References

1. Alonso JA, Simozar S. Prediction of solid solubility in alloys. Phys Rev B. 1980;22:5582–5589.

2. Ashby MF. Materials: a brief history. Philos Mag Lett. 2008;88:749–755.

3. Ashby MF. Materials Selection in Mechanical Design fourth ed. Oxford, UK: Butterworth-Heinemann, Elsevier; 2011.

4. ASM Handbook. Alloy Phase Diagrams. vol. 3 Materials Park, OH, USA: ASM International; 1992.

5. Asta M, Beckermann C, Karma A, et al. Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater. 2009;57:941–971.

6. Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metall Mater Trans B. 1970;1:2943–2944.

7. Bhatt J, Jiang W, Junhai X, Qing W, Dong C, Murty BS. Optimization of bulk metallic glass forming composition in ZrglyphCuglyphAl system by thermodynamic modelling. Intermetallics. 2007;15:716–721.

8. Bhattacharjee PP, Sathiaraj GD, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2014;587:544–552.

9. Biswas T, Ranganathan S. Multicomponent alloys visualized as lower order alloys: examples of quasicrystals and metallic glasses. Ann Chim Sci Mat. 2006;31:649–656.

10. Boesch WL, Slaney JS. Preventing sigma phase embrittlement in nickel base superalloys. Met Prog. 1964;86:109–111.

11. Boettinger WJ, Warren JA, Beckermann C, Karma A. Phase-field simulation of solidification. Annu Rev Mater Res. 2002;32:163–194.

12. Braic V, Balaceanu M, Braic M, Vladescu A, Panseri S, Russo A. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J Mech Behav Biomed Mater. 2012;10:197–205.

13. Cahn RW. The Coming of Materials Science Amsterdam: Elsevier Science Ltd. 2001.

14. Callister WD. Materials Science and Engineering: An Introduction New York, USA: John Wiley & Sons; 2003.

15. Cantor B. Stable and metastable multicomponent alloys. Ann Chim Sci Mat. 2007;32:245–256.

16. Cantor B, Kim KB, Warren PJ. Novel multicomponent amorphous alloys. Mater Sci Forum. 2002;386–388:27–32.

17. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218.

18. Chang HW, Huang PK, Davison A, Yeh JW, Tsau CH, Yang CC. Nitride films deposited from an equimolar AlglyphCrglyphMoglyphSiglyphTi alloy target by reactive direct current magnetron sputtering. Thin Solid Films. 2008;516:6402–6408.

19. Chang SY, Chen MK, Chen DS. Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. J Electrochem Soc. 2009;156:G37–G42.

20. Chang SY, Wang CY, Chen MK, Li CE. Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers. J Alloys Compd. 2011;509:L85–L89.

21. Chelikowsky JR. Solid solubilities in divalent alloys. Phys Rev B. 1979;19:686–701.

22. Chen HC, Jan DJ, Chen CH, Huang KT. Bond and electrochromic properties of WO3 films deposited with horizontal DC, pulsed DC, and RF sputtering. Electrochim Acta. 2013a;93:307–313.

23. Chen HS. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 1974;22:1505–1511.

24. Chen JH, Chen PN, Hua PH, Chen MC, Chang YY, Wu W. Deposition of multicomponent alloys on low-carbon steel using gas tungsten arc welding (GTAW) cladding process. Mater Trans. 2009a;50:689–694.

25. Chen JH, Chen PN, Lin CM, Chang CM, Chang YY, Wu W. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW). Surf Coat Technol. 2009b;203:3231–3234.

26. Chen JH, Hua PH, Chen PN, Chang CM, Chen MC, Wu W. Characteristics of multi-element alloy cladding produced by TIG process. Mater Lett. 2008;62:2490–2492.

27. Chen KY, Shun TT, Yeh JW. Development of Multi-Element High-Entropy Alloys for Spray Coating, Master’s thesis Taiwan: National Tsing Hua University; 2002.

28. Chen MJ, Lin SS. The Effect of V, S, and Ti Additions on the Microstructure and Wear Properties of Al0.5CrCuFeCoNi High-Entropy Alloys, Master’s thesis Taiwan: National Tsing Hua University; 2003.

29. Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Chuang MH. Effect of vanadium addition on the microstructure, hardness and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A. 2006a;37:1363–1369.

30. Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP. Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0–2.0) high-entropy alloys. Mater Trans. 2006b;47:1395–1401.

31. Chen SK, Kao YF. Near-Constant Resistivity in 4.2–360 K in a B2 Al2.08CoCrFeNi Am. Inst. Phys. Advances 2012; 2, 012111-1-5.

32. Chen ST, Tang WY, Kuo YF, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater Sci Eng A. 2010a;527:5818–5825.

33. Chen TK, Shun TT, Yeh JW, Wong MS. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol. 2004;188–189:193–200.

34. Chen TK, Wong MS, Shun TT, Yeh JW. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol. 2005a;200:1361–1365.

35. Chen W, Fu Z, Fang S, Xiao H, Zhu D. Alloying behaviour, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater Des. 2013b;51:854–860.

36. Chen YL, Hu YH, Hsieh CA, Yeh JW, Chen SK. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Compd. 2009c;481:768–775.

37. Chen YL, Hu YH, Tsai CW, et al. Alloying behaviour of binary to octonary alloys based on CuglyphNiglyphAlglyphCoglyphCrglyphFeglyphTiglyphMo during mechanical alloying. J Alloys Compd. 2009d;477:696–705.

38. Chen YL, Hu YH, Hsieh CA, Yeh JW, Chen SK. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Compd. 2009e;481:768–775.

39. Chen YL, Tsai CW, Juan CC, et al. Amorphization of equimolar alloys with HCP elements during mechanical alloying. J Alloys Compd. 2010b;506:210–215.

40. Chen YY, Duval T, Hung UD, Yeh JW, Shih HC. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel. Corros Sci. 2005b;47:2257–2279.

41. Chen YY, Hong UT, Shih HC, Yeh JW, Duval T. Electrochemical kinetics of the high entropy alloys in aqueous environments - A comparison with type 304 stainless steel. Corros Sci. 2005c;47:2679–2699.

42. Chen YY, Hong UT, Yeh JW, Shih HC. Mechanical properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high-purity water. Appl Phys Lett. 2005d;87:261918-1–261918-3.

43. Chen YY, Hong UT, Yeh JW, Shih HC. Selected corrosion behaviour of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288°C high-purity water. Scr Mater. 2006c;54:1997–2001.

44. Cheng JB, Liang XB, Wang ZH, Xu BS. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plasma Chem Plasma Process. 2013;33:979–992.

45. Cheng JB, Liang XB, Xu BS. Effect of Nb addition on the structure and mechanical behaviours of CoCrCuFeNi high-entropy alloy coatings. Surf Coat Technol. 2014;240:184–190.

46. Chou HP, Chang YS, Chen SK, Yeh JW. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Mater Sci Eng B. 2009;163:184–189.

