References

1. Y. Huang, Apolipoprotein E and Alzheimer disease, Neurology 66, S79–S85 (2006).

2. Alzheimer's Association website (http://www.alz.org/braintour/healthy_vs_alzheimers.asp).

3. K. Blennow, M.J. de Leon, H. Zetterberg, Alzheimer's disease, Lancet 368, 387–403 (2006).

4. K. Bettens, K. Sleegers, C. Van Broeckhoven, Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum. Mol. Genet. 19, R4–R11 (2010).

5. M. Citron, Alzheimer's disease: strategies for disease modification. Nat. Rev. Drug Discov. 9, 387–398 (2010).

6. A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

7. X. Wang, E. Dalkic, M. Wu, C. Chan, Gene module level analysis: identification to networks and dynamics. Curr. Opin. Biotechnol. 19, 482–491 (2008).

8. J. Lim, T. Hao, C. Shaw, A.J. Patel, G. Szabo, et al., A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

9. M.A. Pujana, J.D. Han, L.M. Starita, K.N. Stevens, M. Tewari, et al., Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338–1349 (2007).

10. J. Ladha, S. Donakonda, S. Agrawal, B. Thota, M.R. Srividya, et al., Glioblastoma-specific protein interaction network identifies PP1A and CSK21 as connecting molecules between cell cycle-associated genes. Cancer Res. 70, 6437–6447 (2010).

11. V.M. Perreau, S. Orchard, P.A. Adlard, S.A. Bellingham, R. Cappai, et al., A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer's disease. Proteomics 10, 2377–2395 (2010).

12. M. Soler-Lopez, A. Zanzoni, R. Lluis, U. Stelzl, P. Aloy, Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. Genome Res. 21, 364–376 (2011).

13. Z.P. Liu, Y. Wang, X.S. Zhang, L. Chen, Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains. BMC Syst. Biol. 4 (Suppl. 2),S11 (2010).

14. M. Ray, W. Zhang, Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks. BMC Syst. Biol. 4, 136 (2010).

15. M. Krauthammer, C.A. Kaufmann, T.C. Gilliam, A. Rzhetsky, Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 101, 15148–15153 (2004).

16. J.Y. Chen, C. Shen, A.Y. Sivachenko, Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac. Symp. Biocomput. 11, 367–378 (2006).

17. B. Liu, T. Jiang, S. Ma, H. Zhao, J. Li, et al., Exploring candidate genes for human brain diseases from a brain-specific gene network. Biochem. Biophys. Res. Commun. 349, 1308–1314 (2006).

18. T. Ideker, R. Sharan, Protein networks in disease. Genome Res. 18, 644–652 (2008).

19. A. Almudevar, L.B. Klebanov, X. Qiu, P. Salzman, A.Y. Yakovlev, Utility of correlation measures in analysis of gene expression. NeuroRx 3, 384–395 (2006).

20. C. Olsen, P.E. Meyer, G. Bontempi, On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EURASIP J. Bioinform. Syst. Biol. 2009, 308959 (2009).

21. T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, et al., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000).

22. E.K. Tang, P.N. Suganthan, X. Yao, Gene selection algorithms for microarray data based on least squares support vector machine. BMC Bioinform. 7, 95 (2006).

23. R. Diaz-Uriarte, S. Alvarez de Andres, Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006).

24. T.K. Paul, H. Iba, Gene selection for classification of cancers using probabilistic model building genetic algorithm. Biosystems 82, 208–225 (2005).

25. J. Watkinson, X. Wang, T. Zheng, D. Anastassiou, Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Syst. Biol. 2, 10 (2008).

26. G. Munch, R. Schinzel, C. Loske, A. Wong, N. Durany, et al., Alzheimer's disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J. Neural Transm. 105, 439–461 (1998).

27. R.X. Santos, S.C. Correia, X. Wang, G. Perry, M.A. Smith, et al., A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J. Alzheimers Dis.20 (Suppl. 2),S401–S412 (2010).

