0%

Book Description


71928-6

IS-95 and Third Generation CDMA Applications.

The one-stop source for engineering CDMA adaptive antennas.

New adaptive ("smart") antenna arrays can enhance the performance of virtually any CDMA system, including IS-95, IMT-2000 and Wideband CDMA. Smart Antennas for Wireless Communications is the first book that brings together all the real-world data and expertise communications engineers need to develop smart antennas for CDMA.

Start out with a detailed overview of IS-95 PCS and Cellular CDMA, including uplink and downlink signal formats and link budgets. Next, understand the full range of smart antenna technology, from simple beamforming networks to advanced multi-user spatial processing systems. Learn how adaptive antenna systems can change patterns dynamically, adjusting to noise, interference, and multipath as they track mobile users.

Learn the key elements of smart antenna development, including vector channel impulse response, spatial signatures, spatial diversity, diversity combining, sectoring, and transmission beamforming. Understand important CDMA-related issues, including non-coherent and coherent CDMA spatial processors, dynamic re-sectoring, and the use of spatial filtering to increase range and capacity. Master all these fundamental design techniques:

  • Characterization of spatio-temporal radio channels.

  • The geometrically-based single bounce elliptical model.

  • Optimal spatial filtering and adaptive algorithms.

  • Direction-Of-Arrival estimation algorithms.

  • This book reflects the latest developments in CDMA and smart antennas, including the IS-95 and J-STD-008 CDMA standards, 14.4K vocoders, and techniques for designing RF location systems that meet the FCC's stringent E-911 requirements. Whether you're designing for today's CDMA systems or tomorrow's, you'll find it invaluable.

