Chapter 7

Preparing the Foundations for BIM

In This Chapter

arrow Understanding levels of maturity

arrow Identifying the right structure

arrow Considering and preparing for the right technology

arrow Recognizing security issues

As the saying goes, “Success is all in the preparation.” Getting the fundamentals right before starting your BIM journey will stand you in good stead and put you in front of the competition. But before you start, ask yourself a couple of questions. What’s wrong with what you’re doing already? What are the practical things you have to do to implement BIM processes? Just what type of software, hardware, and projects do you need to focus on?

In this chapter, we explain the key components of BIM, starting with the bedrock, moving to the foundations, and finishing with the superstructure. We also look at what you need to consider to get yourself fighting fit and BIM ready.

Progressing through the Levels of Maturity

Simply buying and installing a few copies of a 3D BIM package and saying that you’re BIM ready isn’t going to cut the mustard. Maturity levels conceptualize growing levels of capability and outcomes in the model environment. The industry needs a useful way in which companies, organizations, teams, and individuals can theorize growing levels of capability and outcomes in the model environment.

remember Maturity levels together with their allied processes and tools help establish a benchmark for comparison and aid understanding as to what level an organization is at with its BIM implementation. Furthermore they prove clear competence levels that are expected, together with the supporting standards and their relationships to each other and how the project team can apply them to projects and contracts in the industry. They’re useful as a way of setting a clear definition as to what’s required for an organization to deem itself BIM compliant; maturity levels show the industry the adoption process as the next steps in the journey that’s taking the industry from the drawing board, to the computer, and then firmly into the digital age.

As Chapter 9 discusses, the UK government has been clear that it’s explicitly targeted Level 2 BIM in the UK maturity model, affectionately known as the BIM wedge.

Maturity models establish a datum that you can measure against and that help an organization understand where it is now and where it needs to be. They’re a simple way of communicating expectation. However, you should always use maturity models in conjunction with explicit employers’ information requirements (EIR) setting out a project’s data needs. (Refer to Chapter 8 for more about EIR.)

Although a number of maturity models are relevant to the construction industry, only a couple makes the specific claim that they measure BIM-specific maturity:

  • The NBIM I-Capability Maturity Model (CMM): It forms part of the US National BIM Standard developed for users to evaluate their business practices along a continuum or spectrum of desired technical level functionality. The idea is that you can use the CMM tool as a way to plot your current location and plan ahead for your goals for future aspirations. The CMM isn’t new and has been used within the software industry for some time. However, unlike the CMM used within software, the NBIM CMM addresses supply-chain issues and its maturity levels take into account different project stages. The CMM is available in two forms:

    • A static Microsoft Excel workbook consisting of three worksheets
    • An interactive version that consists of a multi-tab Excel workbook

    Download the CMM at www.nationalbimstandard.org/nbims-us-v2/doc/Interactive_BIM_Capability_Maturity_Model_v_2_0_NBIMS.xls.

  • Indiana University’s BIM Proficiency Matrix: This matrix is an evaluation tool used to assess the proficiency of a respondent’s skill at working in a BIM environment. It’s used as one of many selection criteria for a given project and communicates the owner’s intent to the design team members what the BIM objectives are. It covers categories such as physical accuracy of model, integrated project delivery (IPD) methodology, construction data, and facility management (FM) data richness. Respondents are awarded points and categorized as either Working toward BIM, Certified BIM, Silver, Gold, or Ideal. The matrix is a dynamic tool that will adjust as the industry matures.

    You can download the IU BIM Proficiency Matrix at www.iu.edu/~vpcpf/consultant-contractor/standards/bim-standards.shtml.

Providing the Right Structure

Like any good built structure that’s to stand the test of time and have longevity, your approach to BIM must be built with a firm bedrock, foundations, and superstructure. In the following sections we explain what components go into making your structure firm.

Figure 7-1 shows the big-picture glance of the following four levels of BIM. As you can see, the only way you can reach for the skies with BIM is to ensure that you have the fundamental BIM frameworks, reinforced collaborative processes, and the development of gradual integration and exchange of data in your project. Eventually, BIM will rely on cloud solutions, but there is still a long way to go.

image

Illustration by John Wiley & Sons, Inc.

Figure 7-1: The foundations of BIM maturity.

