How C++ Decides What Type a Constant Is

A program’s declarations tell the C++ compiler the type of a particular integer variable. But what about constants? That is, suppose you represent a number with a constant in a program:

cout << "Year = " << 1492 << " ";

Does the program store 1492 as an int, a long, or some other integer type? The answer is that C++ stores integer constants as type int unless there is a reason to do otherwise. Two such reasons are if you use a special suffix to indicate a particular type or if a value is too large to be an int.

First, look at the suffixes. These are letters placed at the end of a numeric constant to indicate the type. An l or L suffix on an integer means the integer is a type long constant, a u or U suffix indicates an unsigned int constant, and ul (in any combination of orders and uppercase and lowercase) indicates a type unsigned long constant. (Because a lowercase l can look much like the digit 1, you should use the uppercase L for suffixes.) For example, on a system using a 16-bit int and a 32-bit long, the number 22022 is stored in 16 bits as an int, and the number 22022L is stored in 32 bits as a long. Similarly, 22022LU and 22022UL are unsigned long. C++11 provides the ll and LL suffixes for type long long, and ull, Ull, uLL, and ULL for unsigned long long.

Next, look at size. C++ has slightly different rules for decimal integers than it has for hexadecimal and octal integers. (Here decimal means base 10, just as hexadecimal means base 16; the term decimal does not necessarily imply a decimal point.) A decimal integer without a suffix is represented by the smallest of the following types that can hold it: int, long, or long long. On a computer system using a 16-bit int and a 32-bit long, 20000 is represented as type int, 40000 is represented as long, and 3000000000 is represented as long long. A hexadecimal or octal integer without a suffix is represented by the smallest of the following types that can hold it: int, unsigned int, long, unsigned long, long long, or unsigned long long. The same computer system that represents 40000 as long represents the hexadecimal equivalent 0x9C40 as an unsigned int. That’s because hexadecimal is frequently used to express memory addresses, which intrinsically are unsigned. So unsigned int is more appropriate than long for a 16-bit address.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.218.78.102