Table of Contents

  1. Copyright
    1. Dedication
  2. Prentice Hall Communications Engineering and Emerging Technologies Series
    1. Forthcoming
  3. Preface
  4. 1. Introduction
    1. 1.1. The Cellular Radio Concept
    2. 1.2. Evolution of Wireless Communications
      1. 1.2.1. Key Terms and Concepts in Wireless Communications
      2. 1.2.2. Digital Cellular and PCS Technologies
      3. 1.2.3. CDMA Wireless Local Loop
      4. 1.2.4. MMDS and LMDS
      5. 1.2.5. Third Generation (3G) Wireless Systems
    3. 1.3. Spread Spectrum and Code Division Multiple Access
      1. 1.3.1. Direct-Sequence Spread Spectrum
      2. 1.3.2. Multiple Access Interference in DS-CDMA Systems
      3. 1.3.3. Power Control and the Near-Far Problem in CDMA
      4. 1.3.4. Frequency Hop Spread Spectrum
    4. 1.4. Antenna Systems
    5. 1.5. Basic Concepts in Radiowave Propagation
      1. 1.5.1. Path Loss in Real World Channels
    6. 1.6. Small Scale Fading
    7. 1.7. Large Scale Path Loss
      1. 1.7.1. Log-distance Path Loss Model
      2. 1.7.2. Log-normal Shadowing
    8. 1.8. Summary
  5. 2. IS-95 PCS & Cellular CDMA
    1. 2.1. Cellular and PCS Frequency Allocation
      1. 2.1.1. PCS Frequency Allocation
    2. 2.2. How IS-95 CDMA PCS Systems Work
      1. 2.2.1. Soft and Softer Handoff in IS-95 CDMA Systems
    3. 2.3. Typical Link Budgets for IS-95 PCS
      1. 2.3.1. IS-95 Forward Link Budget for 1900 MHz
      2. 2.3.2. IS-95 Reverse Link Budget at 1900 MHz
    4. 2.4. Reverse Traffic Channel Transmission for IS-95
      1. 2.4.1. Variable Rate Vocoders
      2. 2.4.2. Error Control - The Frame Quality Indicator and Convolutional Coding
      3. 2.4.3. Symbol Repetition and Block Interleaving
      4. 2.4.4. Walsh Functions and 64-ary Orthogonal Modulation
      5. 2.4.5. Data Burst Randomization and Gating
      6. 2.4.6. Long Code Spreading
      7. 2.4.7. Quadrature (Short Code) Spreading
      8. 2.4.8. Reverse Access Channels
      9. 2.4.9. Reverse Access - Interaction Between Signals at the Base Station
    5. 2.5. IS-95 Forward Channel Signals
      1. 2.5.1. Forward Channel Transmitter Structures
      2. 2.5.2. The Pilot Channel
      3. 2.5.3. The Sync Channel
      4. 2.5.4. Paging Channels
      5. 2.5.5. Forward Traffic Channels
      6. 2.5.6. The Power Control Subchannel
      7. 2.5.7. Downlink Power Control
    6. 2.6. IS-95 Evolution and cdma2000
    7. 2.7. Summary
  6. 3. Introduction to Smart Antennas: Spatial Processing for Wireless Systems
    1. 3.1. Key Benefits of Smart Antenna Technology
    2. 3.2. Introduction to Smart Antenna Technology
    3. 3.3. The Vector Channel Impulse Response and the Spatial Signature
    4. 3.4. Spatial Processing Receivers
    5. 3.5. Fixed Beamforming Networks
    6. 3.6. Switched Beam Systems
    7. 3.7. Adaptive Antenna Systems
    8. 3.8. Wideband Smart Antennas
    9. 3.9. Spatial Diversity, Diversity Combining, and Sectoring
    10. 3.10. Digital Radio Receiver Techniques and Software Radios for Smart Antennas
    11. 3.11. Transmission Beamforming
    12. 3.12. Array Calibration
    13. 3.13. Summary
  7. 4. Smart Antennas Techniques for CDMA
    1. 4.1. Non-Coherent CDMA Spatial Processors
    2. 4.2. Coherent CDMA Spatial Processors and the Spatial Processing Rake Receiver
    3. 4.3. Multi-User Spatial Processing
    4. 4.4. Dynamic Re-sectoring Using Smart Antennas
    5. 4.5. Downlink Beamforming for CDMA
    6. 4.6. Summary
  8. 5. CDMA System Range and Capacity Improvement Using Spatial Filtering
    1. 5.1. Range Extension In CDMA
    2. 5.2. Single Cell Systems with Spatial Filtering at the IS-95 Base Station
    3. 5.3. Reverse Channel Performance of Multi-cell Systems with Spatial Filtering at the Base Station
    4. 5.4. Reverse Channel Spatial Filtering at the WLL Subscriber Unit
    5. 5.5. Range and Capacity Analysis Using Smart Antennas - A Vector-Based Approach
    6. 5.6. Summary
  9. 6. Characterization of Spatio-Temporal Radio Channels
    1. 6.1. Wireless Multipath Channel Models, Environment, and Signal Parameters
      1. 6.1.1. The Macrocell Environment
      2. 6.1.2. The Microcell Environment
      3. 6.1.3. Angle Spread
      4. 6.1.4. Measuring Time Variation of the Channel
    2. 6.2. Spatio-Temporal Channel Models for Smart Antennas
      1. 6.2.1. Lee’s Model
      2. 6.2.2. Stapleton’s Extension of Lee’s Model
      3. 6.2.3. Discrete Uniform Distribution
      4. 6.2.4. Geometrically Based Single Bounce Statistical Channel Models