Preparing the bedrock: Level 1

The right setting should be primed for BIM, and clear, unified goals for data use and outcomes are a smart starting point. Collaboration should always be meaningful; however, don’t collaborate for the sake of collaboration. BIM doesn’t eliminate the need for good design management. If anything, it amplifies the need for it.

remember The bedrock should comprise the following:

  • A framework for collaborative working: This framework should be within your organization and detail how you’ll work well with others, ensuring that you have a clear purpose. (This framework can answer the “why” question.)
  • A common methodology: Establish an approach for managing the production, distribution, and quality of construction information in a common data environment (CDE) so that everyone can access the same data and so that no removable media storage devices, such as memory sticks, can be removed from your computer. Governance of the CDE is also essential. Proactive quantity assurance is better than reactive repairs.

    BIM must be founded on a solid bedrock. Getting Level 1 embedded in your organization should be the first horizon, and these factors apply even if you aren’t doing BIM.

  • The right procurement route: This helps set the right environment for BIM. Essentially, the more collaborative the contract, such as NEC, the better the BIM opportunity. This isn’t just the client to principal contractor but also to any subcontractors. The contract can help set the scene for playing nicely. Evidence suggests that you achieve better efficiencies when BIM is part of the contractual arrangement.

Setting the foundations: Level 2

The second horizon involves the base in which you build your BIM foundation. Level 2 is a staging post in the BIM maturity journey, and you’ll eventually move from collaborative data exchanges to one that’s integrated, real time and cloud based.

tip In order to create this foundation, you first need to have processes for information management during the capital delivery and operational stages of the project lifecycle. Start with the end in mind, and understand what data you’ll need to successfully operate and maintain the asset.

Key components include the following:

  • Asset information requirements (AIR): They define the information that is required for an asset information model (AIM).
  • BIM execution plan (BEP): Suppliers prepare this pre- and post-contract document, setting out a structured, consistent process for how the project will be carried out, including common terminology for job titles, descriptions, responsibilities, and processes.
  • Master information delivery plan (MIDP): This document is used to manage the delivery of information during a project.
  • Organizational information requirements (OIR): These describe what information is required by an organization for asset management systems and other organizational functions.

Also consider capability assessment. In the UK a standardized document, PAS 91, examines the supply chain’s ability to deliver a Level 2 project with particular regard to information management compliance relative to PAS 1192-2.

You also need a suitable means for transporting your data across the project lifecycle and facilitating a means of validated information exchange. Remember to look at how your data needs to go from a project information model (PIM) to an asset information model (AIM); will data be successfully transferred into a computer-aided facility management (CAFM) system?

Think about how you’ll wrap the data, its uses, and timing of exchanges into the contract. Ask yourself whether you should use a protocol or prescribe BIM deliverables. Ensure that you read the invitation to tender thoroughly and watch out for high levels of requirement such as LOD 500. You must consider insurance aspects. You can receive good guidance on both from the Construction Industry Council.

Also use soft landings, adopting a mind-set and a process to align design and construction with operational asset management and purpose. Soft landings is essentially a building completion protocol that involves gradual handover and encourages the greater involvement of designers and contractors together with building users and operators before, during, and after handover. (Refer to Chapter 9 for more about soft landings.) This alignment means that the design considers and addresses the needs of the end user throughout the design process. Designers and contractors will be involved with the building beyond its construction completion to ensure that handover becomes a smooth process, operators are trained, and optimum performance outcomes become a focus of the whole team.

Good classification systems — and in the UK, the forthcoming digital plan of work, which will help to describe data needs for a project in a simple electronic format — can aid the preceding.

Building the superstructure: Level 3

Level 3 is a sensor-rich superstructure that’s constantly talking, telling you how it’s performing — real-time evaluation.

Although Level 3 is still at a nebulous stage, waiting for the industry to develop all the relevant components, you can start to use some of its underpinning themes such as IFC and semantic web. You can also start to develop integrated processes and workflows within your organization with an aim of moving your data exchange lag toward being instantaneous. Try this in a collaborative workshop environment before trying it in your live project. Refer to Chapter 19 for more discussion on Level 3.

Selecting the right projects

With the right structure in place, you need to apply it to the right project. Too often people make the mistake of trying to implement BIM on a project they’re already working on. Unless you’ve followed the BIM process from the outset, you’re always going to play catch-up and you’re not going to reap the rewards at the end.

You’re far better to choose a project where you have a reasonable timescale, motivated supply chain, and a friendly client. Think of this project as a pilot project where you can learn, grow, and put that experience into your next project. Explaining to your client that you’re adopting a new process from the outset is prudent, so as to manage any expectations. Historically, with a 2D CAD approach, a steady content supply of information was produced. However, drawings and documents produced from the BIM may come later on and in one go.