28. R. Lane, H.H. Feldman, J. Meyer, Y. He, S.H. Ferris, et al., Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer's disease. Pharmacogenet. Genomics 18, 289–298 (2008).

29. I. Mateo, P. Sanchez-Juan, E. Rodriguez-Rodriguez, J. Infante, J.L. Vazquez-Higuera, et al., Synergistic effect of heme oxygenase-1 and tau genetic variants on Alzheimer's disease risk. Dement. Geriatr. Cogn. Disord. 26, 339–342 (2008).

30. E. Schneidman, W. Bialek, M.J., 2nd Berry Synergy, redundancy, and independence in population codes. J. Neurosci. 23, 11539–11553 (2003).

31. N. Brenner, S.P. Strong, R. Koberle, W. Bialek, R.R. de Ruyter van Steveninck, Synergy in a neural code. Neural Comput. 12, 1531–1552 (2000).

32. V. Varadan, D.M. Miller, 3rd, D. Anastassiou, Computational inference of the molecular logic for synaptic connectivity in C. elegans. Bioinformatics 22, e497–e506 (2006).

33. V. Varadan, D. Anastassiou, Inference of disease-related molecular logic from systems-based microarray analysis. PLoS Comput. Biol. 2, e68 (2006).

34. D. Anastassiou, Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol. 3, 83 (2007).

35. T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, C. Evangelista, et al., NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res. 39, D1005–1010 (2011).

36. C. Stark, B.J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher, R. Oughtred, et al., The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D704 (2011).

37. T.S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, et al., Human Protein Reference Database—2009 update. Nucleic Acids Res. 37, D767–D772 (2009).

38. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995).

39. M. Dehmer, ed. Structural Analysis of Complex Networks. 1st edn.Birkhäuser Publishing, 2011.

40. A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

41. H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

42. D.S. Lee, J. Park, K.A. Kay, N.A. Christakis, Z.N. Oltvai, et al., The implications of human metabolic network topology for disease comorbidity. Proc. Natl. Acad. Sci. U.S.A. 105, 9880–9885 (2008).

43. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms:MIT Press, 2001.

44. A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, U101–U115 (2004).

45. N.D. Belyaev, K.A. Kellett, C. Beckett, N.Z. Makova, T.J. Revett, et al., The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a beta-secretase-dependent pathway. J. Biol. Chem. 285, 41443–41454 (2010).

46. M. Kilgore, C.A. Miller, D.M. Fass, K.M. Hennig, S.J. Haggarty, et al., Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870–880 (2010).

47. C. Zhang, A. Browne, D. Child, J.R. Divito, J.A. Stevenson, et al., Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein. J. Biol. Chem. 285, 8515–8526 (2010).

48. S.J. Fuller, R.S. Tan, R.N. Martins, Androgens in the etiology of Alzheimer's disease in aging men and possible therapeutic interventions. J. Alzheimers Dis. 12, 129–142 (2007).

49. J. Raber, AR, apoE, and cognitive function. Horm. Behav. 53, 706–715 (2008).

50. U. Munoz, F. Bartolome, F. Bermejo, A. Martin-Requero, Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer's dementia patients. Neurobiol. Aging 29, 1474–1484 (2008).

51. U. Munoz, F. Bartolome, N. Esteras, F. Bermejo-Pareja, A.Martin-Requero, On the mechanism of inhibition of p27 degradation by 15-deoxy-delta12,14-prostaglandin J2 in lymphoblasts of Alzheimer's disease patients. Cell Mol. Life Sci. 65, 3507–3519 (2008).

52. B.M. Riederer, G. Leuba, A. Vernay, I.M. Riederer, The role of the ubiquitin proteasome system in Alzheimer's disease. Exp. Biol. Med. (Maywood) 236,268–276 (2011).

53. I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199–204 (2009).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.138.120.136