      5. 6.2.5. The Geometrically Based Single Bounce Circular Model (Macrocell Model)
      6. 6.2.6. The Geometrically Based Single Bounce Elliptical Model (Microcell Model)
      7. 6.2.7. The Gaussian Wide Sense Stationary Uncorrelated Scattering (GWSSUS) Model
      8. 6.2.8. Gaussian Angle-Of-Arrival (GAA)
      9. 6.2.9. Time-Varying Vector Channel Model (Raleigh’s Model)
      10. 6.2.10. Two GSM Simulation Models (TU and BU)
      11. 6.2.11. The Typical Urban (TU) Model
      12. 6.2.12. The Bad Urban (BU) Model
      13. 6.2.13. The Uniform Sectored Distribution Model
      14. 6.2.14. Modified Saleh-Valenzuela’s Model
      15. 6.2.15. Extended Tap-Delay-Line Method
      16. 6.2.16. Elliptical Subregions Model (Lu, Lo, and Litva’s Model)
      17. 6.2.17. Measurement Based Channel Model
      18. 6.2.18. Ray Tracing Models
    3. 6.3. Spatial Channel Measurements
    4. 6.4. Application of Spatial Channel Models
    5. 6.5. Summary
  10. 7. The Geometrically Based Single Bounce Elliptical Model
    1. 7.1. Simulation of Multipath Component Parameters in GBSBEM
    2. 7.2. Marginal Distribution of the Direction-Of-Arrival in the GBSBEM Model
    3. 7.3. Doppler Spectra and the Fading Envelope
    4. 7.4. Selection of the Maximum Path Delay, τm
    5. 7.5. Summary
  11. 8. Optimal Spatial Filtering and Adaptive Algorithms
    1. 8.1. Impact of Multipath on Optimal Spatial Filtering
      1. 8.1.1. Flat Fading Channels
      2. 8.1.2. Frequency Selective/Time Dispersive Channels
      3. 8.1.3. Array Performance in Multipath
    2. 8.2. Performance of Underloaded and Overloaded Adaptive Arrays
    3. 8.3. Adaptive Algorithms
      1. 8.3.1. Blind Adaptive Algorithms
      2. 8.3.2. The Least Squares Constant Modulus Algorithm
    4. 8.4. Adaptive Algorithms for CDMA
      1. 8.4.1. Multitarget Least Squares Constant Modulus Algorithm
      2. 8.4.2. Gram-Schmidt Orthogonalization
      3. 8.4.3. Phase Ambiguity
      4. 8.4.4. Sorting Procedure
    5. 8.5. Multitarget Decision-Directed Algorithm (MT-DD)
    6. 8.6. Least Squares De-spread Re-spread Multitarget Array (LS-DRMTA)
      1. 8.6.1. Derivation of LS-DRMTA
      2. 8.6.2. Advantages of LS-DRMTA
    7. 8.7. Least Squares De-spread Re-spread Multitarget Constant Modulus Algorithm
      1. 8.7.1. Derivation of LS-DRMTCMA
      2. 8.7.2. Advantages of LS-DRMTCMA
    8. 8.8. Summary
  12. 9. Direction-Of-Arrival Estimation Algorithms
    1. 9.1. Conventional Methods for DOA Estimation
      1. 9.1.1. Delay-and-Sum Method
      2. 9.1.2. Capon’s Minimum Variance Method
    2. 9.2. Subspace Methods for DOA Estimation
      1. 9.2.1. The MUSIC Algorithm
      2. 9.2.2. Improvements to the MUSIC Algorithm
      3. 9.2.3. Root-MUSIC Algorithm
      4. 9.2.4. Cyclic MUSIC Algorithm
      5. 9.2.5. The ESPRIT Algorithm
    3. 9.3. Maximum Likelihood Techniques
    4. 9.4. DOA Estimation under Coherent Signal Conditions
      1. 9.4.1. Spatial Smoothing Techniques
      2. 9.4.2. Multidimensional MUSIC
    5. 9.5. The Iterative Least Squares Projection Based CMA
    6. 9.6. The Integrated Approach to DOA Estimation
    7. 9.7. Detection of Number of Sources in Eigen Decomposition
      1. 9.7.1. The SH, MDL and AIC Criteria
      2. 9.7.2. Order Estimation Using Transformed Gerschgorin Radii
    8. 9.8. Summary
  13. 10. RF Position Location Systems
    1. 10.1. Direction Finding PL Systems
    2. 10.2. True Ranging PL Systems
    3. 10.3. Elliptical PL Systems
    4. 10.4. Hyperbolic PL Systems
    5. 10.5. Hyperbolic versus DF PL Systems
    6. 10.6. TDOA Estimation Techniques
      1. 10.6.1. General Model for TDOA Estimation
      2. 10.6.2. Generalized Cross-Correlation Methods
      3. 10.6.3. Hyperbolic Position Location Estimation Technologies
      4. 10.6.4. Methods for Hyperbolic PL Estimation
    7. 10.7. Measures of Position Location Accuracy
      1. 10.7.1. MSE and the Cramér-Rao Lower Bound
      2. 10.7.2. Circular Error Probability
      3. 10.7.3. Geometric Dilution of Precision
    8. 10.8. Summary
  14. A. Multiple Access Interference and the Gaussian Approximation
    1. A.1. The Gaussian Approximation
  15. B. Q, erf, & erfc Functions
    1. B.1. The Q-Function
    2. B.2. The erf and erfc functions
  16. C. Mathematical Tables
  17. D. Abbreviations and Acronyms
    1. A
    2. B
    3. C
    4. D
    5. E
    6. F
    7. G
    8. H
    9. I
    10. J
    11. L
    12. M
    13. N
    14. O
    15. P
    16. Q
    17. R
    18. S
    19. T
    20. U
    21. V
    22. W
    23. X
    24. Z
  18. References
  19. The Authors
3.16.70.101