Designing to reduce change orders and variations

Regrettably, the construction industry has perversely made money from change and variation orders. BIM helps at the outset, creating a stable brief and explicit information requirements. Clients can understand the 3D model environment much more easily than a 2D drawing that only those blessed with a master’s in architecture or engineering can truly comprehend. The client uses the model’s early doors to understand fully the proposed solutions, and makes refinements prior to procurement. The client better understanding the solutions means less risk and less modification.

Preparing for BIM Technology

Although you can’t buy BIM in a box, it’s a process that’s enabled by technology. As well as the software itself, you need to regularly maintain and update support software, operating systems, and hardware. Having an IT strategy in place not only prevents data loss but also causes minimum disruption while the rest of the team carries out any work, meaning you can get on with the day job and still pay the bills.

As with many things in life, a successful outcome can be attributed to prior planning and thought. Before you jump right in at the deep end, take a step back and plan your approach of attack. First, know what it is that you want to achieve. In the following sections we examine the questions you should be asking to make sure you set off on the right track and are fully primed, prepped, and prepared.

Recognizing software requirements

When considering the software you need for your BIM project, make sure that your digital toolset selection is married to re-engineered and lean processes. You don’t want to buy a tool and adapt your processes around its functionality. Work on optimizing your processes and procure your technology in concert with the workflow needs.

A multitude of BIM software is on the market, all with unique selling points, pluses, and weaknesses. Not only are many different software vendors with competing products available, but individual software vendors also offer more than one platform solution or suite of tools to get the job done.

Having different software that addresses different needs and requirements is particularly useful in multidisciplinary teams because no one software solution can produce a BIM project by itself. Making the right choice on any software selection should be based upon an informed decision.

Getting the right advice

Software vendors are more than willing to help you with your selection of software. Make sure that you seek advice from several software companies to compare the different software.

Chapter 22 offers plenty of resources that you can turn to when doing your research, including BIM conferences, webinars, social media, YouTube, and software user groups. Speak to your clients as well as the supply chain. Software develops at a fast pace, so be sure to review your selection periodically to make sure that it still serves your needs.

Choosing the digital equipment for your new toolkit

An asset can’t be fully designed and built using software from a single software vendor, and you may consider a number of software solutions so you have the right tool for the job. Make sure that you pick the right tool for the job and not the right job for the tool.

Before selecting a platform, ask yourself the following questions:

  • Can I get some free stuff to support my needs? Before you dip your hands into your pockets and part with your hard-earned cash, consider any solutions that may not cost you a dime. Chapter 21 discusses software solutions, plugins, and tools that are available for free.
  • Does it support interoperability? In a nutshell, interoperability is the ability to collaborate, exchange, and operate on building model data, between different BIM platforms. BIM tools and platforms need to be compatible with one another at a process or workflow level, particularly when working within interdisciplinary teams that have to collaborate on the same project. Being able to communicate and exchange information with other people regardless of the software tool they’re using is important. Refer to Chapter 10 where you dive a little deeper and discover more about interoperability.
  • Do you have an exit strategy? What happens when a software vendor no longer continues to produce a piece of software? Do you have a game plan or an exit strategy? No guarantee exists that a software vendor will continue to produce a piece of software forever. At some point the company may move on to other products and services, leaving you unsupported. If this does occur, be prepared to make the switch to another service provider.

    warning Software vendors keep their products updated by regularly releasing versions. These releases occur anywhere from every 12 months to three years and they often don’t support backwards capability; for example, you may not be able to open a file created in the 2015 version of a software in a 2013 version. Although most programs are available on Windows, not all are available for the Mac platform.

tip For further information on currently certified software and the software certification scheme, see the buildingSMART website at www.buildingsmart-tech.org/certification.

Software vendors usually let you try before you buy. Normally, you follow a simple registration process and then you can download the software for a limited trial period and make your evaluation.