47. Chou YL, Wang YC, Yeh JW, Shih HC. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci. 2010a;52:3481–3491.

48. Chou YL, Yeh JW, Shih HC. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros Sci. 2010b;52:2571–2581.

49. Chou YL, Yeh JW, Shih HC. Effect of inhibitors on the critical pitting temperature of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1. J Electrochem Soc. 2011;158:C246–C251.

50. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Microstructure and wear behaviour of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317.

51. Chuang MH, Tsai MH, Tsai CW, et al. Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy. J Alloys Compd. 2013;551:12–18.

52. Cui H, Wang H, Wang J, Fu H. Microstructure and micro segregation in directionally solidified FeCoNiCrAl high entropy alloy. Adv Mater Res. 2011a;189–193:3840–3843.

53. Cui H, Zheng L, Wang J. Microstructure evolution and corrosion behaviour of directionally solidified FeCoNiCrCu high entropy alloy. Appl Mech Mater. 2011b;66–68:146–149.

54. Cullity BD, Stock SR. Elements of X-Ray Diffraction New Jersey, USA: Prentice Hall; 2001.

55. Curtarolo S, Gus L, Hart W, et al. The high-throughput highway to computational materials design. Nat Mater. 2013;12:191–201.

56. Daoud HM, Manzoni A, Völkl R, Wanderka N, Glatzel U. Microstructure and tensile behaviour of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloy. JOM. 2013;65:1805–1814.

57. Darken LS, Gurry RW. Physical Chemistry of Metals New York, NY: McGraw-Hill; 1953.

58. de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK. Cohesion in Metals: Transition Metal Alloys (Cohesion and Structure) Amsterdam, The Netherlands: North Holland, North Holland Physics Publishing; 1988.

59. de Graef MD, McHenry ME. Structure of Materials: An introduction to Crystallography, Diffraction and Symmetry Cambridge, UK: Cambridge University Press; 2012.

60. Del Grosso MF, Bozzolo G, Mosca HO. Determination of the transition to the high entropy regime for alloys of refractory elements. J Alloys Compd. 2012;534:25–31.

61. Ding HY, Yao KF. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J Non-Cryst Solids. 2013;364:9–12.

62. Dolique V, Thomann AL, Brault P, Tessier Y, Gillon P. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Mater Chem Phys. 2009;117:142–147.

63. Dolique V, Thomann AL, Brault P, Tessier Y, Gillon P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf Coat Technol. 2010;204:1989–1992.

64. Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloys Compd. 2013a;573:96–101.

65. Dong Y, Lu Y, Zhang J, Li T. Microstructure and properties of multi-component AlxCoCrFeNiTi0.5 high-entropy alloys. Mater Sci Forum. 2013b;745–746:775–780.

66. Drosback M. Materials genome initiative: advances and initiatives. JOM. 2014;66:334–335.

67. Durga A, Hari Kumar KC, Murty BS. Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies. Trans Indian Inst Met. 2012;65:375–380.

68. Egami T, Guo W, Rack PD, Nagase T. Irradiation resistance of multicomponent alloys. Metall Mater Trans A. 2013;45:180–183.

69. Egami TY, Waseda Y. Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids. 1984;64:113–134.

70. Fang S, Chen W, Fu Z. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des. 2014;54:973–979.

71. Fang SS, Lin GW, Zhang JL, Zhou ZQ. The maximum solid solubility of the transition metals in palladium. Int J Hydrogen Energy. 2002;27:329–332.

72. Fazakas É, Varga B, Varga LK. Processing and properties of nanocrystalline CoCrFeNiCuAlTiXVMo (X=Zn, Mn) high entropy alloys by mechanical alloying. ISRN Mech Eng. 2013.

73. Fecht HJ, Han G, Fu Z, Johnson WL. Metastable phase formation in the ZrglyphAl binary system induced by mechanical alloying. J Appl Phys. 1990;67:1744–1748.

74. Feng X, Tang G, Gu L, Ma X, Sun M, Wang L. Preparation and characterization of TaNbTiW multi-element alloy films. Appl Surf Sci. 2012;261:447–453.

75. Feng X, Tang G, Ma X, Sun M, Wang L. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation. Nucl Instrum Methods Phys Res., Sect B. 2013;301:29–35.

76. Fix GJ, Fasano A, Primicerio M. In: Fasano A, Primicerio M, eds. Free Boundary Problems: Theory and Applications. Boston, MA: Pitman; 1983.

77. Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D. Alloying behaviour and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd. 2013a;553:316–323.

78. Fu Z, Chen W, Xiao H, Zhou L, Zhu D, Yang S. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater Des. 2013b;44:535–539.

79. Fultz B. Vibrational thermodynamics of materials. Prog Mater Sci. 2010;55:247–352.

80. Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78.

81. Gao MC, Alman DE. Searching for next single-phase high-entropy alloy compositions. Entropy. 2013;15:4504–4519.

82. Gao XQ, Zhao HB, Ding DW, Wang WH, Bai HY. High mixing entropy bulk metallic glasses. J Non-Cryst Solids. 2011;357:3557–3560.

83. Gaskell DR. Introduction to the Thermodynamics of Materials London, UK: Taylor and Francis; 1995.

84. Greer AL. Confusion by design. Nature. 1993;336:303–304.

85. Gschneidner Jr KA. L S (Larry) Darken’s contributions to the theory of alloy formation and where we are today. In: Bennett LH, ed. Theory of Alloy Phase Formation. Warrendale: The Metallurgical Society of AIME; 1980;1–39.

86. Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci.: Mater Int. 2011;21:433–446.

87. Guo S, Hu Q, Ng C, Liu CT. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013a;41:96–103.

88. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys. 2011;109:103505-1–103505-5.

89. Guo S, Ng C, Liu CT. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd. 2013b;557:77–81.

90. Guo S, Ng C, Wang Z, Liu CT. Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloys Compd. 2014;583:410–413.

91. Guo W, Dmowski W, Noh JY, Rack P, Liaw PK, Egami T. Local atomic structure of a high-entropy alloy: an X-Ray and neutron scattering study. Metall Mater Trans A. 2013c;44:1994–1997.

92. Handbook Committee. Metals Handbook. vols. 1 and 2 tenth ed. Metals Park, OH: ASM International; 1990.

93. He JY, Liu WH, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105–113.

94. Hemphill MA, Yuan T, Wang GY, et al. Fatigue behaviour of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012;60:5723–5734.

95. Hongfei S, Nana G, Canming W, Zhongli L, Haiyun Z. Study of the microstructure of high-entropy alloys AlFeCuCoNiCrTix (x=0, 0.5, 1.0). Appl Mech Mater. 2011;66–68:66–68.

96. Hsieh KC, Yu CF, Hsieh WT, et al. The microstructure and phase equilibrium of new high performance high-entropy alloys. J Alloys Compd. 2009;483:209–212.

97. Hsu CY, Juan CC, Wang WR, Sheu TS, Yeh JW, Chen SK. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater Sci Eng A. 2011;528:3581–3588.

