References

1. Causevic M, Mitrovic S. Comparison between non-linear dynamic and static seismic analysis of structures according to European and US provisions. Bull Earthquake Eng. 2011;9(2):467–489.

2. Cruz EF, Chopra AK. Simplified procedures for earthquake analysis of buildings. J Struct Eng. 1986;112(3):461–480.

3. Cruz EF, Chopra AK. Elastic earthquake response of building frames. J Struct Eng. 1986;112(3):443–459.

4. Newmark NM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67–94.

5. Shinozuka M, Jan CM. Digital simulation of random processes and its applications. J Sound Vib. 1972;25(1):111–128.

6. Cebon D. Interaction between heavy vehicles and roads Warrendale, PA, USA: SAE, Inc; 1993.

7. Muto K. Seismic design of building Tokyo: Maruzen Publishing Co., Ltd.; 1963.

8. Passive and active structural vibration control in civil engineering. Springer; 2014.

9. Xu ZD, Huang XH, Lu LH. Experimental study on horizontal performance of multi-dimensional earthquake isolation and mitigation devices for long-span reticulated structures. J Vib Control 2011; 1077546311418868.

10. Xu ZD, Tu Q, Guo YF. Experimental study on vertical performance of multidimensional earthquake isolation and mitigation devices for long-span reticulated structures. J Vib Control. 2012;18(13):1971–1985.

11. Nagarajaiah S, Feng MQ, Shinozuka M. Control of structures with friction controllable sliding isolation bearings. Soil Dyn Earthquake Eng. 1993;12(2):103–112.

12. Su L, Ahmadi G. Response of frictional base isolation systems to horizontal-vertical random earthquake excitations. Probab Eng Mech. 1988;3(1):12–21.

13. Liu S, Warn GP. Seismic performance and sensitivity of floor isolation systems in steel plate shear wall structures. Eng Struct. 2012;42:115–126.

14. Mostaghel N, Davis T. Representations of Coulomb friction for dynamic analysis. Earthquake Eng Struct Dyn. 1997;26(5):541–548.

15. Kelly JM, Hodder SB. Experimental study of lead and elastomeric dampers for base isolation systems. NASA STI/Recon Tech Rep N. 1981;82:31577.

16. Yeung N, Pan ADE. The effectiveness of viscous-damping walls for controlling wind vibrations in multi-story buildings. J Wind Eng Ind Aerod. 1998;77:337–348.

17. Housner GW, Bergman LA, Caughey TK, et al. Structural control: past, present, and future. J Eng Mech. 1997;123(9):897–971.

18. De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R. Magnetorheological fluids: a review. Soft Matter. 2011;7(8):3701–3710.

19. Brigadnov IA, Dorfmann A. Mathematical modeling of magnetorheological fluids. Continuum Mech Thermodyn. 2005;17(1):29–42.

20. Hagood NW, Chung WH, Von Flotow A. Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst and Struct. 1990;1(3):327–354.

21. Struwe M. Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Springer; 2008.

22. Yang JN, Akbarpour A, Ghaemmaghami P. New optimal control algorithms for structural control. J Eng Mech. 1987;113(9):1369–1386.

23. Yang JN, Akbarpour A, Ghaemmaghami P. Optimal control algorithms for earthquake-excited building structures. Structural Control. Netherlands:Springer.

24. Welch G, Bishop G. An introduction to the Kalman filter, UNC-Chapel Hill, TR 95-041 Chapel Hill, NC: University of North Carolina; 2006.

25. Catlin DE. Estimation, control, and the discrete Kalman filter New York, USA: Springer Science & Business Media; 2012.

26. Costa PJ. Adaptive model architecture and extended Kalman-Bucy filters. IEEE Trans Aerosp Electron Syst. 1994;30(2):525–533.

27. Ou JP. Structural vibration control: active, semi-active and intelligent controls Beijing, China: Science Press; 2003.

28. Yang JN. Application of optimal control theory to civil engineering structure. J Eng Mech Div. 1975;101(6):819–838.

29. Chang JCH, Soong TT. Structural control using active tuned mass dampers. J Eng Mech Div. 1980;106(6):1091–1098.

30. Abdel-Rohman M, Leipholz HH. Active control of tall buildings. J Struct Eng. 1983;109(3):628–645.

31. Chung LL, Reinhorn AM, Soong TT. Experiments on active control of seismic structures. J Eng Mech. 1988;114(2):241–256.

32. Soong TT, Spencer Jr, Reviewer BF. Active structural control: theory and practice. J Eng Mech. 1992;118(6):1282–1285.

33. Suneja BP, Datta TK. Open-close loop active control of articulated leg platform. J Eng Mech. 1998;124(7):734–740.

34. Porter B, Crossley R. Modal control: theory and applications Abingdon, UK: Taylor & Francis Group; 1972.

35. Abdel-Rohman M, Nayfeh AH. Active control of nonlinear oscillations in bridges. J Eng Mech. 1987;113(3):335–348.

36. Abdel-Rohman M, Leipholz HHE. Structure control by pole assignment method. J Eng Mech Div, ASCE. 1978;104:1157–1175.

37. Martin CR, Soong TT. Modal control of multistory structures. J Eng Mech Div. 1976;102(4):613–623.

38. Akbarpour A, Yang JN, Ghaemmaghami P. Instantaneous optimal control laws for tall buildings under seismic excitations. Technical Report NCEER-87-0007, June 10, 1987.

