase circuits
    5. 10.4. Circuits with mixed connections
    6. 10.5. Power calculation of balanced three-phase circuit
    7. 10.6. Advantages and disadvantages of three-phase supply
    8. 10.7. Summary
  20. 11: Magnetic circuits and power transformers
    1. Abstract
    2. 11.1. Introduction
    3. 11.2. Magnetic circuits
    4. 11.3. Equivalent circuit of a core excited by an AC MMF
    5. 11.4. Principle of operation of a transformer
    6. 11.5. Voltage, current, and impedance transformations
    7. 11.6. Nonideal transformer and its equivalent circuits
    8. 11.7. Tests on transformers
    9. 11.8. Transformer polarity
    10. 11.9. Transformers in parallel
    11. 11.10. Three-phase transformer connections
    12. 11.11. Special transformer connection
    13. 11.12. Parallel operation of three-phase transformers
    14. 11.13. Autotransformers
    15. 11.14. Three-winding transformers
    16. 11.15. Instrument transformers
    17. 11.16. Third harmonics in transformers
    18. 11.17. Transformers in a microgrid
    19. 11.18. Summary
  21. 12: Renewable energy generators and control
    1. Abstract
    2. 12.1. Introduction – general
    3. 12.2. General features of electric machines
    4. 12.3. Basic construction
    5. 12.4. Type of electric supply and load
    6. 12.5. Basic energy conversion principles
    7. 12.6. Synchronous generators
    8. 12.7. Induction machines
    9. 12.8. Practical renewable energy-based power generating schemes
    10. 12.9. Summary
  22. 13: Power semiconductor devices
    1. Abstract
    2. 13.1. Introduction
    3. 13.2. Power diodes
    4. 13.3. Bipolar junction transistors (BJT)
    5. 13.4. Metal oxide semiconductor field effect transistor
    6. 13.5. Insulated gate bipolar transistors (IGBTs)
    7. 13.6. GaN- and SiC-based devices
    8. 13.7. Silicon-controlled rectifiers
    9. 13.8. Gate turn-off thyristors
    10. 13.9. Integrated gate commutated thyristors
    11. 13.10. Guidelines for selecting devices
    12. 13.11. Summary
  23. 14: AC–DC converters (rectifiers)
    1. Abstract
    2. 14.1. Introduction
    3. 14.2. Performance parameters
    4. 14.3. Single-phase full-bridge rectifier circuit
    5. 14.4. Three-phase full-bridge rectifier
    6. 14.5. PWM rectifier
    7. 14.6. Single-phase full-bridge controlled rectifier
    8. 14.7. Three-phase controlled rectifier
    9. 14.8. Filters for AC to DC converters
    10. 14.9. Summary
  24. 15: DC–DC converters
    1. Abstract
    2. 15.1. Introduction
    3. 15.2. Basic nonisolated switch-mode DC–DC converters
    4. 15.3. DC–DC converter applications
    5. 15.4. Buck converter
    6. 15.5. Boost converter
    7. 15.6. Buck–boost converter
    8. 15.7. SEPIC converter
    9. 15.8. Summary
  25. 16: DC–AC inverters
    1. Abstract
    2. 16.1. Introduction
    3. 16.2. Single-phase voltage-source inverters
    4. 16.3. Three-phase bridge voltage-source inverters
    5. 16.4. Multistepped Inverters
    6. 16.5. PWM inverters
    7. 16.6. Current-source inverters
    8. 16.7. Summary
  26. 17: Electric power transmission
    1. Abstract
    2. 17.1. Introduction
    3. 17.2. Overhead transmission lines
    4. 17.3. Transmission line parameters
    5. 17.4. Transmission line representation
    6. 17.5. Transmission line as a two-port network and power flow
    7. 17.6. High voltage DC transmission
    8. 17.7. Summary
  27. 18: Electric power systems
    1. Abstract
    2. 18.1. Introduction
    3. 18.2. Phases of power system engineering
    4. 18.3. Interconnected systems
    5. 18.4. Fault analysis
    6. 18.5. Power flow study
    7. 18.6. Power system stability
    8. 18.7. Summary
  28. 19: Control of photovoltaic technology
    1. Abstract
    2. 19.1. Introduction to semiconductor physics
    3. 19.2. Basics of a photovoltaic cell
    4. 19.3. Maximum power point tracking
    5. 19.4. Shading impact on PV characteristics
    6. 19.5. Mode of operation of a PV system
  29. 20: Integration of distributed renewable energy systems into the smart grid
    1. Abstract
    2. 20.1. Introduction
    3. 20.2. Conventional power generation
    4. 20.3. Electricity generation from renewable energy resources
    5. 20.4. Grid connection of distributed RES
    6. 20.5. Distributed renewable energy sources
    7. 20.6. Voltage control in power networks
    8. 20.7. Power quality and harmonics
    9. 20.8. Regulations for connection of distributed RES to the grid
    10. 20.9. Smart grid solutions
  30. 21: Environmental impacts of renewable energy
    1. Abstract
    2. 21.1. Introduction
    3. 21.2. Environmental concerns related to fossil fuel power plants
    4. 21.3. Environmental concerns related to hydroelectric power plants
    5. 21.4. Environmental concerns related to nuclear power plants
    6. 21.5. Environmental concerns related to renewable energy
    7. 21.6. Summary
  31. Author Index
  32. Subject Index
18.216.121.55