0%

Book Description

Broadly tunable lasers have had, and continue to have, an enormous impact in many and diverse fields of science and technology. From a renaissance in spectroscopy to laser guide stars and laser cooling, the nexus is the tunable laser.

Tunable Laser Optics offers a transparent and comprehensive treatment of the physics of tunable laser optics based on a detailed description of first principles. Authored by a leading expert in the field, the book covers the optics and optical principles needed to build lasers, the optics instrumentation necessary to characterize laser emission, and laser-based optical instrumentation, addressing key topics such as Dirac’s notation, the interferometric equation, the uncertainty principle, pulse compression, and tunable narrow-linewidth lasers.

This revised, expanded, and improved Second Edition:

  • Contains new and additional material on tunable lasers and quantum optics
  • Explains the first principles of tunable laser optics in a clear and concise manner
  • Presents an explicit exposition of the relevant theory, without the use of short cuts
  • Employs numerous examples, case studies, and figures to illustrate important concepts
  • Includes carefully designed problems of direct practical significance to stimulate application

Emphasizing the utilitarian aspects of the optics and theory, Tunable Laser Optics, Second Edition provides valuable insight into the optics and the trade-offs involved in the design and construction of tunable lasers and optical devices. It makes an ideal textbook for advanced undergraduate-level and graduate-level optics courses for physics and engineering students, as well as a handy reference for researchers and experimentalists.