39. Yang JN. Instantaneous optimal control for linear, nonlinear and hysteretic structures-stable controllers. Technical Report NCEER-91-0026, November 15, 1991.

40. Yang JN, Li Z, Liu SC. Stable controllers for instantaneous optimal control. J Eng Mech. 1992;118(8):1612–1630.

41. Fang JQ, Li QS, Jeary AP. Modified independent modal space control of MDOF systems. J Sound Vib. 2003;261(3):421–441.

42. Soong TT. State-of-the-art review: active structural control in civil engineering. Eng Struct. 1988;10(2):74–84.

43. Yang JN, Wu JC, Reinhorn AM, et al. Experimental verifications of H∞ and sliding mode control for seismically excited buildings. J Struct Eng. 1996;122(1):69–75.

44. Yang JN, Wu JC, Agrawal AK. Sliding mode control for seismically excited linear structures. J Eng Mech. 1995;121(12):1386–1390.

45. Yang JN, Wu JC, Agrawal AK, et al. Sliding mode control with compensator for wind and seismic response control. Earthquake Eng Struct Dyn. 1997;26(11):1137–1156.

46. Housner GW, Soong TT, Masri SF. Second generation of active structural control in civil engineering. Comput-Aided Civ Infrastruct Eng. 1996;11(5):289–296.

47. Li J, Peng YB, Chen JB. A physical approach to structural stochastic optimal controls. Probab Eng Mech. 2010;25(1):127–141.

48. Peng YB, Li J. Exceedance probability criterion based stochastic optimal polynomial control of duffing oscillators. Int J Non Linear Mech. 2011;46(2):457–469.

49. Suhardjo J, Spencer BF, Sain MK. Non-linear optimal control of a duffing system. Int J Non Linear Mech. 1992;27(2):157–172.

50. Yang JN, Agrawal AK, Chen S. Optimal polynomial control for seismically excited nonlinear and hysteretic structures. Earthquake Eng Struct Dyn. 1996;25(11):1211–1230.

51. Anderson BDO, Moore JB. Optimal control: linear quadratic methods North Chelmsford, USA: Courier Corporation; 2007.

52. Yang JN, Li Z, Vongchavalitkul S. A generalization of optimal control theory: linear and nonlinear structures. J Eng Mech. 1994;120(2):266–283.

53. Haykin S. Neural networks and learning machines Upper Saddle River, NJ, USA: Pearson; 2009.

54. Xu ZD, Shen YP, Guo YQ. Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Mater Struct. 2003;12(1):80–87.

55. Eberhart RC, Shi Y. Particle swarm optimization: developments, applications and resources. 27–30 May Proceedings of congress on evolutionary computation Piscataway, NJ, Seoul, Korea: IEEE service center; 2001;81–86.

56. Kennedy J. The particle swarm: social adaptation of knowledge. Proceedings of international conference on evolutionary computation, Indianapolis, IN Piscataway, NJ: IEEE Service Center; 1997.

57. Reynolds CW. Flocks, herds and schools: a distributed behavioral model. Comput Graph. 1987;21(4):25–34.

58. Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks. In: Krasner S, ed. The ubiquity of chaos. Washington, DC: AAAS Publications; 1990.

59. Wilson EO. Sociobiology: the new synthesis Cambridge, MA: Belknap Press; 1975.

60. Shi Y, Eberhart RC. A modified particle swarm optimizer. IEEE world congress on computational intelligence Anchorage: IEEE; 1998;69–73.

61. Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Evolutionary computation, 1999 CEC 99 Proceedings of the 1999 congress on IEEE. 1999;3 Washington, D.C. USA.

62. Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. Evolutionary computation, 2000 Proceedings of the 2000 congress on IEEE. 2000;1:84–88 California, USA.

63. Riget J, Vesterstrøm JS. A diversity-guided particle swarm optimizer-the ARPSO. Department of Computer Science, University of Aarhus, Aarhus, Denmark. Tech Rep 2002; 2.

64. Tang KS, Man KF, Kwong S, et al. Genetic algorithms and their applications. IEEE Signal Process Mag. 1996;13(6):22–37.

65. Koza JR. Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems California, USA: Stanford University, Department of Computer Science; 1990.

66. Holland JH. Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence Ann Arbor: University of Michigan Press; 1975.

67. Janikow CZ, Michalewicz Z. An experimental comparison of binary and floating point representations in genetic algorithms.. IEEE Comput Graph Appl 1991;31–36.