98. Hsu CY, Juan CC, Chen ST, Sheu TS, Yeh JW, Chen SK. Phase diagrams of high-entropy alloy system AlglyphCoglyphCrglyphFeglyphMoglyphNi. J Met. 2013a;65:1829–1839.

99. Hsu CY, Juan CC, Sheu TS, Chen SK, Yeh JW. Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys. J Met. 2013b;65:1840–1847.

100. Hsu CY, Sheu TS, Yeh JW, Chen SK. Effect of iron content on wear behaviour of AlCoCrFexMo0.5Ni high-entropy alloys. Wear. 2010a;268:653–659.

101. Hsu CY, Shun TT, Chen SW, Yeh JW. Alloying effect of Boron on the microstructure and high-temperature properties of CuCoNiCrAl0.5Fe alloys, Master’s thesis Taiwan: National Tsing Hua University; 2003.

102. Hsu CY, Wang WR, Tang WY, Chen SK, Yeh JW. Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv Eng Mater. 2010b;12:44–49.

103. Hsu CY, Yeh JW, Chen SK, Shun TT. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall Mater Trans. 2004;35A:1465–1469.

104. Hsu US, Hung UD, Yeh JW, Chen SK, Huang YS, Yang CC. Alloying behaviour of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater Sci Eng A. 2007;460–461:403–408.

105. Hsu YH, Chen SW, Yeh JW. A Study on the Multicomponent Alloy Systems with Equal-Mole FCC or BCC Elements, Master’s thesis Taiwan: National Tsing Hua University; 2000.

106. Hsu YJ, Chiang WC, Wu JK. Corrosion behaviour of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys. 2005;92:112–117.

107. Hsueh HT, Shen WJ, Tsai MH, Yeh JW. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx. Surf Coat Technol. 2012;206:4106–4112.

108. Huang C, Zhang Y, Vilar R. Microstructure characterization of laser clad TiVCrAlSi high entropy alloy coating on Ti-6Al-4V substrate. Adv Mater Res. 2011;154–155:621–625.

109. Huang C, Zhang Y, Vilar R, Shen J. Dry sliding wear behaviour of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater Des. 2012;41:338–343.

110. Huang KH, Yeh JW. A Study on the Multicomponent Alloy Systems Containing Equal-Mole Elements Master’s thesis Taiwan: National Tsing Hua University; 1996.

111. Huang PK, Yeh JW. Research of Multi-Component High-Entropy Alloys for Thermal Spray Coating, Master’s thesis Taiwan: National Tsing Hua University; 2003.

112. Huang PK, Yeh JW. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. J Phys D: Appl Phys. 2009;42:1–7.

113. Huang PK, Yeh JW. Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scr Mater. 2010;62:105–108.

114. Huang PK, Yeh JW, Shun TT, Chen SK. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater. 2004;6:74–78.

115. Huang YS. Recent patents on high-entropy alloy. Recent Pat Mater Sci. 2009;2:154–157.

116. Huang YS, Chen L, Lui HW, Cai MH, Yeh JW. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater Sci Eng A. 2007;457:77–83.

117. Huang YT, Chen SK, Yeh JW. A Study on the Cu-Ni-Al-Co-Cr-Fe-Si-Ti Multicomponent Alloy System, Master’s thesis National Tsing Hua University 2001.

118. Hume-Rothery W. Factors affecting the stability of metallic phases. In: Rudman PS, Stringer J, Jaffee RI, eds. Phase Stability in Metals and Alloys. New York, NY: McGraw-Hill; 1967.

119. Integrated Computational Materials Engineering (ICME). A Transformational Discipline for Improved Competitiveness and National Security Washington DC, USA: National Research Council, The National Academies Press; 2008.

120. Inoue A. High strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM. 1995;36:866–875.

121. Inoue, A., 1996. Recent progress of Zr-based bulk amorphous alloys, Science Reports of the Research Institutes, Tohoku University- Series A, vol. 42, pp. 1–11.

122. Inoue A, Zhang T, Masumoto T. AlglyphLaglyphNi amorphous alloys with a wide supercooled region. Mater Trans JIM. 1989;30:965–972.

123. International Technology Roadmap for Semiconductors, 2009.

124. Jeevan HS, Ranganathan S. A new basis for the classification of quasicrystals. J Non-Cryst Solids. 2004;334–335:184–189.

125. Ji W, Fu Z, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd. 2014;589:61–66.

126. Juan CC, Hsu CY, Tsai CW, et al. On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics. 2013;32:401–407.

127. Kalpakjian S, Schmid S. Manufacturing Engineering and Technology New Jersey, USA: Prentice Hall; 2014.

128. Kao SW, Chen YL, Chin TS, Yeh JW. A preliminary molecular dynamics simulation on equal-mole alloys with up to six elements. Ann Chim Sci Mat. 2006;31:657–668.

129. Kao SW, Yeh JW, Chin TS. Rapidly solidified structure of alloys with up to eight equal-molar elements - a simulation by molecular dynamics. J Phys Condens Matter. 2008;20:145214-1–145214-7.

130. Kao YF, Chen TJ, Chen SK, Yeh JW. Microstructure and mechanical property of as-cast, -homogenized and -deformed AlxCoCrFeNi (0≤×≤2) high-entropy alloys. J Alloys Compd. 2009;488:57–64.

131. Kao YF, Chen SK, Sheu JH, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int J Hydrogen Energy. 2010;35:9046–9059.

132. Kao YF, Chen SK, Chen TJ, Chu PC, Yeh JW, Lin SJ. Electrical, magnetic and Hall properties of AlxCoCrFeNi high-entropy alloys. J Alloys Compd. 2011;509:1607–1614.

133. Kaufman L, Agren J. CALPHAD, first and second generation – Birth of the materials genome. Scr Mater. 2014;70:3–6.

134. Kaufman L, Cohen M. The martensitic transformation in the Fe-Ni system. Trans AIME. 1956;206:1393–1401.

135. Kim KB. Formation of in-situ nanoscale Ag particles in (Ti0.33Zr0.33Hf0.33)40(Ni0.33Cu0.33Ag0.33)50Al10 alloy with wide supercooled liquid region. Mater Lett. 2005;59:1117–1120.

136. Kim KB, Warren PJ, Cantor B. Formation of Metallic Glasses in Novel (Ti33Zr33Hf33)100-x-y(Ni50Cu50)xAly Alloys. Mater Trans. 2003a;44:411–413.

137. Kim KB, Warren PJ, Cantor B. Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)glyph(Ni, Cu, Ag)glyphAl alloys. J Non-Cryst Solids. 2003b;317:17–22.

138. Kim KB, Zhang Y, Warren PJ, Cantor B. Crystallization behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos Mag. 2003c;83:2371–2381.

139. Kim KB, Warren PJ, Cantor B. Glass-forming ability of novel multicomponent (Ti33Zr33Hf33)glyph(Ni50Cu50)glyphAl alloys developed by equiatomic substitution. Mater Sci Eng A. 2004;375–377:317–321.

140. Kim KB, Warren PJ, Cantor B, Eckert J. Enhanced thermal stability of the devitrified nanoscale icosahedral phase in novel multicomponent amorphous alloys. J Mater Res. 2006a;21:823–831.

