0%

Book Description

Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.

The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating channel properties, propagation models, link budgets, data processing including coding, modulation, standards and concerns around health and safety (IEC 60825 or FCC - Class 1 for example), etc. will become indispensable over the next decade in addressing computer architectures for short-, medium- and long-range telecommunications as we move from gigabytes to terabytes per second.

Wireless Optical Communications is an excellent tool for any engineer wanting to learn about wireless optical communications or involved in the implementation of real complete systems. Students will find a wide range of information and useful concepts such as those relating to propagation, optics and photometry, as well the necessary information on safety.

Contents

1. Light.

2. History of Optical Telecommunications.

3. The Contemporary and the Everyday Life of Wireless Optical Communication.

4. Propagation Model.

5. Propagation in the Atmosphere.

6. Indoor Optic Link Budget.

7. Immunity, Safety, Energy and Legislation.

8. Optics and Optronics.

9. Data Processing.

10. Data Transmission.

11. Installation and System Engineering.

12. Conclusion.

Table of Contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Foreword
  5. Acronyms
  6. Introduction
  7. Chapter 1: Light
  8. Chapter 2: History of Optical Telecommunications
    1. 2.1. Some definitions
      1. 2.1.1. Communicate
      2. 2.1.2. Telecommunication
      3. 2.1.3. Optical telecommunication
      4. 2.1.4. Radio frequency or Hertzian waves
    2. 2.2. The prehistory of telecommunications
    3. 2.3. The optical aerial telegraph
    4. 2.4. The code
    5. 2.5. The optical telegraph
      1. 2.5.1. The heliograph or solar telegraph
      2. 2.5.2. The night and day optical telegraph
    6. 2.6. Alexander Graham Bell’s photophone
  9. Chapter 3: The Contemporary and the Everyday Life of Wireless Optical Communication
    1. 3.1. Basic principles
      1. 3.1.1. Operating principle
        1. 3.1.1.1. Block diagram
      2. 3.1.2. The optical propagation
        1. 3.1.2.1. Line of sight propagation – LOS
        2. 3.1.2.2. Wide line of sight– WLOS
        3. 3.1.2.3. Diffusion propagation (DIF) and controlled diffusion
      3. 3.1.3. Elements of electromagnetics
        1. 3.1.3.1. Maxwell’s equations in an unspecified medium
        2. 3.1.3.2. Propagation of electromagnetic waves in an isotropic medium
        3. 3.1.3.3. Energy associated to a wave
        4. 3.1.3.4. Propagation of a wave in a non-homogeneous medium
        5. 3.1.3.5. Coherent and incoherent waves
        6. 3.1.3.6. Relations between electromagnetism and geometrical optics
        7. 3.1.3.7. The electromagnetic spectrum
        8. 3.1.3.8. Units and scales
        9. 3.1.3.9. Examples of sources in the visible and near visible light
        10. 3.1.3.10. Conclusion
      4. 3.1.4. Models for data exchange
        1. 3.1.4.1. The OSI model
        2. 3.1.4.2. The DoD model
    2. 3.2. Wireless optical communication
      1. 3.2.1. Outdoor wireless optical communication
        1. 3.2.1.1. Earth-satellite wireless optical communication
        2. 3.2.1.2. Intersatellite wireless optical communication
        3. 3.2.1.3. Free-space optic
      2. 3.2.2. Indoor wireless optical communication
        1. 3.2.2.1. The remote controller
        2. 3.2.2.2. The visible light communication
        3. 3.2.2.3. The IrDA solutions
        4. 3.2.2.4. The indoor wireless optical network (WON)
      3. 3.2.3. The institutional and technical ecosystem
  10. Chapter 4: Propagation Model
    1. 4.1. Introduction
    2. 4.2. Baseband equivalent model
      1. 4.2.1. Radio propagation model
      2. 4.2.2. Model of free-space optical propagation