68. Wright AH. Genetic algorithms for real parameter optimization. Found Genet Algorithms. 1991;1:205–218.

69. Golberg DE. Genetic algorithms in search, optimization, and machine learning New York, USA: Addison Wesley; 1989.

70. Cha YJ, Agrawal AK. Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm. Struct Control Health Monit. 2013;20(3):241–258.

71. Jiang X, Adeli H. Neuro-genetic algorithm for non-linear active control of structures. Int J Numer Methods Eng. 2008;75(7):770–786.

72. Ricciardelli F, Pizzimenti AD, Mattei M. Passive and active mass damper control of the response of tall buildings to wind gustiness. Eng Struct. 2003;25(9):1199–1209.

73. Tsai HC, Lin GC. Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Eng Struct Dyn. 1993;22(11):957–973.

74. Aizawa S, Fukao Y, Minewaki S, Hayamizu Y, Abe H, Haniuda N. An experimental study on the active mass damper. In: Proceedings of 9th word conference on earthquake engineering, Tokyo-Kyoto, Japan, vol. 5; 1988. p. 871–6.

75. Kobori T, Kanayama H, Kamagata S. Dynamic intelligent building as active seismic response controlled structure. In: Proceedings of annual meeting of the Architectural Institute of Japan, Tokyo, Japan; 1987.

76. Soong TT, Reinhorn AM, Yang JN. Active response control of building structures under seismic excitation. In: Proceedings of 9th word conference on earthquake engineering, Tokyo-Kyoto, Japan, vol. 8;1988. p. 453–8.

77. Aizawa S, Hayamizu Y, Higashino M, Soga Y, Yamamoto M. Experimental study of dual-axis active mass damper. Proceedings of 9th world conference on structural control research 1990;68–73.

78. Li AQ, Qu WL, Cheng WR. Research on hybrid vibration control of Nanjing TV tower under wind excitation. J Build Struct. 1996;17(3):9–16.

79. Cao H, Reinhorn AM, Soong TT. Design of an active mass damper for a tall TV tower in Nanjing, China. Eng Struct. 1997;20(3):134–143.

80. Liu YH, Tan P, Zhou FL, Teng J, Yan WM. Study of dynamic performance of AMD control device driven by multiple linear motors in the canton tower. J Build Struct. 2015;36(4):126–132.

81. Soong TT. Active structural control: theory and practice Essex, UK: Longman Scientific and Technical; 1990.

82. Dyke SJ, Spencer Jr BF, Quast P, et al. Experimental verification of acceleration feedback control strategies for an active tendon system. Nat Center for Earthquake Engrg Res, Tech Report NCEER-94, 1994; 24.

83. Yang JN, Samali B. Control of tall buildings in along-wind motion. J Struct Eng. 1983;109(1):50–68.

84. Roorda J. Experiments in feedback control of structures. Struct Control 1980;629–661.

85. Bossens F, Preumont A. Active tendon control of cable-stayed bridges: a large-scale demonstration. Earthquake Eng Struct Dyn. 2001;30(7):961–979.

86. Nudehi S, Mukherjee R, Shaw SW. Active vibration control of a flexible beam using a buckling-type end force. J Dyn Syst Meas Control. 2006;128(2):278–286.

87. Issa J, Mukherjee R, Shaw SW. Vibration suppression in structures using cable actuators. J Vib Acoust. 2010;132(3):031006.

88. Reinhorn AM, Soong TT, Riley MA, et al. Full-scale implementation of active control II: installation and performance. J Struct Eng. 1993;119(6):1935–1960.

89. Miller RK, Masri SF, Dehghanyar TJ, et al. Active vibration control of large civil structures. J Eng Mech. 1988;114(9):1542–1570.

90. Klein RE, Cusano C, Stukel JJ. Investigation of a method to stabilize wind-induced oscillations in large structures. Mechanical engineering 345 E 47th St, New York, NY 10017: ASME-AMER society of mechanical engineering. 1973;95 53-53.

91. Gupta H, Soong TT, Dargush GF. Active aerodynamic bidirectional control of structures I: modeling and experiments. Eng Struct. 2000;22(4):379–388.

92. Masri SF, Bekey GA, Caughey TK. On-line control of nonlinear flexible structures. J Appl Mech. 1982;49(4):877–884.

93. Fujino Y, Warnitchai P, Pacheco BM. Active stiffness control of cable vibration.. J Appl Mech. 1993;60(4):948–953.

94. Traina MI, Masri SF, Miller RK. An experimental study of the earthquake response of building models provided with active damping devices. Proceedings 9th world conference on earthquake engineering. 1988;8:447–452.

95. Kobayashi H, Nagaoka H. Active control of flutter of a suspension bridge. J Wind Eng Ind Aerod. 1992;41(1):143–151.

96. Nissen HD, Sørensen PH, Jannerup O. Active aerodynamic stabilisation of long suspension bridges. J Wind Eng Ind Aerod. 2004;92(10):829–847.

97. Karnopp D, Crosby MJ, Harwood RA. Vibration control using semi-active force generators. J Manuf Sci Eng. 1974;96(2):619–626.

