Index

  • AC-AC converters 101

  • AC-DC converters 101

  • ACP see amorphous calcium phosphate (ACP)

  • additive manufacturing 121

  • advanced oxidation process (AOP) 194

  • aero-engines 110, 111

  • aircraft 109

    • aero-engines 110, 111

    • demands/improvements 110–111

  • alginate 23–24, 31

  • aliphatic polyesters 145

  • alkylene oxalates 28

  • alloys 111

  • Al-7Si alloy 126, 127

  • aluminum alloy 71

  • aluminum-based self-lubricating composite material (Al-SLMMC) 66

    • advantages/disadvantages 67–68

    • coefficient of friction, composites 77, 78

    • composition of reinforcement 77

    • development stages 67–68

    • dry sliding behavior 80

    • fabrication methods 73–74

    • GCI 69

    • historical background 67–68

    • hybrid MMC 80

    • in-organic material 78

    • mechanical properties 77

    • mechanical vs. tribological aspect 76, 78, 80, 81

    • processing techniques 74

    • reinforcement 74–76

    • SEM images 79

    • surface modification 81

    • tensile modulus 78

    • weight percentage 79

  • amorphous calcium phosphate (ACP) 149, 170

  • amorphous semiconductors

    • applications 59–60

    • atomic orientations 42–43

    • band structures

      • CFO model 48, 49

      • Davis–Mott model 48, 50

      • MDS model 48–51

    • components 38

    • characteristics of 41–42

    • classifications of 44, 47

    • vs. crystalline solids 40–42

    • crystallite nucleation 44

    • CVD 53

    • Debye–Scherrer relation 44

    • diffraction 44

    • experiments see (electrical characterization, optical characterization)

    • flash evaporation technique 52

    • glow discharge decomposition technique 53

    • mechanical milling 53–54

    • micro-scale/nano-scale level 43

    • vs. non-crystalline materials 43–44

    • PLD 53

    • quenching technique 51

    • RDF 43

    • research problems 61

    • semiconducting properties 44

    • site-map 45

    • sputtering 52–53

    • SRO 38–39

    • thermal evaporation 51–52

  • analysis of variance (ANOVA) 195

  • anode materials, LiBs 88

  • anodes 87–89

  • Aoki, H. 172

  • AOP see advanced oxidation process (AOP)

  • Armand, M. 87, 95

  • A356 aluminum alloy 124

  • atomic orientations 42–43

  • Avendano, E. 10

  • calcium orthophosphates 167–168

  • calcium phosphate bioceramic scaffolds 135

  • calcium phosphate nanoparticles (CaP)

    • ACP 170

    • apatite 170–171

    • biological vs. synthetic HA 179

    • bond coat 175–176

    • bone implant interface 176–178

    • bone regeneration 148–149

    • ceramics 168

    • clinical dentistry 149–150

    • HA-based composites 172–175

    • HA-coated implant 177, 178

    • hydroxyapatite 171

    • phosphate minerals 169

    • porous HA ceramics 171–172

    • TCP 169

    • TTCP 169–170

  • carbon nanotubes (CNT) 144, 175

  • carboxymethyl cellulose (CMC) 92, 141

  • Carpenter, M. K. 10

  • casting 74, 75

  • cathode

    • carbon-based anodes 102

    • high voltage stability 91

    • LFP 87

    • LiCoO2 86

    • LMO 87

    • OLO 86

    • pathways, energy storage 85

    • transition metal oxides 85

  • cell adhesion 144, 176

  • ceramic biomaterials 135

  • ceramic electrolytes (CEs) 96

  • ceramics 21, 121, 134

  • chalcogenide glasses 39, 59

  • chalcogenide glassy semiconductors (CGS) 45–46

  • Chang, E. 175

  • chemical hydrogels 140–141

  • chemical vapor deposition (CVD) 53

  • chemokine-reinforced hydrogel 141

  • chitin 23

  • chitosan 23

    • composition 141

    • conjugated formulations 141–142

    • tissue engineering application 142–143

  • chitosan-based hydrogels 139

  • chondrocytes proliferation 135

  • Chou, B.-Y. 175

  • Chow, L. C. 182

  • chromogenic materials 3

  • CMC see carboxymethyl cellulose (CMC)

  • CNT see carbon nanotubes (CNT)