Table of Contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Dedication
  6. Table of Contents
  7. List of Figures
  8. List of Tables
  9. Preface
  10. Author
  11. Chapter 1 Introduction to Lasers
    1. 1.1 Introduction
      1. 1.1.1 Historical Remarks
    2. 1.2 Lasers
      1. 1.2.1 Laser Optics
      2. 1.2.2 Laser Categories
    3. 1.3 Excitation Mechanisms and Rate Equations
      1. 1.3.1 Rate Equations
      2. 1.3.2 Dynamics of Multiple-Level System
        1. 1.3.2.1 Example
        2. 1.3.2.2 Example
      3. 1.3.3 Transition Probabilities and Cross Sections
        1. 1.3.3.1 Example
    4. 1.4 The Schrödinger Equation and Semiconductor Lasers
      1. 1.4.1 A Heuristic Introduction to the Schrödinger Equation
      2. 1.4.2 The Schrödinger Equation Via dirac’s Notation
      3. 1.4.3 The Time-Independent Schrödinger Equation
      4. 1.4.4 Semiconductor Emission
        1. 1.4.4.1 Example
      5. 1.4.5 Quantum Wells
      6. 1.4.6 Quantum Cascade Lasers
        1. 1.4.6.1 Example
      7. 1.4.7 Quantum Dots
    5. 1.5 Introduction to Laser Resonators and Laser Cavities
    6. Problems
  12. Chapter 2 Dirac Optics
    1. 2.1 Introduction
    2. 2.2 Dirac’s Notation in Optics
    3. 2.3 Interference
      1. 2.3.1 Example
      2. 2.3.2 Geometry of The N-Slit Interferometer
      3. 2.3.3 N-Slit Interferometer Experiment
    4. 2.4 Generalized Diffraction
      1. 2.4.1 Positive Diffraction
    5. 2.5 Positive and Negative Refraction
    6. 2.6 Reflection
    7. 2.7 The Cavity Linewidth Equation
      1. 2.7.1 Introduction to Angular Dispersion
    8. 2.8 Dirac and the Laser
    9. Problems
  13. Chapter 3 The Uncertainty Principle in Optics
    1. 3.1 Approximate Derivation of the Uncertainty Principle
      1. 3.1.1 The Wave Character of Particles
      2. 3.1.2 The Diffraction Identity and the Uncertainty Principle
      3. 3.1.3 Alternative Versions of the Uncertainty Principle
    2. 3.2 Applications of the Uncertainty Principle in Optics
      1. 3.2.1 Beam Divergence
        1. 3.2.1.1 Example
      2. 3.2.2 Beam Divergence and Astronomy
        1. 3.2.2.1 Laser Guide Star
        2. 3.2.2.2 Example
    3. 3.3 The Interferometric Equation and the Uncertainty Principle
      1. 3.3.1 Quantum Cryptography
        1. 3.3.1.1 Example
    4. Problems
  14. Chapter 4 The Physics of Multiple- Prism Optics
    1. 4.1 Introduction
    2. 4.2 Generalized Multiple-Prism Dispersion
      1. 4.2.1 Double-Pass Generalized Multiple-Prism Dispersion
      2. 4.2.2 Multiple Return-Pass Generalized Multiple-Prism Dispersion
      3. 4.2.3 Single-Prism Equations
    3. 4.3 Multiple-Prism Dispersion Linewidth Narrowing
      1. 4.3.1 Mechanics of Linewidth Narrowing in Optically Pumped Pulsed Laser Oscillators
      2. 4.3.2 Design of Zero-Dispersion Multiple-Prism Beam Expanders
        1. 4.3.2.1 Example
        2. 4.3.2.2 Example
    4. 4.4 Dispersion of Amici, or Compound, Prisms
      1. 4.4.1 Example
    5. 4.5 Multiple-Prism Dispersion and Pulse Compression
      1. 4.5.1 Example
    6. 4.6 Applications of Multiple-Prism Arrays
    7. Problems
  15. Chapter 5 Polarization
    1. 5.1 Introduction
    2. 5.2 Maxwell Equations
    3. 5.3 Polarization and Reflection
      1. 5.3.1 Plane of Incidence
    4. 5.4 Jones Calculus
      1. 5.4.1 Example
    5. 5.5 Polarizing Prisms
      1. 5.5.1 Transmission Efficiency in Multiple-Prism Arrays
      2. 5.5.2 Induced Polarization in a Double-Prism Beam Expander
    6. 5.6 Double-Refraction Polarizers
    7. 5.7 Intensity Control of Laser Beams Using Polarization
    8. 5.8 Polarization Rotators
      1. 5.8.1 Birefringent Polarization Rotators
        1. 5.8.1.1 Example
      2. 5.8.2 Broadband Prismatic Polarization Rotators
        1. 5.8.2.1 Example
    9. Problems
  16. Chapter 6 Laser Beam Propagation Matrices
    1. 6.1 Introduction
    2. 6.2 ABCD Propagation Matrices
      1. 6.2.1 Properties of ABCD Matrices
      2. 6.2.2 Survey of ABCD Matrices
      3. 6.2.3 The Astronomical Telescope
      4. 6.2.4 A Single Prism in Space
      5. 6.2.5 Multiple-Prism Beam Expanders
      6. 6.2.6 Telescopes in Series
      7. 6.2.7 Single Return-Pass Beam Divergence
      8. 6.2.8 Multiple Return-Pass Beam Divergence
      9. 6.2.9 Unstable Resonators
    3. 6.3 Higher Order Matrices
    4. Problems
  17. Chapter 7 Narrow-Linewidth Tunable Laser Oscillators
    1. 7.1 Introduction