98. Hrovat D, Barak P, Rabins M. Semi-active versus passive or active tuned mass dampers for structural control. J Eng Mech. 1983;109(3):691–705.

99. Symans MD, Constantinou MC. Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng Struct. 1999;21(6):469–487.

100. Rabinow J. The magnetic fluid clutch. Trans Am Inst Electr Eng. 1948;2(67):1308–1315.

101. English JJF, Hornfeck AJ. Magnetic fluid clutch: U.S. Patent 2,650,684. 1953-9-1.

102. Jacob R. Magnetic fluid torque and force transmitting device: U.S. Patent 2,575,360. 1951-11-20.

103. Rosenfeld N, Wereley NM, Radakrishnan R, et al. Behavior of magnetorheological fluids utilizing nanopowder iron. Int J Mod Phys B. 2002;16(17n18):2392–2398.

104. Goncalves FD, Carlson JD. An alternate operation mode for MR fluids—magnetic gradient pinch. Journal of physics: conference series IOP Publishing. 2009;149(1):012050.

105. Wereley NM, Cho JU, Choi YT, et al. Magnetorheological dampers in shear mode. Smart Mater Struct. 2008;17(1):015022.

106. Dyke SJ, Spencer Jr BF, Sain MK, et al. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct. 1996;5(5):565.

107. Kamath GM, Hurt MK, Wereley NM. Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. Smart Mater Struct. 1996;5(5):576–590.

108. Mao M, Choi YT, Wereley NM. Effective design strategy for a magneto-rheological damper using a nonlinear flow model. Smart structures and materials International society for optics and photonics 2005;446–455.

109. Spencer Jr BF, Dyke SJ, Sain MK, et al. Phenomenological model for magnetorheological dampers. J Eng Mech. 1997;123(3):230–238.

110. Zhou Q. Two mechanic models for magneto-rheological damper and corresponding test verification. Earth Eng Eng Vib. 2002;22(4):144–150 (in Chinese).

111. Wereley NM, Pang L, Kamath GM. Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J Intell Mater Syst and Struct. 1998;9(8):642–649.

112. Kamath GM, Wereley NM, Jolly MR. Characterization of magnetorheological helicopter lag dampers. J Am Helicopter Soc. 1999;44(3):234–248.

113. Bouc R. A mathematical model for hysteresis. Acta Acust United Acust. 1971;24(1):16–25.

114. Wen YK. Method for random vibration of hysteretic systems. J Eng Mech Div. 1976;102(2):249–263.

115. Dahl PR. Solid friction damping of mechanical vibrations.. Am Inst Aeronaut Astronaut J. 1976;14(12):1675–1682.

116. Xu ZD, Shen YP. Mathematical model and simulated analysis of MR dampers. J Build Struct. 2003;33(1):68–70 (in Chinese).

117. Xu ZD, Jia DH, Zhang XC. Performance tests and mathematical model considering magnetic saturation for magnetorheological damper. J Intell Mater Syst and Struct. 2012;23(12):1331–1349.

118. Spencer Jr BF, Yang CQ, Carlson JD, et al. Smart dampers for seismic protection of structures: a full-scale study. In: Proceedings of the second world conference on structural control, June 28–July 01, 1998.

119. Ou JP, Guan XC. Experimental study of magnetorheological damper performance. Earthquake Eng Eng Vib. 1999;19(4):76–81 (in Chinese).

120. Li ZX, Wu LL, Xu LH, et al. Structural design of MR damper and experimental study for performance of damping force. Earthquake Eng Eng Vib. 2003;23(1):128–132 (in Chinese).

121. Moon SJ, Kim BH, Jeong JA. An experimental study on a magneto-rheological fluid damper for structural control subjected to base excitation. Trans Korean Soc Noise Vib Eng. 2004;14:767–773.

122. Qu WL, Liu J, Tu JW, Run M, Cheng HB. Crucial techniques for design of 500 kN large-scale MR damper.. Earthquake Eng Eng Vib. 2007;2:124–130 (in Chinese).

123. Deleted in Review.

124. Li ZX, Lv Y, Xu LH, et al. Experimental studies on nonlinear seismic control of a steel-concrete hybrid structure using MR dampers. Eng Struct. 2013;49:248–263.

125. Li J, Mei Z, Chen J, et al. Experimental investigations of stochastic control of randomly base-excited structures. Adv Struct Eng. 2012;15(11):1963–1976.

126. Sodeyama H, Sunakoda K, Suzuki K, et al. Development of large capacity semi-active vibration control device using magneto rheological fluid. ASME-Publications-PVP. 2001;428:109–114.

127. Chen ZQ, Wang XY, Ko JM, et al. MR damping system on Dongting Lake cable-stayed bridge. Smart structures and materials International society for optics and photonics 2003;229–235.

128. Fujitani H, Sodeyama H, Tomura T, et al. Development of 400kN magnetorheological damper for a real base-isolated building. In: Proceedings of SPIE-the international society for optical engineering, San Diego, America, March 2003 (5052). p. 265–76.

129. Qu WL, Qi SQ, Tu JW, et al. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges. Smart Mater Struct. 2009;18(12):125003.