      3. 4.2.3. The signal-to-noise ratio
    3. 4.3. Diffuse propagation link budget in a confined environment
      1. 4.3.1. Intersymbol interference
      2. 4.3.2. Reflection models
        1. 4.3.2.1. Specular reflection
        2. 4.3.2.2. Diffuse reflection
        3. 4.3.2.3. Lambert’s model
        4. 4.3.2.4. Phong’s model
      3. 4.3.3. Modeling
  11. Chapter 5: Propagation in the Atmosphere
    1. 5.1. Introduction
    2. 5.2. The atmosphere
      1. 5.2.1. The atmospheric gaseous composition
      2. 5.2.2. Aerosols
    3. 5.3. The propagation of light in the atmosphere
      1. 5.3.1. Molecular absorption
      2. 5.3.2. Molecular scattering
      3. 5.3.3. Aerosol absorption
      4. 5.3.4. Aerosol scattering
    4. 5.4. Models
      1. 5.4.1. Kruse and Kim models
      2. 5.4.2. Bataille’s model
        1. 5.4.2.1. Molecular extinction
        2. 5.4.2.2. Aerosol extinction
      3. 5.4.3. Al Naboulsi’s model
      4. 5.4.4. Rain attenuation
      5. 5.4.5. Snow attenuation
      6. 5.4.6. Scintillation
    5. 5.5. Experimental set-up
    6. 5.6. Experimental results
      1. 5.6.1. Comparaison with Kruse and Kim model (850 nm)
      2. 5.6.2. Comparaison with Al Naboulsi’s model
    7. 5.7. Fog, haze and mist
    8. 5.8. The runway visual range (RVR)
      1. 5.8.1. The visibility
      2. 5.8.2. Measuring instruments
        1. 5.8.2.1. The transmissometer
        2. 5.8.2.2. The scatterometer
    9. 5.9. Calculating process of an FSO link availability
    10. 5.10. Conclusion
  12. Chapter 6: Indoor Optic Link Budget
    1. 6.1. Emission and reception parameters
      1. 6.1.1. Transmission device: parameters
      2. 6.1.2. Reception device
    2. 6.2. Link budget for line of sight communication
      1. 6.2.1. Geometrical attenuation
      2. 6.2.2. Optical margin
      3. 6.2.3. Coverage
      4. 6.2.4. Reciprocity and not reciprocity of the channel
    3. 6.3. Link budget for communication with retroreflectors
      1. 6.3.1. Principle of operation
      2. 6.3.2. Optical budget
    4. 6.4. Examples of optical budget and signal-to-noise ratio (SNR)
      1. 6.4.1. Examples of optical budget
      2. 6.4.2. Examples of SNR and BER
  13. Chapter 7: Immunity, Safety, Energy and Legislation
    1. 7.1. Immunity
      1. 7.1.1. International references
      2. 7.1.2. Type of laser classes
      3. 7.1.3. Method for calculation
    2. 7.2. The confidentiality of communication
      1. 7.2.1. Physical confidentiality
      2. 7.2.2. Numerical solution
        1. 7.2.2.1. Cryptography
        2. 7.2.2.2. Public and secret key cryptography
        3. 7.2.2.3. Quantum cryptography
        4. 7.2.2.4. Quantum telecommunications in free space
        5. 7.2.2.5. Non-encrypted connections in confined space
    3. 7.3. Energy
    4. 7.4. Legislation
      1. 7.4.1. Organization of regulation activities
      2. 7.4.2. Regulation of wireless optical equipment
  14. Chapter 8: Optics and Optronics
    1. 8.1. Overview
    2. 8.2. Optronics: transmitters and receivers
      1. 8.2.1. Overviews on materials and structures
      2. 8.2.2. Light sources
        1. 8.2.2.1. Light-emitting diodes (LEDs) and spontaneous emission
        2. 8.2.2.2. White LEDs or visible light communication (VLC) LED
        3. 8.2.2.3. The semiconductor laser structure
        4. 8.2.2.4. Synthesis
      3. 8.2.3. Optronics receivers
        1. 8.2.3.1. Photovoltaic cells
        2. 8.2.3.2. PIN photodiode
        3. 8.2.3.3. Avalanche photodiode
        4. 8.2.3.4. Metal–semiconductor–metal (MSM) structure
    3. 8.3. Optics
      1. 8.3.1. Transmitter optical device
      2. 8.3.2. Receiver optical device
      3. 8.3.3. Optical filtering
        1. 8.3.3.1. Spatial filter or diaphragm
        2. 8.3.3.2. Wavelength filters or attenuators
      4. 8.3.4. Summary
  15. Chapter 9: Data Processing
    1. 9.1. Introduction
    2. 9.2. Modulation