141. Kim KB, Warren PJ, Cantor B, Eckert J. Structural evolution of nano-scale icosahedral phase in novel multicomponent amorphous alloys. Philos Mag. 2006b;86:281–286.

142. Kim KB, Yi S, Hwang IS, Eckert J. Effect of cooling rate on microstructure and glass-forming ability of a (Ti33Zr33Hf33)70(Ni50Cu50)20Al10 alloy. Intermetallics. 2006c;14:972–977.

143. Kim KB, Warren PJ, Cantor B, Eckert J. Devitrification of nano-scale icosahedral phase in multicomponent alloys. Mater Sci Eng A. 2007;448–451:983–986.

144. Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature. 1960;187:869–870.

145. Koundinya NTBN, Sajith Babu C, Sivaprasad K, Susila P, Kishore Babu N, Baburao J. Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J Mater Eng Perform. 2013;22:3077–3084.

146. Kunce I, Polanski M, Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Int J Hydrogen Energy. 2013;38:12180–12189.

147. Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A. 2012;533:107–118.

148. Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Superplasticity of AlCoCrCuFeNi high entropy alloy. Mater Sci Forum. 2013;735:146–151.

149. Lai CH, Lin SJ, Yeh JW, Chang SY. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf Coat Technol. 2006a;201:3275–3280.

150. Lai CH, Lin SJ, Yeh JW, Davison A. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. J Phys D: Appl Phys. 2006b;39:4628–4633.

151. Lai KT, Chen SW, Yeh JW. Properties of the Multicomponent Alloy System with Equal-Mole Elements, Master’s thesis Taiwan: National Tsing Hua University; 1998.

152. Langer JS, Grinstein G, Mazenko G. Models of pattern formation in first–order phase transitions. In: Grinstein G, Mazenko G, eds. Directions in Condensed Matter Physics. Singapore: World Scientific; 1986.

153. Lee CF, Shun TT. Age hardening of the Al0.5CoCrNiTi0.5 high-entropy alloy. Metall Mater Trans A. 2013;45:191–195.

154. Lee CP, Chen YY, Hsu CY, Yeh JW, Shih HC. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J Electrochem Soc. 2007;154:C424–C430.

155. Lee CP, Chang CC, Chen YY, Yeh JW, Shih HC. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros Sci. 2008a;50:2053–2060.

156. Lee CP, Chen YY, Hsu CY, Yeh JW, Shih HC. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films. 2008b;517:1301–1305.

157. Li BS, Wang YP, Ren MX, Yang C, Fu HZ. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater Sci Eng A. 2008a;498:482–486.

158. Li BY, Peng K, Hu AP, Zhou LP, Zhu JJ, Li DY. Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy. Trans Nonferrous Met Soc China. 2013a;23:735–741 (English Edition).

159. Li C, Zhao M, Li JC, Jiang Q. B2 structure of high-entropy alloys with addition of Al. J Appl Phys. 2008b;104:113504–113506.

160. Li C, Li JC, Zhao M, Jiang Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J Alloys Compd. 2009;475:752–757.

161. Li C, Li JC, Zhao M, Jiang Q. Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J Alloys Compd. 2010a;504:S515–S518.

162. Li HF, Xie XH, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013b;9:8561–8573.

163. Li QH, Yue TM, Guo ZN, Lin X. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metall Mater Trans A. 2013c;44:1767–1778.

164. Li R, Gao J, Fa K. Study to microstructure and mechanical properties of Mg containing high entropy alloys. Energy Environ Mater., Mater Sci Forum. 2010b;650:265–271.

165. Li R, Gao JC, Fan K. Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. Mater Sci Forum. 2011;686:235–241.

166. Lin CH, Duh JG, Yeh JW. Multi-component nitride coatings derived from TiglyphAlglyphCrglyphSiglyphV target in RF magnetron sputter. Surf Coat Technol. 2007;201:6304–6308.

167. Lin CM, Tsai HL. Evolution of microstructure, hardness and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 2011;19:288–294.

168. Lin CM, Tsai HL, Bor HY. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics. 2010;18:1244–1250.

169. Lin PC, Chin TS, Yeh JW. Development on the High Frequency Soft-Magnetic Thin Films from High-Entropy Alloys, Master’s thesis Taiwan: National Tsing Hua University; 2003.

170. Lin YC, Cho YH. Elucidating the microstructure and wear behaviour for multicomponent alloy clad layers by in situ synthesis. Surf Coat Technol. 2008;202:4666–4672.

171. Lin YC, Cho YH. Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ. Surf Coat Technol. 2009;203:1694–1701.

172. Liu CM, Wang HM, Zhang SQ, Tang HB, Zhang AL. Microstructure and oxidation behaviour of new refractory high entropy alloys. J Alloys Compd. 2014;583:162–169.

173. Liu L, Zhu JB, Zhang C, Li JC, Jiang Q. Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Mater Sci Eng A. 2012;548:64–68.

174. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater. 2013;68:526–529.

175. Liu Z, Guo S, Liu X, et al. Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr Mater. 2011;64:868–871.

176. Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50:3501–3512.

177. Lucas MS, Mauger L, Muoz JA, et al. Magnetic and vibrational properties of high-entropy alloys. J Appl Phys. 2011;109 07E307-1–07E307-4.

178. Lucas MS, Belyea D, Bauer C, et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys. J Appl Phys. 2013;113 17A923-1–17A923-4.

179. Ma L, Wang L, Zhang T, Inoue A. Bulk glass formation of TiglyphZrglyphHfglyphCuglyphM (MglyphFe, Co, Ni) alloys. Mater Trans. 2002;43:277–280.

180. Ma S, Chen Z, Zhang Y. Evolution of microstructures and properties of the AlxCrCuFeNi2 high-entropy alloys. Mater Sci Forum. 2013b;745–746:706–714.

181. Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A. 2012;532:480–486.

182. Ma SG, Zhang SF, Gao MC, Liaw PK, Zhang Y. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. JOM. 2013a;65:1751–1758.

183. Manzoni A, Daoud H, Mondal S, et al. Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. J Alloys Compd. 2013a;552:430–436.

184. Manzoni A, Daoud H, Völkl R, Glatzel U, Wanderka N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy. 2013b;132:212–215.

185. Massalski TB. Phase diagrams in materials science. Metall Trans A. 1989;20A:1295–1323.

186. Massalski TB. Binary Alloy Phase Diagrams. vols. 1–3 Materials Park, OH, USA: ASM International; 2001.

187. Materials Genome Initiative for Global Competitiveness. National Science and Technology Council of US, 2011.

188. Miedema AR. Electronegativity parameter for transition metals. Heat Common Met. 1973;32:117–136.

189. Miedema AR, de Chatel PF, de Boer FR. Cohesion in alloys - fundamentals of a semi-empirical model. Physica B. 1980;100:1–28.

190. Miracle DB. The efficient cluster packing model – An atomic structural model for metallic glasses. Acta Mater. 2006;54:4317–4336.

191. Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy. 2014;16:494–525.

192. Mishra AK, Samal S, Biswas K. Solidification behaviour of TiglyphCuglyphFeglyphCoglyphNi high entropy alloys. Trans Indian Inst Met. 2012;725–730.

193. Mondal K, Murty BS. On the parameters to assess the glass forming ability of liquids. J Non-Cryst Solids. 2005;351:1366–1371.

194. Morinaga M, Yukawa N, Ezaki H, Adachi H. Solid solubilities in nickel-based F.C.C alloys. Philos Mag A. 1985;51:247–252.

195. Mridha S, Samal S, Khan PY, Biswas K, Govind. Processing and consolidation of nanocrystalline CuglyphZnglyphTiglyphFeglyphCr high-entropy alloys via mechanical alloying. Metall Mater Trans A. 2013;44:4532–4541.

196. Muggianu YM, Gambino M, Bros JP. Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723K - choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary system. J Chim Phys Phys.- Chim Biol. 1975;72:83–88.

197. Munitz A, Kaufman MJ, Chandler JP, Kalaantari H, Abbaschian R. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver. Mater Sci Eng A. 2013;560:633–642.

198. Murty BS, Ranganathan S. Novel materials synthesis by mechanical alloying. Int Mater Rev. 1998;43:101–141.

199. Murty BS, Ranganathan S, Rao MM. Solid state amorphization in binary TiglyphNi, TiglyphCu and ternary TiglyphNiglyphCu system by mechanical alloying. Mater Sci Eng A. 1992;149:231–240.

200. Nagase T, Anada S, Rack PD, et al. Electron-irradiation-induced structural change in ZrglyphHfglyphNb alloy. Intermetallics. 2012;26:122–130.

201. Nagase T, Anada S, Rack PD, et al. MeV electron-irradiation-induced structural change in the BCC phase of ZrglyphHfglyphNb alloy with an approximately equiatomic ratio. Intermetallics. 2013;38:70–79.

202. Ng C, Guo S, Luan J, et al. Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys. J Alloys Compd. 2014;584:530–537.

203. Olson GB. Computational design of hierarchically structured materials. Science. 1997;277:1237–1242.

204. Olson GB. Genomic materials design: the ferrous frontier. Acta Mater. 2013;61:771–781.

205. Olson GB. Preface to the viewpoint set on: the materials genome. Scr Mater. 2014;70:1–2.

206. Olson GB, Kuehmann CJ. Materials genomics: from CALPHAD to flight. Scr Mater. 2014;70:25–30.

207. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013a;61:5743–5755.

208. Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013b;61:2628–2638.

209. Palumbo M, Battezzati L. Thermodynamics and kinetics of metallic amorphous phases in the framework of the CALPHAD approach. Calphad. 2008;32:295–314.

210. Pandeya SN, Thakkar D. Combinatorial chemistry: a novel method in drug discovery and its application. Indian J Chem. 2005;44B:335–348.

211. Pauzi SSM, Darham W, Ramli R, Harun MK, Talari MK. Effect of Zr addition on microstructure and properties of FeCrNiMnCoZrx and Al0.5FeCrNiMnCoZrx high entropy alloys. Trans Indian Inst Met. 2013;66:305–308.

212. Pettifor DG. A chemical scale for crystal-structure maps. Solid State Commun. 1984;51:31–34.

213. Pettifor DG. Structure maps for pseudobinary and ternary phases. Mater Sci Technol. 1988;4:675–691.

214. Pettifor DG. Phenomenology and theory in structural prediction. J Phase Equilib. 1996;17:384–399.

215. Pi JH, Pan Y, Zhang L, Zhang H. Microstructure and property of AlTiCrFeNiCu high-entropy alloy. J Alloys Compd. 2011;509:5641–5645.

216. Porter DA, Easterling KE. Phase Transformations in Metals and Alloys London, UK: CRC Press; 1992.

217. Pradeep KG, Wanderka N, Choi P, Banhart J, Murty BS, Raabe D. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 2013;61:4696–4706.

218. Praveen S, Murty BS, Kottada RS. Alloying behaviour in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89.

219. Praveen S, Anupam A, Sirasani T, Murty BS, Kottada RS. Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Met. 2013a;66:369–373.

220. Praveen S, Murty BS, Kottada RS. Phase evolution and densification behaviour of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM. 2013b;65:1797–1804.

221. Qiao JW, Ma SG, Huang EW, Chuang CP, Liaw PK, Zhang Y. Microstructural characteristics and mechanical behaviours of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater Sci Forum. 2011;688:419–425.

222. Qiu XW. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloys Compd. 2013;555:246–249.

223. Qiu XW, Liu CG. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J Alloys Compd. 2013;553:216–220.

224. Qiu XW, Zhang YP, He L, Liu CG. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd. 2013;549:195–199.

225. Qiu XW, Zhang YP, Liu CG. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J Alloys Compd. 2014;585:282–286.

226. Raghavan R, Hari Kumar KC, Murty BS. Analysis of phase formation in multi-component alloys. J Alloys Compd. 2012;544:152–158.

227. Ranganathan S. Alloyed pleasures: multimetallic cocktails. Curr Sci. 2003;85:1404–1406.

228. Ranganathan S, Inoue A. An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics. Acta Mater. 2006;54:3647–3656.

229. Ranganathan S, Srinivasan S. A tale of wootz steel. Resonance. 2006;11:67–77.

230. Rao BR, Srinivas M, Shah AK, Gandhi AS, Murty BS. A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics. 2013;35:73–81.

231. Razuan R, Jani NA, Harun MK, Talari MK. Microstructure and hardness properties investigation of Ti and Nb added FeNiAlCuCrTixN by high entropy alloys. Trans Indian Inst Met. 2013;66:309–312.

232. Reed-Hill RE, Abbaschian R. Physical Metallurgy Principles Boston, USA: PWS Publishing; 1994.

233. Ren B, Liu ZX, Li DM, Shi L, Cai B, Wang MX. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd. 2010;493:148–153.

234. Ren B, Liu ZX, Cai B, Wang MX, Shi L. Aging behaviour of a CuCr2Fe2NiMn high-entropy alloy. Mater Des. 2012;33:121–126.

235. Ren MX, Li BS, Fu HZ. Formation condition of solid solution type of high entropy alloy. Trans Nonferrous Met Soc China. 2013;23:991–995.

236. Samal S, Mohanty S, Mishra AK, Biswas K, Govind B. Mechanical behavior of novel suction cast Ti-Cu-Fe-Co-Ni high entropy alloys. Mater Sci Forum. 2014;790-791:503–508.

237. Senkov ON, Miracle DB. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull. 2001;36:2183–2198.

238. Senkov ON, Woodward CF. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater Sci Eng A. 2011;529:311–320.

239. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd. 2011a;509:6043–6048.

240. Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci. 2012a;47:4062–4074.

241. Senkov ON, Senkova SV, Dimiduk DM, Woodward C, Miracle DB. Oxidation behaviour of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci. 2012b;47:6522–6534.