130. Tu JW, Liu J, Qu WL, Cheng XD. Design and fabrication of 500-kN large-scale MR damper. J Intell Mater Syst and Struct. 2011;22(5):475–487.

131. Winslow WM. Method and means for translating electrical impulses into mechanical force: U.S. Patent 2,417,850. 1947-3-25.

132. Wang L, Gong X, Wen W. Electrorheological fluid and its applications in microfluidics. Microfluidics Berlin Heidelberg:Springer 2011;91–115.

133. Wen W, Huang X, Yang S, et al. The giant electrorheological effect in suspensions of nanoparticles. Nat Mater. 2003;2(11):727–730.

134. Davis LC. Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys. 1992;72(4):1334–1340.

135. Wen W, Huang X, Sheng P. Electrorheological fluids: structures and mechanisms. Soft Matter. 2008;4(2):200–210.

136. Stanway R. Smart fluids: current and future developments. Mater Sci Technol. 2004;20(8):931–939.

137. Gamota DR, Filisko FE. Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol. 1991;35(3):399–425 1978-present.

138. Pang L, Kamath GM, Wereley NM. Analysis and testing of a linear stroke magnetorheological damper. In: Proceedings of 39th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference and exhibit and AIAA/ASME/AHS adaptive structures forum; 1998. p. 2841–56.

139. Hong SR, Choi SB, Choi YT, et al. A hydro-mechanical model for hysteretic damping force prediction of ER damper: experimental verification. J Sound Vib. 2005;285(4):1180–1188.

140. Li B, Yang ZC. Experimental investigations on damping properties of electrorheological fluid damper. Chinese J Appl Mech. 2003;20(1):81–84 (in Chinese).

141. Liu P, Liu HJ, Teng J, Cao TY. Design and parameter identification of electro-rheological dampers. Funct Mater. 2006;37(5):774–776 (in Chinese).

142. Park YK, Choi SB. Vibration control of a cantilevered beam via hybridization of electro-rheological fluids and piezoelectric films. J Sound Vib. 1999;225(2):391–398.

143. Choi Y, Sprecher AF, Conrad H. Vibration characteristics of a composite beam containing an electrorheological fluid. J Intell Mater Syst and Struct. 1990;1(1):91–104.

144. Qu WL, Zhang YL, Guan JG, et al. Test and analysis of semiactive control of ER intelligent damper for structures. Earthquake Eng Eng Vib. 1998;12(4):111–117 (in Chinese).

145. Liu HJ, Yang ZC, Xi XM. Application of ER fluid in structural vibration control. Mech Sci Technol. 1999;18(1):111–114 (in Chinese).

146. Qu WL, Xu YL. Semi-active control for earthquake responses of reticulated shells with ER/MR smart dampers. Earthquake Eng Eng Vib. 2001;21(4):24–31 (in Chinese).

147. Hong SR, Choi SB, Han MS. Vibration control of a frame structure using electro-rheological fluid mounts. Mech Sci. 2002;44:2027–2045.

148. Hong SR, Choi SB, Jung WJ, Jeong WB. Vibration isolation of structural systems using squeeze mode ER mounts. J Intell Mater Syst Struct. 2002;13:421–424.

149. Meitzler A, Tiersten HF, Warner AW, et al. IEEE standard on piezoelectricity USA: IEEE; 1988.

150. Chuanbing L, Changrong L, Yulin Z. Advances of research on piezo-intelligent structures. Piezoelectr Acoust. 2002;24(1):42–47.

151. Xu ZD, Xiang J, Wang XD. The smart piezoelectric friction dampers: CN ZL200810024640.0. 2008.

152. Sun FP, Chaudhry ZA, Rogers CA, et al. Automated real-time structure health monitoring via signature pattern recognition. Smart structures & materials 95 International society for optics and photonics 1995;236–247.

153. Zong ZH, Ren WX, Ruan Y. Recent advances in research on damage diagnosis for civil engineering structures. China Civ Eng J. 2003;36(5):105–110 (in Chinese).

154. Sun MQ, Li ZQ, Hou ZF. Application of piezoelectric materials in structural health monitoring of civil engineering structures. Concrete. 2003;161(3):22–24 (in Chinese).

155. Li HN, Zhao XY. Research and application of piezo-intelligent sensors in civil engineering. Earthquake Eng Eng Vib. 2004;24(6):165–172 (in Chinese).

156. Zhou Z, Ou JP. Comparative study of smart sensing material used in the smart monitoring of civil engineering. Archit Technol. 2002;33(4):270–272.

157. Qu J, Guan X, Wu B, et al. Smart piezoelectric-friction damper. Earthquake Eng Eng Vib. 2000;20(1):81–86 (in Chinese).

158. Ou JP, Yang Y. Piezoelectric-T shape variable friction damper and its performance tests and analysis. Earthquake Eng Eng Vib. 2003;23(4):171–177 (in Chinese).