  • cobalt–chromium (Co-Cr) alloys 164

  • Co-based superalloys 114–115

  • Cohen, M. H. 43, 48

  • collagen 21–22

  • composite material 66

  • composite polymer electrolytes (CPE) 95

  • conductive polymers 7, 8

  • conventional press-and-sinter process 116–117

  • corrosion-resistant materials 66

  • covalent amorphous semiconductors

    • CGS 45–46

    • TAS 45

    • tetrahedral glasses 46

  • crystalline semiconductors 40–42

  • CVD see chemical vapor deposition (CVD)

  • dangling bonds 40

  • Das, P. 128

  • Debye–Scherrer relation 44

  • De Groot, K. 182

  • degumming 144

  • depth of discharge (DOD) 100

  • Diaz, A. F. 7

  • dicalcium phosphate (DCP) 180

  • Diesbach 4, 7

  • Di Palma, J. A. 175

  • directional solidification 116

  • dispersive AC loss 54

  • dissolution/reprecipitation process 178

  • Ducheyne, P. 179

  • dye decomposition 208

  • ECM see extracellular matrix (ECM)

  • EDS see energy-dispersive spectrometry (EDS)

  • electrical characterization

    • AC conductivity 54

    • DC conductivity 54

    • defect state measurements 55

  • electric cooling energy 3

  • electric lighting energy 3

  • electric vehicles (EV) 102

  • electrochemical energy 84

  • electrochromic oxide films

    • anodic coloured material 9–10

    • cathodic coloured material 10–12

  • electrochromic (EC) phenomenon 2

  • electrochromic (EC) materials

    • electrochromic layer 7–9

    • electrolyte 6–7

    • energy efficiency 2–4

    • transparent conductive electrodes 5–6

  • electrochromism 4

  • electrolytes

    • aqueous medium 6

    • carbonate-based 90

    • CE 96

    • CPE 95

    • definition 92

    • features 93

    • ionic conductivity 97–98

    • ISE 96–97

    • liquid vs. solid 86

    • liquid/quasi-solid electrolytes 94

    • organic liquid non-aqueous electrolytes 93–94

    • PEO 93

    • solid 85

    • solid polymer electrolytes 94–95

    • types 6

  • energy-dispersive spectrometry (EDS) 195

  • energy-dispersive X-ray analysis (EDX) 210

  • energy harvester

    • all-solid-state batteries 102–103

    • battery chemistries 101–102

    • battery-type market shares 102

    • definition 98

    • Li-ion batteries 99–100

    • power management 100–101

    • sources 98

  • erosive wear 72

  • EV see electric vehicles (EV)