242. Senkov ON, Senkova SV, Miracle DB, Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the CrglyphNbglyphTiglyphVglyphZr system. Mater Sci Eng A. 2013a;565:51–62.

243. Senkov ON, Senkova SV, Woodward C, Miracle DB. Low-density, refractory multi-principal element alloys of the CrglyphNbglyphTiglyphVglyphZr system: microstructure and phase analysis. Acta Mater. 2013b;61:1545–1557.

244. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765.

245. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011b;19:698–706.

246. Senkov ON, Zhang F, Miller JD. Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: comparison of experimental and simulated data. Entropy. 2013c;15:3796–3809.

247. Shaysultanov DG, Stepanov ND, Kuznetsov AV, Salishchev GA, Senkov ON. Phase composition and superplastic behaviour of a wrought AlCoCrCuFeNi high-entropy alloy. JOM. 2013;65:1815–1828.

248. Shechtman D, Blech I, Gratias D, Cahn JW. Metallic phases with long-range orientational order and no translational symmetry. Phys Rev Lett. 1984;53:1951–1953.

249. Sheng HF, Gong M, Peng LM. Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Mater Sci Eng A. 2013;567:14–20.

250. Shun TT, Du YC. Microstructure and tensile behaviours of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd. 2009;479:157–160.

251. Shun TT, Hung CH, Lee CF. Formation of ordered/disordered nano particles in FCC high entropy alloys. J Alloys Compd. 2010a;493:105–109.

252. Shun TT, Hung CH, Lee CF. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700°C. J Alloys Compd. 2010b;495:55–58.

253. Shun TT, Chang LY, Shiu MH. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater Charact. 2012a;70:63–67.

254. Shun TT, Chang LY, Shiu MH. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater Sci Eng A. 2012b;556:170–174.

255. Shun TT, Chang LY, Shiu MH. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater Charact. 2013;81:92–96.

256. Sims CT, Hagel WC. The Superalloys New York, NY: John-Wiley & Sons, Inc.; 1972.

257. Singh AK, Subramaniam A. On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd. 2014;587:113–119.

258. Singh S, Wanderka N, Kiefer K, Siemensmeyer K, Banhart J. Effect of decomposition of the CrglyphFeglyphCo rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy. 2011a;111:619–622.

259. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011b;59:182–190.

260. Smith CS. Four Outstanding Researchers in Metallurgical History Baltimore MD: American Society for Testing and Materials; 1963.

261. Smith CS. A Search for Structure Cambridge, MA: MIT Press; 1981.

262. Smith WF, Hashemi J. Foundation of Materials Science and Engineering McGraw-Hill 2006.

263. Sobol OV, Andreev AA, Gorban’ VF, et al. Reproducibility of the single-phase structural state of the multi element high-entropy TiglyphVglyphZrglyphNbglyphHf system and related superhard nitrides formed by the vacuum-arc method. Tech Phys Lett. 2012;38:616–619.

264. Spencer PJ. A brief history of CALPHAD. Calphad. 2008;32:1–8.

265. Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x=0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119–126.

266. Sriharitha R, Murty BS, Kottada RS. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys Compd. 2014;583:419–426.

267. Srinivasan S, Ranganathan S. Indian’s Legendary Wootz Steel – An Advanced Material of the Ancient World Hyderabad, India: Universities Press (India) Pvt. Ltd.; 2014.

268. Suryanarayana C. Mechanical Alloying and Milling London, UK: CRC Press; 2001.

269. Swalin RA. Thermodynamics of Solids Toronto: John Wiley & Sons; 1972.

270. Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater Trans. 2000;41:1372–1378.

271. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46:2817–2829.

272. Takeuchi A, Inoue A. Analyses of characteristics of atomic pairs in ferrous bulk metallic glasses using classification of bulk metallic glasses and pettifor map. J Optoelectron Adv Mater. 2006;8:1679–1684.

273. Takeuchi A, Inoue A. Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics. 2010;18:1779–1789.

274. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy. 2013a;15:3810–3821.

275. Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics. 2011;19:1546–1554.

276. Takeuchi A, Murty BS, Hasegawa M, Ranganathan S, Inoue A. Analysis of bulk metallic glass formation using a tetrahedron composition diagram that consists of constituent classes based on blocks of elements in the periodic table. Mater Trans. 2007;48:1304–1312.

277. Takeuchi A, Wang J, Chen N, et al. Al0.5TiZrPdCuNi high-entropy (H-E) alloy developed through Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy comprising inter-transition metals. Mater Trans. 2013b;54:776–782.

278. Tang WY, Yeh JW. Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys. Metall Mater Trans A. 2009;40:1479–1486.

279. Tang WY, Chuang MH, Chen HY, Yeh JW. Microstructure and mechanical performance of brand-new Al0.3CrFe1.5MnNi0.5 high-entropy alloys. Adv Eng Mater. 2009;11:788–794.

280. Tang WY, Chuang MH, Chen HY, Yeh JW. Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding. Surf Coat Technol. 2010;204:3118–3124.

281. Tang WY, Chuang MH, Lin SJ, Yeh JW. Microstructures and mechanical performance of plasma-nitrided Al0.3CrFe1.5MnNi0.5 high-entropy alloys. Metall Mater Trans A. 2012;43:2390–2400.

282. Tang Z, Gao MC, Diao H, et al. Aluminum alloying effects on lattice types, microstructures and mechanical behaviour of high-entropy alloys systems. JOM. 2013;65:1848–1858.

283. Tariq NH, Naeem M, Hasan BA, Akhter JI, Siddique M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd. 2013;556:79–85.

284. Tian F, Delczeg L, Chen N, Varga LK, Shen J, Vitos L. Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys Rev B: Condens Matter. 2013a;88:085128–085132.

285. Tian F, Varga LK, Chen N, Delczeg L, Vitos L. Ab initio investigation of high-entropy alloys of 3d elements. Phys Rev B: Condens Matter. 2013b;87:075144-1–075144-8.

286. Tong CJ, Chen MR, Chen SK, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005a;36:1263–1271.

287. Tong CJ, Chen YL, Chen SK, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005b;36:881–893.

288. Tsai CF, Yeh KY, Wu PW, Hsieh YF, Lin P. Effect of platinum present in multi-element nano particles on methanol oxidation. J Alloys Compd. 2009a;478:868–871.

289. Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK. Deformation and annealing behaviours of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd. 2009b;486:427–435.

290. Tsai CW, Lai SW, Cheng KH, et al. Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films. 2012;520:2613–2618.

291. Tsai CW, Shun TT, Yeh JW. Study on the Deformation Behavior and Microstructure of CuCoNiCrAlxFe High-Entropy Alloys, Master’s thesis Taiwan: National Tsing Hua University; 2003a.

292. Tsai CW, Tsai MH, Yeh JW, Yang CC. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J Alloys Compd. 2010a;490:160–165.

293. Tsai DC, Shieu FS, Chang SY, Yao HC, Deng MJ. Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers. J Electrochem Soc. 2010b;157:K52–K58.