159. Yang B, Ou JP, Liu GC. Performance tests and analysis of T shape PZT variable friction damper. Piezoelectr Acoust. 2005;27(5):580–582 (in Chinese).

160. Qu WL, Chen ZH, Xu YL. Wind-induced vibration control of high-rise steel-truss tower using piezoelectric smart friction damper. Earthquake Eng Eng Vib. 2000;20(1):94–99 (in Chinese).

161. Xu YL, Qu WL, Chen ZH. Control of wind-excited truss tower using semiactive friction damper. J Struct Eng. 2001;127(8):861–868.

162. Garrett GT, Chen G, Cheng FY, et al. Experimental characterization of piezoelectric friction dampers. SPIE's 8th annual international symposium on smart structures and materials International society for optics and photonics 2001;405–415.

163. Chen GD, Garrett GT, Chen CQ, et al. Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization. Struct Eng Mech. 2004;17(3-4):539–556.

164. Chen CQ, Chen GD. Shaking table tests of a quarter-scale three-storey building model with piezoelectric friction dampers. Struct Control Health Monit. 2004;11(4):239–257.

165. Li HN, Li J, Song GB. Improved seismic control of structure with variable friction dampers by GA. In: Proceedings of IEEE on intelligent control, Cyprus; 2005. p. 310–5.

166. Li J, Li HN, Song GB. Semi-active vibration suppression using piezoelectric dampers based on bang-bang control laws. Third China-Japan-US symposium on structural control and health monitoring China: Dalian; 2004.

167. Song TT, Dargush GF. Passive energy dissipation systems in structural engineering Chichester: Wiley; 1997.

168. Dai NX, Tan P, Zou FL. Piezoelectric variable friction damper and its performance experiments and analysis. J Earthquake Eng Eng Vib. 2013;33(3):205–214 (in Chinese).

169. Dai NX. Experimental and theoretical research on the smart isolation system using PZT AND SMA complex friction dampers Doctoral dissertation Hunan: Hunan University; 2012; (in Chinese).

170. Wang SL, Zhan M, Zhu XY, et al. Mechanical performance experiment of a new piezoelectric friction damper. Mater Rev B. 2013;27(11):112–115 (in Chinese).

171. Zhan M, Wang SL, Zhu JQ, et al. Vibration control tests of a model structure installed with piezoelectric friction damper with reset function. J Vib Shock. 2015;34(14):45–50 (in Chinese).

172. Li MX, Liu J. Semi-active control for structural vibration using variable stiffness with nonlinear damping. J Vib Eng. 1998;11(3):333–339 (in Chinese).

173. Huo LS, Li HN. Structural vibration control using semi-active variable stiffness tuned liquid column damper. J Vib Shock. 2012;31(10):157–164 (in Chinese).

174. Kori JG, Jangid RS. Semi-active stiffness dampers for seismic control of structures. Adv Struct Eng. 2007;10(5):501–524.

175. Gui LP, Li MX, Zhang YF, et al. Design and calculation of the electro-hydraulic variable stiffness device. Noise Vib Control. 2000;4:15–17 (in Chinese).

176. Li M, Liu J. Semiactive structural control with variable stiffness. J Vib Eng. 1999;12(2):166–172 (in Chinese).

177. Li M, Liu J. Experimental study of semiactive structural control using variable stiffness. Earthquake Eng Eng Vib. 1998;18(4):90–96 (in Chinese).

178. Kobori T. Experiment study on active variable stiffness system-active seismic response controlled structure. Proceedings of 4th world congress council on tall buildings and urban habitat Hong Kong: The Hong Kong Polytechnic University; 1990;561–572.

179. Nasu T, Kobori T. Active variable stiffness system with non-resonant control. Earthquake Eng Struct Dyn. 2001;30(11):1597–1614.

180. Kumar P, Jangid RS, Reddy GR. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation. Nuc Eng Des. 2013;258:130–143.

181. Nasu T, Kobori T, Takahashi M, et al. Analytical study on a high-rise building with the active variable stiffness system. Proceedings of the second world conference on structural control. 1998;1:805–814.

182. Jabbari F, Bobrow JE. Vibration suppression with resettable device. J Eng Mech. 2002;128(9):916–924.

183. Kurino H, Tagami J, Shimzu K, et al. Switching oil damper with built-in controller for structural control. J Struct Eng. 2003;129(7):895–904.

184. Nishitani A, Nitta Y, Ikeda Y. Semi-active structural-control based on variable slip-force level dampers. J Struct Eng. 2003;129(7):933–940.

185. Fukukita A, Saito T, Shiba K. Control effect for 20-story benchmark building using passive semiactive device. J Eng Mech. 2004;130(4):430–436.

186. Kurata N, Kobori T, Takahashi M, et al. Actual seismic response controlled building with semi-active damper system. Earthquake Eng Struct Dyn. 1999;28(11):1427–1447.

187. Takahashi M, Kobori T, Nasu T, et al. Active response control of buildings for large earthquakes-seismic response control system with variable structural characteristics. Smart Mater Struct. 1998;7(4):522–529.