Considering hardware requirements

When it comes to hardware, the bigger the better is usually the case. Where possible, larger displays, more powerful computers, and fast connectivity can give you and your business the competitive edge. The same is also true of memory such as RAM and the hard-drive. However, with virtual desktops and cloud-based solutions on the rise, you may not need to increase the grunt as much as you think.

remember Selecting the right hardware among the technical jargon can be daunting. When considering your requirements, make sure that you cover the following:

  • Memory: This refers to the area in a computer where data is stored for quick access by the computer’s processor. All computers come with random access memory (RAM), which is also referred to as the main primary memory so as to distinguish it from external storage devices like disk drives. Your computer needs memory to access and run programs. The more memory you have, the more space or room you have in your computer for information and programs. As computer programs and software have increased, so too have the requirements for memory. Look for a minimum of 4GB RAM. Some software vendors recommend between 8 and 16GB of RAM for larger files.
  • Processing speed: Your computer’s processor speed determines in great measure the speed at which your computer runs programs or completes tasks. Think of your computer’s central processing unit (CPU), more commonly referred to simply as the processor, as the brains of the computer, where calculations and tasks are carried out. This background processing can help performance, navigation, and the display of models. The processor speed is measured in gigahertz (GHz) where the higher the number means the faster the processor. Go for the highest affordable CPU speed rating.
  • Operating system: Sometimes referred to simply as OS, an operating system is the software that manages your computer’s hardware and software resources and provides common services for computer programs. Software vendors normally state the minimum operating systems required to run their programs and applications.
  • Graphics card: Also known as a video card, the graphics card is a key component to consider.
  • Hard-drive: Programs store cached data while they’re operating in the background, not just when you save a file. The price of solid-state drives (SSD) is coming down, so you may want to consider a combination of a hard-drive and SSD memory.
  • Monitor: Larger is usually better with monitors. If your video card supports it, you can also hook up two or more monitors, allowing you to have a program or task open on each screen. You may look like a stockbroker, but you also increase your productivity.
  • File storage: Storage allows you to file information away so that you or someone on the project can retrieve it at a later date. Computers come with inbuilt storage capacity; however, network solutions such as storage area networks (SANs) and network attached storage (NAS) are becoming more commonplace. Whatever solution you choose, make sure that you also consider the issue of data security to protect your files.
  • Mobile versus fixed or remote: If you travel, you may want to consider a light portable machine or a way of working remotely with your server.

Identifying training requirements

When thinking about your training requirements, make sure that you create a learning outcomes framework that sets out the needs in terms of knowledge and skills for your different levels of staff from strategic and managerial to technical persons.

tip Before you start, ascertain your starting position and understand the current situation in your office. A useful tip is to appoint BIM champions throughout your organization, not just at shop-floor level but right up through to senior management. BIM is as much about a cultural change as a technological one, and having BIM champions onside helps implement your strategy.

Everyone has different roles and training requirements. Just as not everyone in your organization needs to know how to create a BIM object, not everyone needs to know how to complete the BIM execution plan (BEP).

Consider your own workforce and the current skills they have. Could they become internal trainers, for example, and pass on knowledge and provide support to others? When it comes to software, instead of training everyone all at once, consider training people just in time for when they need the knowledge. You may not deploy the software for your next project for a while, at which point everyone has forgotten what they learned!

Managing BIM technology

The BIM manager may have a number of duties, such as implementing and enforcing BIM standards throughout the company as well as managing BIM technology. This may include managing software products, versions and updates, evaluating new BIM-related technology, and keeping abreast of best practice, installation, and support. When thinking about technology management, consider the following:

  • Undertake technology evaluations and prepare budgets. Make sure any future technology adoption aligns with your business goals and aspirations.
  • Keep up to date with BIM technology. In the fast-paced world of technology, many products and solutions only have a limited shelf life. Knowing what emerging technologies are coming to the marketplace and how they can benefit you will give you a competitive advantage. Magazines, trade shows, and the Internet are good ways to keep abreast of new and forthcoming developments. In Chapter 22 we discuss ten useful BIM resources and information sources.
  • Develop relationships with software vendors, resellers, and technology support staff. Having a good support network around you and knowing who to turn to for answers may just help you out in your hour of need. Perhaps you may require additional help to get you through a technical problem or dilemma, or just want to find out little tips and tricks to assist you to get the best out of your software and processes. Don’t forget to support those in your organization who may be in a satellite office or work from home.
  • Provide or facilitate on-going training. This may include a mixture of internal and external training along with attending conferences, seminars, and workshops to maintain competency in your software and technology. Ask those team members who attend to bring back what they’ve learned and pass on information to others, perhaps by way of an internal presentation or workshop.

remember The terms BIM manager, BIM coordinator and information officer have crept into architecture, engineering, and construction (AEC) vocabulary. In the UK an information manager is responsible for the establishment of the common data environment (CDE) and focuses on management disciplines with no design responsibility. A BIM coordinator, on the other hand, usually contributes to information management through the establishment of model standards and execution plans.