294. Tsai DC, Huang YL, Lin SR, Liang SC, Shieu FS. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering. Appl Surf Sci. 2010c;257:1361–1367.

295. Tsai DC, Chang ZC, Kuo LY, Lin TJ, Lin TN, Shieu FS. Solid solution coating of (TiVCrZrHf)N with unusual structural evolution. Surf Coat Technol. 2013a;217:84–87.

296. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in CoglyphCrglyphFeglyphMnglyphNi high-entropy alloys. Acta Mater. 2013b;61:4887–4897.

297. Tsai MH, Lai CH, Yeh JW, Gan JY. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings. J Phys D: Appl Phys. 2008a;41:235402-1–235402-7.

298. Tsai MH, Tsai KY, Tsai CW, Lee C, Juan CC, Yeh JW. Criterion for sigma phase formation in Cr- and V- containing high-entropy alloys. Mater Res Lett. 2013c;1:207–212.

299. Tsai MH, Wang CW, Lai CH, Yeh JW, Gan JY. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl Phys Lett. 2008c;92:052109-1–052109-3.

300. Tsai MH, Wang CW, Tsai CW, et al. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J Electrochem Soc. 2011;158:H1161–H1165.

301. Tsai MH, Yeh JW, Gan JY. Study on the Evolution of Microstructure and Electric, Properties of Multi-Element High-Entropy Alloy Films, Master’s thesis Taiwan: National Tsing Hua University; 2003b.

302. Tsai MH, Yeh JW, Gan JY. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films. 2008b;516:5527–5530.

303. Tsai MH, Yuan H, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics. 2013d;33:81–86.

304. Tsai MH, Yuan H, Cheng G, et al. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics. 2013e;32:329–336.

305. Tsao LC, Chen CS, Chu CP. Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Mater Des. 2012;36:854–858.

306. Tsau CH. Phase transformation and mechanical behaviour of TiFeCoNi alloy during annealing. Mater Sci Eng A. 2009;501:81–86.

307. Tsau CH, Chang YH. Microstructures and mechanical properties of TiCrZrNbNx alloy nitride thin films. Entropy. 2013;15:5012–5021.

308. Tung CC, Shun TT, Chen SW, Yeh JW. Study on the Deformation Microstructure and High Temperature Properties of Cu-Co-Ni-Cr-Al-Fe, Master’s thesis Taiwan: National Tsing Hua University; 2002.

309. Tung CC, Yeh JW, Shun TT, Chen SK, Huang YS, Chen HC. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett. 2007;61:1–5.

310. Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10:473–488.

311. Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd. 2008;460:253–257.

312. Varalakshmi S, Appa Rao G, Kamaraj M, Murty BS. Hot consolidation and mechanical properties of nanocrystallineequiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater Sci. 2010a;45:5158–5163.

313. Varalakshmi S, Kamaraj M, Murty BS. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall Mater Trans A. 2010b;41:2703–2709.

314. Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater Sci Eng A. 2010c;527:1027–1030.

315. Venugopal T, Murty BS. Nanostructured materials by high energy ball milling. Encycl Nanosci Nanotechnol. 2011;19:1–41.

316. Villars P, Brandenburg K, Berndt M, et al. Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number. J Alloys Compd. 2001;317–318:26–38.

317. Villars P, Cenzual K, Daama J, Chen Y, Iwata S. Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1 Composition AB. J Alloys Compd. 2004;367:167–175.

318. Wang C, Mo Z, Tang J. The study about microstructure characterization of AlCoCrTiNiCux high entropy alloy system with multi-principal element. Adv Mater Res. 2012a;399–401:3–7.

319. Wang FJ, Zhang Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater Sci Eng A. 2008;496:214–216.

320. Wang FJ, Zhang Y, Chen GL. Atomic packing efficiency and phase transition in a high entropy alloy. J Alloys Compd. 2009a;478:321–324.

321. Wang FJ, Zhang Y, Chen GL, Davies HA. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. J Eng Mater Technol., Trans ASME. 2009b;131:0345011–0345013.

322. Wang J, Zheng Z, Xu J, Wang Y. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J Magn Magn Mater. 2014a;355:58–64.

323. Wang S. Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy. 2013a;15:5536–5548.

324. Wang S, Ye H. First-principles studies on the component dependences of high-entropy alloys. Adv Mater Res. 2011;338:380–383.

325. Wang SQ. Atomic modeling and simulation of AlCoCrCuFeNi multi-principal-element alloy. Mater Sci Forum. 2013b;749:479–483.

326. Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012b;26:44–51.

327. Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014b;589:143–152.

328. Wang X, Xie H, Jia L, Lu Z. Effect of Ti, Al and Cu addition on structural evolution and phase constitution of FeCoNi system equimolar alloys. Mater Sci Forum. 2012c;724:335–338.

329. Wang YP, Li BS, Ren MX, Yang C, Fu HZ. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng A. 2008;491:154–158.

330. Weeber AW, Bakker H. Amorphization by ball milling A review. Physica B: Phys Condens Matter. 1988;153:93–135.

331. Welk BA, Williams REA, Viswanathan GB, Gibson MA, Liaw PK, Fraser HL. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy. 2013;134:193–199.

332. Wen LH, Kou HC, Li JS, Chang H, Xue XY, Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics. 2009;17:266–269.

333. Widom M, Huhn WP, Maiti S, Steurer S. Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall Mater Trans. 2013;45A:196–200.

334. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behaviour of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261:513–519.

335. Xiang XD, Sun XD, Briceno G, et al. A combinatorial approach to materials discovery. Science. 1995;268:1738–1740.

336. Xie L, Brault P, Thomann AL, Bauchire JM. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl Surf Sci. 2013;285:810–816.

337. Yang HH, Tsai WT, Kuo JC, Yang CC. Solid/liquid interaction between a multicomponent FeCrNiCoMnAl high entropy alloy and molten aluminum. J Alloys Compd. 2011;509:8176–8182.

338. Yang TH, Huang RT, Wu CA, et al. Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy. Appl Phys Lett. 2009;95:241905-1–241905-3.

339. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132:233–238.

340. Yao CZ, Zhang P, Liu M, et al. Electrochemical preparation and magnetic study of BiglyphFeglyphCoglyphNiglyphMn high entropy alloy. Electrochim Acta. 2008;53:8359–8365.

341. Ye G, Wua B, Zhang C, et al. Study of solidification microstructures of multi-principal high-entropy alloy FeCoNiCrMn by using experiments and simulation. Adv Mater Res. 2012;399–401:1746–1749.

342. Ye X, Ma M, Liu W, et al. Synthesis and characterization of high-entropy alloy AlXFeCoNiCuCr by laser cladding. Adv Mater Sci Eng. 2011;485942–485949.

343. Yeh JW. Recent progress in high-entropy alloys. Ann Chim Sci Mat. 2006;31:633–648.

344. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. J Met. 2013a;65:1759–1771.

345. Yeh, J.W., 2013b. Future trends of high-entropy alloys. High-Value Metals Forum, MRS-T Annual Meeting-2013, Jhongli, Taiwan.