188. He WL, Agrawal AK, Mahmoud K. Control of seismically excited cable-stayed bridge using resetting semi-active stiffness dampers. J Bridge Eng. 2001;6:376–384.

189. Patten WN, Kuo CC, He Q, et al. Seismic structural control via hydraulic semi-active vibration dampers (SAVD). Proceedings of 1st world conference on structural control. 1994;83–89.

190. Niwa N, Kobori T, Takahashi M, et al. Dynamic loading test and simulation analysis of full-scale semi-active hydraulic damper for structural control. Earthquake Eng Struct Dyn. 2000;29(6):789–812.

191. Kawashima K, Unjoh S, Iida H, et al. Effectiveness of the variable damper for reducing seismic response of highway bridges. Proceedings of second US–Japan workshop on earthquake protective systems for bridges Japan: PWRI, Tsukuba Science City; 1992;479.

192. Kawashima K, Unjoh S. Variable dampers and variable stiffness for seismic control of bridges. Proceedings of international workshop on structural control 1993;283–297.

193. Symans MD, Constantinou MC. Seismic testing of a building structure with a seismic-active fluid damper control system. Earthquake Eng Struct Dyn. 1997;26(7):759–777.

194. Gavin HP, Hanson RD, Filisko FE. Electrorheological dampers, part II: testing and Modelling. J Appl Mech. 1996;63(3):676–682.

195. Shinozuka M, Ghanem R. Use of variable dampers for earthquake protection of bridges. Proceedings of second US-Japan workshop on earthquake protective systems for bridges Japan: Tsukuba Science City; 1992;507–516.

196. Patten WN. New life for the Walnut Creek Bridge via semi-active vibration control. Newsl Int Assoc Struct Control. 1997;2(1):4–5.

197. Gavin HP, Hanson RD, Filisko FE. Electrorheological dampers, part I: analysis and design. J Appl Mech. 1996;63(3):669–675.

198. Li H, Yuan XS, Wu B. Experimental study on structures with semi-active fluid dampers. J Vib Eng. 2002;25(1):24–29 (in Chinese).

199. Yang RL, Zhou XY, Yan WM, et al. Performance evaluation of semiactive structural control using variable dampers. J Vib Shock. 2007;26(3):37–41 (in Chinese).

200. Carlson JD, Jolly MR. MR fluid, foam and elastomer devices. Mechatronics. 2000;10(4):555–569.

201. Ginder JM, Clark SM, Schlotter WF, et al. Magnetostrictive phenomena in magnetorheological elastomers. Int J Mod Phys B. 2002;16(17n18):2412–2418.

202. Lokander M, Reitberger T, Stenberg B. Oxidation of natural rubber-based magnetorheological elastomers. Polym Degrad Stab. 2004;86(3):467–471.

203. Chen L, Gong XL, Li WH. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struct. 2007;16(6):2645.

204. Popp KM, Kröger M, Hua LW, et al. MRE Properties under shear and squeeze modes and applications. J Intell Mater Syst and Struct. 2010;21(15):1471–1477.

205. Guan X, Dong X, Ou JP. Magnetostrictive effect of magnetorheological elastomer. J Magn Magn Mater. 2008;320(3):158–163.

206. Jolly MR, Carlson JD, Munoz BC. A model of the behaviour of magnetorheological materials. Smart Mater Struct. 1996;5(5):607.

207. Davis LC. Model of magnetorheological elastomers. J Appl Phys. 1999;85(6):3348–3351.

208. Shen Y, Golnaraghi MF, Heppler GR. Experimental research and modeling of magnetorheological elastomers. J Intell Mater Syst and Struct. 2004;15(1):27–35.

209. Liao GJ, Gong XL, Kang CJ, et al. The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mater Struct. 2011;20(7):075015.

210. Du H, Li W, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Mater Struct. 2011;20(10):105003.

211. Zhu JT. Research on vibration isolation and attenuation of the broadband excitation platform by using magnetorheological elastomers Nanjing: Southeast University; 2013; (in Chinese).

212. Wang YL. Preparation of rubber based iron particles composites and research of their application in the field of safety engineering as magnetorheological elastomers Hefei: University of Science and Technology of China; 2006; (in Chinese).

213. Chen L, Gong XL, Li WH. Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test. 2008;27(3):340–345.

214. Chen L, Gong XL, Jiang WQ, et al. Influence of plasticizer on the magnetorheological effect of magnetorheological elastomers. J Funct Mater. 2006;37(5):703–705 (in Chinese).

215. Zhang XZ. Study on the fabrication and mechanism of magnetorheological elastomers Hefei: University of Science and Technology of China; 2005; (in Chinese).

216. Li WH, Zhou Y, Tian TF. Viscoelastic properties of MR elastomers under harmonic loading. Rheologica Acta. 2010;49(7):733–740.

217. Zhu JT, Xu ZD, Guo YQ. Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device. J Smart Mater Struct. 2012;21(7):075034.