Operating BIM in the cloud

A cloud is the means of storing and accessing data as well as accessing programs over an Internet connection rather than a hard-drive or local storage. Moving to the cloud means a move away from the traditional concept of purchasing dedicated hardware (which depreciates over time) to using a shared cloud infrastructure and paying as you go. You should consider cloud computing as it brings a number of benefits. These benefits can be categorized as the following:

  • Scalability and flexibility: This allows IT to adapt to fluctuating and unpredictable business demands. You get the right amount of computing power you need, when you need it.
  • Cost savings: In the cloud you don’t have upfront hardware costs. You usually avoid the cost of maintenance and software upgrades, and you just pay for what you use. Rather than spending time maintaining your IT infrastructure, you can focus your resources, thoughts, and efforts on other business needs.
  • Get up and running faster: Because you have less maintenance and no need to install software on every machine, you have time to concentrate on the job at hand. As long as you have an Internet connection, you can access the cloud from anywhere.

A number of cloud solutions are available for BIM collaboration and asset management, with the term cloud covering a diverse range of solutions, as the following sections explain.

As we discuss in the later section “Improving security,” you do have to be mindful that you’re in the hands of your cloud provider who can (in theory) access, alter, lose, or even share your data with others. Other issues exist around who owns data if it’s stored on someone else’s server.

Infrastructure as a Service (IaaS)

This is a form of cloud computing where virtual computing resource is provided over the Internet. The service provider offers virtual machines or storage that you can increase when required. This is one of three main categories of cloud computing services, with others including Software as a Service (SaaS) and Platform as a Service (PaaS) (see the next sections).

Software as a Service (SaaS)

Think of a bank, which protects your privacy as a customer while providing you with a service that’s both reliable and secure. Web-based software, on-demand software, hosted software, pay-as-you-go software — whatever the name, what you need to know is that SaaS software and applications run on SaaS providers servers, and you access them via the Internet. You don’t need to install or maintain software, and the provider manages aspects such as access, security, availability, and performance.

Platform as a Service (PaaS)

This type of cloud infrastructure is more aimed at software developers, allowing them to develop and run applications without the maintenance and complexity of infrastructure. Just like companies such as Amazon.com, eBay, and iTunes made new markets possible through a web browser, PaaS offers a fast and cost effective means of application development.

Public and private clouds

Clouds can be private, where you use a dedicated server for your use only, or public, where you share a server with others. Although a public cloud is a cheaper option, a private cloud offers greater levels of security. Increasingly, people are choosing a hybrid of the two, securing sensitive business-critical data on a private cloud and non-sensitive data on a public solution.

Considering file storage

Gone are the days where the office was littered with filing cabinets and drawing chests and lever-arch files. At the end of a project, data should be archived within the CDE for future reference. Today vast amounts of digital information are generated, and you have the opportunity to move from a physical location for storing files to a document repository system (that’s well backed up).

Storage area networks (SAN) and network attached storage (NAS) are networked solutions that are becoming more popular. BIM clouds are becoming more prevalent as a way to store information over the web. As well as being a place to simply store information, many have additional functionality such as inbuilt model viewers, audit control, and instant-messaging communication systems.

remember For information to be trackable and easily located, files should follow a commonly accepted naming convention. Information should also provide auditable tracking of the project’s history.

Improving security

Working with digital data and sharing information does bring with it some caveats. Unfortunately, criminals and other not-so-nice people may want to exploit sensitive information about an asset. So with an increasing use of, and dependence on, information and communications technologies, you need to take inherent vulnerability issues very seriously.

Make sure that information is shared and published in a security-minded fashion. Adopt a need-to-know approach to data that could potentially be exploited by baddies with a hostile or malicious intent. The loss or disclosure of sensitive information such as intellectual property may not only impact on security but could also be commercially valuable in the wrong hands. Security issues may arise around:

  • National security: These issues include terrorism and organized crime.
  • Personal information: Security should address any privacy issues such as the protection of personally identifiable information.
  • Intellectual property and commercially sensitive information: This may include information about an asset, both physically and virtually, such as preventing data loss or information disclosure.

remember If your project contains sensitive information, consider implementing a policy relating to the management of access to a CDE. Inevitably, you’ll create a significant amount of intellectual property to be stored in the CDE. Therefore, a policy should identify key steps to identify who can access what and how access can be granted or revoked.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.148.144.228