346. Yeh JW, Chang SY, Hong YD, Chen SK, Lin SJ. Anomalous decrease in X-ray diffraction intensities of CuglyphNiglyphAlglyphCoglyphCrglyphFeglyphSi alloy systems with multi-principal elements. Mater Chem Phys. 2007a;103:41–46.

347. Yeh JW, Chen SK, Gan JY, et al. Formation of simple crystal structures in CuglyphCoglyphNiglyphCrglyphAlglyphFeglyphTiglyphV alloys with multiprincipal metallic elements. Metall Mater Trans A. 2004a;35:2533–2536.

348. Yeh JW, Chen YL, Lin SJ, Chen SK. High-entropy alloys - A new era of exploitation. Mater Sci Forum. 2007b;560:1–9.

349. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004b;6:299–303.

350. Yeh, Y.A., Tsai, M.H., Yeh, J.W., 2012. High-entropy carbides based on high-entropy alloys. 2012 TMS Annual Meeting Bulk Metallic Glasses IX, Orlando.

351. Yu Y, Liu WM, Zhang TB, et al. Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall Mater Trans. 2013;45A:1–7.

352. Yue TM, Xie H, Lin X, Yang H, Meng G. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy. 2013;15:2833–2845.

353. Yue TM, Xie H, Lin X, Yang HO, Meng GH. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd. 2014;587:588–593.

354. Yuhu F, Yunpeng Z, Hongyan G, Huimin S, Li H. AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met Mater Eng. 2013;42:1127–1129.

355. Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. J Mater Met Mater Sci. 2013;65:1780–1789.

356. Zhai Q.Y., and Xu J.F., (2011) China Patent CN101554686B.

357. Zhang C, Zhang F, Chen S, Cao W. Computational thermodynamics aided high-entropy alloy design. JOM. 2012a;64:839–845.

358. Zhang H, He Y, Pan Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr Mater. 2013a;69:342–345.

359. Zhang H, He Y, Pan Y, He Y, Shin K. Synthesis and characterization of NiCoFeCrAl3 high entropy alloy coating by laser cladding. Adv Mater Res. 2010a;97–101:1408–1411.

360. Zhang H, He YZ, Pan Y, Pei LZ. Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating. Intermetallics. 2011a;19:1130–1135.

361. Zhang H, Pan Y, He Y. Effects of annealing on the microstructure and properties of Fe6NiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding. J Therm Spray Technol. 2011b;20:1049–1055.

362. Zhang H, Pan Y, He Y, Jiao H. Microstructure and properties of Fe6NiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci. 2011c;257:2259–2263.

363. Zhang H, Pan Y, He YZ. Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified Fe6NiCoCrAlTiSi multicomponent ferrous alloy coating. Surf Coat Technol. 2011d;205:4068–4072.

364. Zhang H, Pan Y, He YZ. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater Des. 2011e;32:1910–1915.

365. Zhang K, Fu Z. Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics. 2012;28:34–39.

366. Zhang K, Fu Z, Zhang J, et al. Characterization of nanocrystalline CoCrFeNiCuAl high-entropy alloy powder processed by mechanical alloying. Mater Sci Forum. 2009c;620–622:383–386.

367. Zhang KB, Fu ZY, Zhang JY, et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater Sci Eng A. 2009a;508:214–219.

368. Zhang KB, Fu ZY, Zhang JY, et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Compd. 2009b;485:L31–L34.

369. Zhang KB, Fu ZY, Zhang JY, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J Alloys Compd. 2010b;502:295–299.

370. Zhang KB, Fu ZY, Zhang JY, Wang WM, Lee SW, Niihara K. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd. 2010c;495:33–38.

371. Zhang LC, Shen ZQ, Xu J. Glass formation in a (Ti,Zr,Hf)glyph(Cu,Ni,Ag)glyphAl high-order alloy system by mechanical alloying. J Mater Res. 2003;18:2141–2149.

372. Zhang LC, Kim KB, Yu P, Zhang WY, Kunz U, Eckert J. Amorphization in mechanically alloyed (Ti, Zr, Nb)glyph(Cu, Ni)glyphAl equiatomic alloys. J Alloys Compd. 2007;428:157–163.

373. Zhang Y, Chen GL, Gan CL. Phase change and mechanical behaviours of TixCoCrFeNiCu1−yAly high entropy alloys. J ASTM Int. 2010d;7:1–8.

374. Zhang Y, Ma SG, Qiao JW. Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and bridgman solidification. Metall Mater Trans A. 2012b;43:2625–2630.

375. Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM. 2012c;64:830–838.

376. Zhang Y, Zhou Y, Hui X, Wang M, Chen G. Minor alloying behaviour in bulk metallic glasses and high-entropy alloys. Sci China, Ser G. 2008a;51:427–437.

377. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008b;10:534–538.

378. Zhang Y, Zuo TT, Cheng YQ, Liaw PK. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep. 2013b;3:1–7.

379. Zhang Y, Zuo TT, Liao WB, Liaw PK. Processing and properties of high-entropy alloys and micro- and nano-wires. Electro Chem Soc Trans. 2012d;41(30):49–60.

380. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

381. Zhao F, Cao W, Ge C, Tan Y, Zhang Y, Fei Q. Research on laser engineered net shaping of thick-wall nickel-based alloy parts. Rapid Prototyping J. 2009;15:24–28.

382. Zheng B, Liu Q, Zhang L. Microstructure and properties of MoFeCrTiW high-entropy alloy coating prepared by laser cladding. Adv Mater Res. 2013;820:63–66.

383. Zhou YJ, Zhang Y, Wang YL, Chen GL. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater Sci Eng A. 2007a;454–455:260–265.

384. Zhou YJ, Zhang Y, Wang YL, Chen GL. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 2007b;90:181904-1–181904-3.

385. Zhou YJ, Zhang Y, Kim TN, Chen GL. Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties. Mater Lett. 2008a;62:2673–2676.

386. Zhou YJ, Zhang Y, Wang FJ, Chen GL. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys. Appl Phys Lett. 2008b;92:241917-1–241917-3.

387. Zhou YJ, Zhang Y, Wang FJ, Wang YL, Chen GL. Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid-solution alloy. J Alloys Compd. 2008c;466:201–204.

388. Zhu C, Lu ZP, Nieh TG. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 2013;61:2993–3001.

389. Zhu G, Liu Y, Ye J. Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int J Refract Met Hard Mater. 2014;44:35–41.

390. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ. Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater Sci Eng A. 2010a;527:6975–6979.

391. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ. Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater Sci Eng A. 2010b;527:7210–7214.

392. Zhuang YX, Liu WJ, Chen ZY, Xue HD, He JC. Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys. Mater Sci Eng A. 2012;556:395–399.

393. Zhuang YX, Xue HD, Chen ZY, Hu ZY, He JC. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater Sci Eng A. 2013;572:30–35.

394. Zuo TT, Ren SB, Liaw PK, Zhang Y. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner Metall Mater. 2013;20:549–555.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.129.63.13