      1. 9.2.1. On-off keying (OOK) modulation
      2. 9.2.2. The pulse position modulation
      3. 9.2.3. The orthogonalfrequency-division multiplexing (OFDM)
      4. 9.2.4. The diversity: MIMO
      5. 9.2.5. Summary
    3. 9.3. The coding
      1. 9.3.1. Principle and definitions
        1. 9.3.1.1. Principle
        2. 9.3.1.2. Definitions
          1. 9.3.1.2.1. Coding efficiency
          2. 9.3.1.2.2. Correction power and code detection
      2. 9.3.2. Example of coding
        1. 9.3.2.1. Basic codes
          1. 9.3.2.1.1. The parity check
          2. 9.3.2.1.2. The cyclic redundancy check
        2. 9.3.2.2. Block codes
          1. 9.3.2.2.1. BCH codes
          2. 9.3.2.2.2. RS codes
        3. 9.3.2.3. Convolutional codes
      3. 9.3.3. Summary
  16. Chapter 10: Data Transmission
    1. 10.1. Introduction
      1. 10.1.1. Definition
      2. 10.1.2. The access methods
        1. 10.1.2.1. Time division multiple access
        2. 10.1.2.2. Frequency division multiple access
        3. 10.1.2.3. Code division multiple access
        4. 10.1.2.4. Carrier sense multiple access
        5. 10.1.2.5. Wavelength division multiple access
        6. 10.1.2.6. Space division multiple access
      3. 10.1.3. Quality of service parameters
    2. 10.2. Point-to-point link
      1. 10.2.1. The remote control
      2. 10.2.2. Infrared Data Association
      3. 10.2.3. Visible light communication consortium
    3. 10.3. Point-to-multipoint data link
      1. 10.3.1. IEEE 802.11 IR
      2. 10.3.2. ICSA – STB50 (IEEE 802.3 – Ethernet)
      3. 10.3.3. IEEE 802.15.3
      4. 10.3.4. IEEE 802.15.7
      5. 10.3.5. Optical wireless media access control
    4. 10.4. Summary
  17. Chapter 11: Installation and System Engineering
    1. 11.1. Free-space optic system engineering and installation
      1. 11.1.1. Principle of operation
      2. 11.1.2. Characteristics
        1. 11.1.2.1. Principal parameters
          1. 11.1.2.1.1. Range
          2. 11.1.2.1.2. Safety
          3. 11.1.2.1.3. Data rate and type of recommended application
        2. 11.1.2.2. Secondary parameters
        3. 11.1.2.3. Examples of FSO systems
      3. 11.1.3. Implementation recommendations
      4. 11.1.4. Optic link budget
        1. 11.1.4.1. Geometrical attenuation concept
        2. 11.1.4.2. Link margin concept
      5. 11.1.5. FSO link availability
        1. 11.1.5.1. Characteristics
        2. 11.1.5.2. Results
      6. 11.1.6. Summary
    2. 11.2. Wireless optical system installation engineering in limited space
      1. 11.2.1. Habitat structure
      2. 11.2.2. Statistical analysis and coverage area
      3. 11.2.3. Optical link budget
      4. 11.2.4. Optimization of indoor wireless optical system
  18. Chapter 12: Conclusion
  19. APPENDICES
    1. Appendix 1: Geometrical Optics, Photometry and Energy Elements
      1. A1.1. Geometrical optics elements
        1. A1.1.1. Refractive index
        2. A1.1.2. Fermat’s principle
        3. A1.1.3. Snell–Descartes’ laws
        4. A1.1.4. Definitions: sources, image, andfocal point
      2. A1.2. Photometry elements
        1. A1.2.1. Steradian
        2. A1.2.2. Solid angle
        3. A1.2.3. Light intensity
        4. A1.2.4. Luminous flux
        5. A1.2.5. Illumination
        6. A1.2.6. Luminance
        7. A1.2.7. Conversion of visual photometry into energetic photometry
        8. A1.2.8. Bouguer’s relation
        9. A1.2.9. Energy flux or radiated power P
        10. A1.2.10. Source intensity I
        11. A1.2.11. Luminance of a source L
        12. A1.2.12. Illumination of a receiving surface E
        13. A1.2.13. Geometrical extent G
      3. A1.3. Equivalence between visual and energetic photometry
    2. Appendix 2: The Decibel Unit (dB)
  20. Bibliography
  21. List of Figures
  22. List of Tables
  23. List of Equations
  24. Index
18.207.161.212