  • extracellular matrix (ECM) 135

  • fabrication 115

    • directional solidification 116

    • investment casting 115–116

    • powder metallurgy

      • additive manufacturing 121

      • conventional press-and-sinter process 116–117

      • HIP 117, 118

      • microwave sintering 119, 120

      • MIM 119, 120

      • SHS 117–119

      • SPS 119

  • face-centred cubic (FCC) 112

  • Fazan, F. 182

  • Fe-Ni-based superalloys 114

  • fibroblast growth factor (FGF) 31

  • fibroin-based biomaterial 143–144

  • fibronectin 22–23

  • fibrous capsule, formation 177

  • field emission scanning electron microscopy (FE-SEM) 209, 210

  • flash evaporation technique 52

  • fluid behavior, types 125

  • foil-based electrochromic device 5

  • fossil fuels 2

  • Fu, L. 174

  • gelatin 29–30, 140

  • glass-forming solids 39

  • Gottlander, M 173

  • Granath 128

  • Granqvist, C. -G. S. 10

  • graphite electrode 88

  • gray cast iron (GCI) 69

  • Gu, Y. W. 174

  • Hamdi, M. 183

  • Hench, L. L. 166, 167, 172

  • Herschel, W. H. 4

  • Herschel–Bulkley model 125, 126

  • highest occupied molecular orbitals (HOMO) 90, 91

  • high-stress wear test 73

  • hip prosthesis implant 166

  • hot isostatic pressing (HIP) 117, 118

  • Hulbert, S. F 175

  • human Mesenchymal Stem Cells (hMSCs) 30

  • hyaluronan 24–25

  • hydrogels 135, 139

  • hydrogen generation capacity 202

  • hydrogen production 208

  • hydroxyapatite (HA) 150, 171

    • calcium phosphorus ceramics 168

    • chemical reactions 182

    • chitin 142

    • degradation 184–185

    • dissolution behaviour 180–183

    • equilibrium diagram 181

    • failure mechanism 179–180

    • heavy metals 184

    • natural vs. synthetic 179

    • PHB 147

    • physical/chemical properties 30

    • osteo-conductivity efficacy 142

    • solubility isotherms 180

    • structure 171

  • Ide-Ektessabi, A. 183

  • Inagaki, M. 174

  • inorganic solid electrolytes (ISE) 93, 96–97

  • investment casting 115–116

  • ionic amorphous solids 46

  • ionic conductive membranes 6

  • ionic liquids 7

  • Ismail, M. H. 116

  • Iwasaki, N. 142

  • Kannan, S. 183

  • Kim, H. 176

  • Koke, J. 125

  • Kolomiets, B. T. 39, 46

  • Kurzweg, H. 176

  • Lampert, C. M. 10

  • Lansaker, P. C. 5

  • largescale installations 100

  • laser drilling 121

  • Lee, T. M. 173

  • Leftheriotis, G. 6

  • Lemaitre, J. 183

  • Li, H. 174

  • ligature 164

  • Lim, V. J. P. 174

  • liquid electrolytes 84

  • liquid/quasi-solid electrolytes 94

  • liquid vs. solid electrolytes 86

  • lithium-ion batteries (LiBs) 84, 85

  • lithium-metal alloys 89

  • Livingston 172

  • Lorenz 126

  • lost wax casting 115

  • low-emissivity windows 2–3

  • lowest unoccupied molecular orbitals (LUMO) 90, 91

  • low-stress wear test 73

  • lubricant material 66

  • Luna, A. L. 194

  • macroporous 171

  • magnesium 89

  • Marguis, P. M. 182

  • McManus et al. 31

  • mechanical milling (MM) 53–54

  • Mehrabian, R. 128

  • metal-based materials 134

  • metal injection moulding (MIM) 119, 120

  • metallic amorphous solids 46

  • metal matrix layer (MML) 66

  • metal oxides 6, 8

  • methylene blue (MB) 194

  • microelectromechanical system 67

  • micro grids 98

  • microporous material 171

  • microwave sintering 119, 120

  • Modigell, M. 123, 125

  • morphological fixation 166

  • Mott, N. F. 46, 48, 49, 50

  • musculoskeletal system 176–177

  • Muthukumaran, V. 183

  • Nagano, M. 177, 182

  • nanotechnology 1

    • scaffold-based manipulation 134

    • therapeutic strategies 134

    • tissue engineering 134

  • natural materials 1

  • natural polymeric biomaterials

    • medical application 25

    • polysaccharides

      • alginate 23–24

      • chitin/chitosan 23

      • hyaluronan 24–25

    • proteins

      • collagen 21–22

      • fibronectin 22–23

      • silk 22

    • tissue engineering 28

  • natural polymers 135, 136

  • Newtonian fluids 124

  • Ni-based superalloys 112–113

  • nickel-cadmium (Ni-Cd) 84

  • nickel-metal hydride (Ni-MH) 84

  • Nie, X. 176

  • non-dendritic morphology 124

  • non-Newtonian fluids 124–126

  • normal hydrogen electrode (NHE) 99

  • OHA see oxy-hydroxyapatite (OHA)

  • OLO see over-lithiated oxides (OLO)

  • one-pair semiconductors 45

  • optical characterization

    • absorption process 56

    • disorderness 55

    • DOS 58

    • OJL model 57

    • perturbation 57

    • thin-film samples 55

    • transmittance 55

  • organic liquid non-aqueous electrolytes 93–94

  • orthopaedic/dental implant materials

    • bioactive fixation 167

    • biological fixation 166–167

    • body system 165

    • cement-less procedures 166

    • hip prosthesis implant 166

    • implant loosening 168

    • metallic implants 164–167

    • morphological fixation 166

    • properties used 165

  • osteolytic response 166

  • over-lithiated oxides (OLO) 86

  • Ovshinsky, S. R. 39, 48

  • oxy-hydroxyapatite (OHA) 181

  • Qiu, Q. 179

  • quenching technique 51

  • radial distribution function (RDF) 43

  • rapid slurry formation (RSF) process 128–129

  • reciprocating wear 72

  • renewable technologies 98

  • response surface methodology (RSM) 195

  • rheology

    • definition 124

    • Newtonian fluids 124

    • non-Newtonian fluids 124–126

  • Salehi, M. 142

  • Sarkar, S. D. 142

  • SBF see simulated body fluid (SBF)