218. Ginder JM, Nichols ME, Elie LD, et al. Controllable-stiffness components based on magnetorheological elastomers. SPIE's 7th annual international symposium on smart structures and materials Newport Beach, CA, USA: International Society for Optics and Photonics; 2000;418–425.

219. Ginder JM, Schlotter WF, Nichols ME. Magnetorheological elastomers in tunable vibration absorbers.. SPIE's 8th annual international symposium on smart structures and materials Newport Beach, CA, USA: International Society for Optics and Photonics; 2001;103–110.

220. Watson JR. Method and apparatus for varying the stiffness of a suspension bushing: U.S. Patent 5,609,353. 1997-3-11.

221. Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci. 1995;58(4):787–792.

222. Jolly MR, Carlson JD, Muñoz BC, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intell Mater Syst and Struct. 1996;7(6):613–622.

223. Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polymer Test. 2003;22(6):677–680.

224. Mysore P, Wang X, Gordaninejad F. Thick magnetorheological elastomers. SPIE smart structures and materials+ nondestructive evaluation and health monitoring San Diego, California, USA: International Society for Optics and Photonics; 2011; 797711-797711-13.

225. Dong XM, Miao YU, Liao CR, et al. A new variable stiffness absorber based on magneto-rheological elastomer. Trans Nonferrous Met Soc China. 2009;19:s611–s615.

226. Xu Z, Gong X, Liao G, et al. An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J Intell Mater Syst and Struct 2010.

227. Tu JW, Ren W, Wu P. Magnetic finite element analysis of the intelligent laminated MRE isolator. Noise Vib Control 2010;(5):169–172 (in Chinese).

228. Zhu JT, Xu ZD, Guo YQ. Experimental and modeling study on magnetorheological elastomers with different matrices. J Mat Civil Eng. 2013;25:1762–1771.

229. Xu ZD, Sha LF, Zhang XC, et al. Design, performance test and analysis on magnetorheological damper for earthquake mitigation. Struct Control Health Monit. 2013;20(6):956–970.

230. Xu ZD, Guo YQ. Fuzzy control method for earthquake mitigation structures with magnetorheological dampers. J Intell Mater Syst and Struct. 2006;17(10):871–881.

231. Jung HJ, Choi KM, Lee HJ. Design and application of MR damper-based control system with electromagnetic induction part for structural control. 22–27 May, 2007 World forum on smart materials and smart structures technology (SMSST’07) China: CRC Press; 2008;111.

232. Lee HJ, Moon SJ, Jung HJ, et al. Integrated design method of MR damper and electromagnetic induction system for structural control. The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring San Diego, California: International Society for Optics and Photonics; 2008; 69320S-69320S-10.

233. Phillips RW. Engineering applications of fluids with a variable yield stress Berkeley: University of California; 1969.

234. Boozer AH. Ohm’s law for mean magnetic fields. J Plasma Phys. 1986;35(1):133–139.

235. Nishimura I, Kobori T, Sakamoto M, et al. Active tuned mass damper. Smart Mater Struct. 1992;1(4):306–311.

236. Chang CC, Yang HTY. Control of buildings using active tuned mass dampers. J Eng Mech. 1995;121(3):355–366.

237. Liu J, Zhou YC, Lei LH. Analysis and optimum design of active structural control system (AMD). Earthquake Eng Eng Vib. 1996;16(3):55–60.

238. Lord Corporation Product Brochure & Technical Report; 2004.

239. Liu Z. Controllable current amplifier for magnetorheological damper. Electr Eng. 2007;33(7):28–32.

240. Guo YQ, Liu T, Xu ZD, et al. Design and Experiment on Single-Chip Microprocessor for MRD coupling sensing and control. Int J Distrib Sens Networks 2012.

241. MMA7260QT datasheet. <http://www.freescale.com/files/sensors/doc/data_sheet/MMA7260QT.pdf>.

242. Barr M. Pulse width modulation Embedded Systems Programming 2001;103–104.

243. Atmega16 datasheet. <http://www.atmel.com/Images/doc2466.pdf>.

244. Zhang XC, Xu ZD. Testing and modeling of a CLEMR damper and its application in structural vibration reduction. Nonlinear Dyn. 2012;70(2):1575–1588.

245. Giberson MF. Two nonlinear beams with definitions of ductility. J Struct Div 1969.

246. Zhou J, Wu XB. The calculation of tall and complex building structure. Beijing: China Electric Power Press; 2008; (in Chinese).

247. Shinozuka M. Simulation of multivariate and multidimensional random process. J Acoust Soc Am. 1971;49(1):357–367.

248. Kaimal JC, et al. Spectral characteristics of surface layer turbulence. J R Meteorol Soc. 1972;98:563–589.

249. Xu ZD, Shen YP. Intelligent bi-state control for the structure with magnetorheological dampers. J Intell Mater Syst and Struct. 2003;14(1):35–42.

250. Xu ZD. Study on semi-active control of structures incorporated with magnetorheological dampers. Report of Postdoctoral Fellowship, Xi’an Jiaotong University, Xi’an, China 2002; (in Chinese).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
52.15.135.175