    2. 7.2 Transverse and Longitudinal Modes
      1. 7.2.1 Transverse Mode Structure
      2. 7.2.2 Longitudinal Mode Emission
    3. 7.3 Tunable Laser Oscillator Architectures
      1. 7.3.1 Tunable Laser Oscillators Without Intracavity Beam Expansion
      2. 7.3.2 Tunable Laser Oscillators With Intracavity Beam Expansion
      3. 7.3.3 Widely Tunable Narrow-Linewidth External Cavity Semiconductor Lasers
      4. 7.3.4 Distributed Feedback Lasers
    4. 7.4 Wavelength Tuning Techniques
      1. 7.4.1 Prismatic Tuning Techniques
      2. 7.4.2 Diffractive Tuning Techniques
        1. 7.4.2.1 Example
      3. 7.4.3 Synchronous Tuning Techniques
      4. 7.4.4 Bragg Gratings
      5. 7.4.5 Interferometric Tuning Techniques
      6. 7.4.6 Longitudinal Tuning Techniques for Laser Microcavities
        1. 7.4.6.1 Example
      7. 7.4.7 Birefringent Filters
    5. 7.5 Polarization Matching
    6. 7.6 Design of Efficient Narrow-Linewidth Tunable Laser Oscillators
      1. 7.6.1 Useful Axioms for the Design of Narrow- Linewidth Tunable Laser Oscillators
    7. 7.7 Narrow-Linewidth Oscillator-Amplifiers
      1. 7.7.1 Laser-Pumped Narrow-Linewidth Oscillator-Amplifiers
      2. 7.7.2 Narrow-Linewidth MO Forced Oscillators
    8. 7.8 Discussion
    9. Problems
  18. Chapter 8 Nonlinear Optics
    1. 8.1 Introduction
      1. 8.1.1 Introduction to Nonlinear Polarization
    2. 8.2 Generation of Frequency Harmonics
      1. 8.2.1 Second Harmonic and Sum-Frequency Generation
      2. 8.2.2 Difference-Frequency Generation and Optical Parametric Oscillation
      3. 8.2.3 The Refractive Index as a Function of Intensity
    3. 8.3 Optical Phase Conjugation
    4. 8.4 Raman Shifting
    5. 8.5 Optical Clockwork
    6. Problems
  19. Chapter 9 Lasers and Their Emission Characteristics
    1. 9.1 Introduction
    2. 9.2 Gas Lasers
      1. 9.2.1 Pulsed Molecular Gas Lasers
      2. 9.2.2 Pulsed Atomic Metal Vapor Lasers
      3. 9.2.3 CW Gas Lasers
    3. 9.3 Organic Dye Lasers
      1. 9.3.1 Pulsed Organic Dye Lasers
        1. 9.3.1.1 Solid-State Tunable Organic Lasers
      2. 9.3.2 CW Organic Dye Lasers
    4. 9.4 Solid-State Lasers
      1. 9.4.1 Ionic Solid-State Lasers
      2. 9.4.2 Transition Metal Solid-State Lasers
      3. 9.4.3 Color Center Lasers
      4. 9.4.4 Diode Laser-Pumped Fiber Lasers
      5. 9.4.5 Optical Parametric Oscillators
    5. 9.5 Semiconductor Lasers
      1. 9.5.1 Tunable Quantum Cascade Lasers
      2. 9.5.2 Tunable Quantum Dot Lasers
    6. 9.6 Additional Lasers
    7. Problems
  20. Chapter 10 The N-Slit Laser Interferometer Optical Architecture and Applications
    1. 10.1 Introduction
    2. 10.2 Optical Architecture of the NSLI
      1. 10.2.1 Beam Propagation in the N SLI
        1. 10.2.1.1 Example
    3. 10.3 An Interferometric Computer
    4. 10.4 Secure Interferometric Communications in Free Space
      1. 10.4.1 Very Large N Slis for Secure Interferometric Communications in Free Space
    5. 10.5 Applications of the NSLI
      1. 10.5.1 Digital Laser Micromeasurements
      2. 10.5.2 Light Modulation Measurements
      3. 10.5.3 Wavelength Meter and Broadband Interferograms
      4. 10.5.4 Imaging Laser Printers
    6. Problems
  21. Chapter 11 Interferometry
    1. 11.1 Introduction
    2. 11.2 Two-Beam Interferometers
      1. 11.2.1 The Sagnac Interferometer
      2. 11.2.2 The Mach-Xehnder Interferometer
      3. 11.2.3 The Michelson Interferometer
    3. 11.3 Multiple-Beam Interferometers
      1. 11.3.1 The Hanbury Brown–Twiss Interferometer
      2. 11.3.2 The Fabry–Pérot interferometer
      3. 11.3.3 Design of Fabry–Pérot Etalons
        1. 11.3.3.1 Example
    4. 11.4 Coherent and Semicoherent Interferograms
      1. 11.4.1 Example
    5. 11.5 Interferometric Wavelength Meters
      1. 11.5.1 Fabry–Pérot Wavelength Meters
    6. Problems
  22. Chapter 12 Spectrometry
    1. 12.1 Introduction
    2. 12.2 Spectrometry
      1. 12.2.1 Prism Spectrometers
      2. 12.2.2 Diffraction Grating Spectrometers
        1. 12.2.2.1 Example
    3. 12.3 Dispersive Wavelength Meters
    4. Problems
  23. Chapter 13 Physical Constants and Optical Quantities
    1. 13.1 Fundamental Physical Constants
    2. 13.2 Conversion Quantities
    3. 13.3 Units of Optical Quantities
    4. 13.4 Dispersion Constants of Optical Materials
    5. 13.5 ∂N/∂T of Laser and Optical Materials
    6. Problems
  24. References
  25. Index
52.14.130.13