  • Scuderi, V. 194

  • self-lubricating material (SLM) 66

  • semiconductor photocatalyst 194

  • semi-solid metal working 123

    • average grain size 130

    • viscocity 129–130

  • separators 87

  • sericin-based biomaterial 144–145

  • shear thickening fluids 125

  • short-range order (SRO) 38

  • silk 22

  • simulated body fluid (SBF) 183

  • sintering process 74

  • SLM see self-lubricating material (SLM)

  • small-scale installations 100

  • smart windows 1–2

  • Sn-15Pb alloy 126, 127

  • Soballe (1996) 177

  • SOC see state of charge (SOC)

  • sol-gel method 194–195

  • solid electrolyte interphase (SEI) 88

  • solid lubricants 76

  • solid polymer electrolytes 94–95

  • solid polymers 6

  • solid-state electrolytes 84

  • spark plasma sintering (SPS) 119

  • Spencer, R. F. 123

  • SRO see short-range order (SRO)

  • state of charge (SOC) 101

  • stress shielding 164

  • superalloys

    • Co-based superalloys 114–115

    • definition 111

    • fabrication see (fabrication)

    • Fe-Ni-based superalloys 114

    • Ni-based superalloys 112–113

    • role of elements 113, 114

    • wrought superalloys 112

  • supercapacitors 99

  • surface modification 66

  • Svensson, J. S. E. M. 10

  • synthetic polymeric biomaterials

    • alkylene oxalates 28

    • monomer unit 29

    • PGA 28

    • PLA 28

    • POE 26–27

    • polyacrylates 26, 27

    • polyesters 26

    • types 26

  • synthetic polymers 20

  • tailor-made materials 41

  • Tanaka, K. 43

  • TCP see tri-calcium phosphate (TCP)

  • technological evolution 103

  • TEM see transmission electron microscopy (TEM)

  • Tercero, J. E. 175

  • tetracalcium phosphate (TTCP) 169–170

  • tetrahedral-bonded amorphous semiconductors (TAS) 45

  • thermal evaporation 51–52

  • three-dimensional hydrogel 140

  • 3D printing 121

  • TiO2/CuO nanocomposite

    • absorption spectra 196

    • ANOVA 195, 200

    • characteristics 195–198

    • energy-dispersive X-ray spectrum 197

    • experimental design 195

    • FE-SEM image 197

    • hydrogen generation 202

    • methylene blue 199, 200, 201

    • optimization study 198, 200, 201

    • photocatalytic activity measurements 195

    • preparation 194

    • synthesis 194–195

    • XRD spectra 196

  • tissue engineering

    • biomaterials 20, 136–139 see also (polymeric biomaterials)

    • bone regeneration 29–30

    • CaP 148–150

    • cardiovascular tissues 31

    • chemical hydrogels 140–141

    • chitosan 141–142

    • fibroin-based biomaterial 143–144

    • HA 150

    • hydrogels 139

    • vs. medical science vs. research 20

    • nanotechnology 134

    • physical hydrogels 139–140

    • polyesters 145–148

    • sericin-based biomaterial 144–145

    • silk 143

    • skin regeneration 30–31

  • Tomaszek, R. 176

  • topological close-packed phases 114

  • Touzain, P. 87

  • transmission electron microscopy (TEM) 197, 198

  • tribo wear test machines 71

  • tri-calcium phosphate (TCP) 169

  • TTCP see tetracalcium phosphate (TTCP)

  • tungsten trioxide 10

  • two-fold coordinated amorphous semiconductors 45

  • ultra-high molecular weight polyethylene (UHMWPE) 166

  • uphill process 54

  • UV-visible absorption spectroscopy 208

  • vascular endothelial growth factor (VEGF) 31

  • viologen/Prussian blue compounds 7

  • Vogel Tammann Fulcher (VTF) model 98

  • Wakai, F. 172

  • Wang, C. M. 128

  • wear mechanism

    • erosive 72

    • high-stress wear test 73

    • low-stress wear test 73

    • measurement techniques 71–72

    • parameters, affecting 69, 70

    • pin disc 73

    • reciprocating 72

    • tribo wear test machines 71

    • types 70

  • Wolff’s law 178

  • wonder molecule 141

  • wrought superalloys 112

  • Wu, Z-J. 175

  • xerography 59

  • Xia, X. H. 10

  • X-ray diffraction (XRD) 208–209

  • X-ray photoluminescence (PL) spectroscopy 211

  • Yamada, K. 182

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.217.139.141