Chapter 9

Mandating BIM in the UK and across the Globe

In This Chapter

arrow Understanding the wider benefits of the UK Construction Strategy

arrow Explaining the framework to achieve Level 2 BIM and beyond

arrow Looking at BIM mandates across the globe

arrow Considering new approaches and why they’re needed

BIM is being adopted around the world, governments are providing financial stimuli and creating mandates for BIM deliverables, and project delivery methods are changing. It’s not a matter of if, but when your firm will implement BIM. You can look at the UK as a great example of how turning BIM into a national policy accelerates adoption. In its first three years, the UK Construction Strategy saved the government £1.4 billion ($2.1 billion).

The UK government’s decision to mandate BIM has led to more engagement from the entire supply chain, including clients and owner-operators, than in the United States. The United States is arguably behind in terms of BIM maturity and a centralized approach, but huge potential exists for standardization. In this chapter, we take a look at the UK government’s Construction Strategy and where the BIM mandates came from. We also take a high-level look at the US picture and consider other BIM mandates across the rest of the globe.

Interpreting the Requirements

At the end of 2014 a major development occurred. The European Commission endorsed the formation of the European Union BIM Group and gave financial and secretariat support to the group. EU BIM will be funded to mid-2016 and likely deliverables include reports for the introduction of digital technology and BIM to European public works, as well as communications and events to engage the public client community and support the push for the private sector.

In March 2014, the EU published the European Union Public Procurement Directive (EUPPD) in a bid to modernize the existing EU public procurement rules by simplifying the procedures and making them more flexible. The directive makes a specific reference to the use of BIM in public works in Article 22(4):

For public works contracts and design contests, Member States may require the use of specific electronic tools, such as of building information electronic modelling tools or similar …

In simple terms, EU member states have until 2016 to implement BIM policy into their national legislation. Making BIM policy a requirement not only encourages individual nations to develop a digital construction industry, but also makes collaboration between the EU member states more likely.

The global construction industry clearly can take away much from looking at different BIM mandates around the world and potentially reap the rewards and benefits that a standardized approach to BIM brings. The following sections look a little deeper into the UK government BIM mandate, its origins from the UK government Construction Strategy, and the value proposition the UK government believes BIM can bring to the economy and construction industry.

Knowing where to start with the UK BIM mandate

The decision to adopt BIM is an individual one for every business. Making the decision is more complex than if you were switching from a drawing board to CAD, but the adoption is definitely worth the effort to reap the rewards. The UK government realized that it wasn’t using the wealth of construction and real estate data available in an efficient way. By analyzing data more effectively, it was possible to understand more about the UK building portfolio and how the industry could evolve.

Think about the retail sector for a second and the moment you hand over your hard-earned cash to a merchant in exchange for goods or services. Once, the point-of-sale system typically included a cash register, a receipt printer, a barcode scanner, and a monitor and customer display. The new electronic point-of-sale systems (EPOS) cover the basic functions of a till such as calculations and issuing receipts, but make more efficient use of data. For example, they can work out which product lines aren’t doing so well, link to stock levels, and store information about you, the customer. Perhaps you’ve wondered why you received a discount voucher for a 20-pack of diapers and shaving cream? From the contents of your shopping cart and along with that loyalty card you signed up for, supermarkets know more about you than you think.

In the UK, the government has been the main driving force in creating a whole sector pull for BIM adoption. This is changing rapidly, though, as the construction industry reaches the tipping point where most organizations are doing BIM anyway to unlock more efficient ways of working. A mandate isn’t the same as forcing companies to do something they resist; it’s a catalyst designed to encourage digital innovation in a certain part of the industry — in the UK’s case, public sector contracts — but involvement remains a choice for an individual company because it could focus on other areas of the industry, private house-building for example. Eventually, as more of the supply chain uses digital data exchange, the piece of the pie available to BIM-resistant companies shrinks until it’s impossible to maintain as a business proposition.

Construction strategy

In 2011, the UK government published its Construction Strategy aimed at reducing the cost of public-sector assets by up to 20 percent by 2016. The strategy calls for “a profound change in the relationship between public authorities and the construction industry to ensure the Government consistently gets a good deal in the capital/delivery phase of projects.”

The Construction Strategy put the spotlight on an efficient construction industry as being vital to the UK economy, because it represents approximately 7 percent of gross domestic product (GDP), or £110 billion ($170 billion) per year.

The BIM mandate’s focus on public sector is because it contributes 40 percent of that figure and government is the construction industry’s biggest client. Overall, the UK needs to reduce the cost of public construction projects so the government can then reinvest savings into other centrally procured projects.

The following excerpt from the 2011 Construction Strategy highlights the UK government’s concern over the failure of the construction industry to take advantage of innovative digital technologies. It also demonstrates the government’s understanding of the main reasons for that failure and its analysis of the resultant loss to the industry and its clients.

  • 2.29 Construction has generally lagged behind other industries in the adoption of the full potential offered by digital technology.
  • 2.30 A lack of compatible systems, standards and protocols … [has] inhibited widespread adoption of a technology which has the capacity to ensure that:
    • All team members are working from the same data.
    • The implications of alternative design proposals can be evaluated with comparative ease.
    • Projects are modelled in three dimensions, eliminating coordination errors and subsequent expensive change.
    • Design data can be fed directly to machine tools, creating a link between design and manufacture and eliminating unnecessary intermediaries.
    • There is a proper basis for asset management subsequent to construction.

Among other objectives, such as elimination of waste, new methods of procurement, value for money, and benchmarking, BIM was high on the agenda. The report announced the government’s intention to require collaborative 3D BIM on all its projects by 2016. It was clear that all information and documentation must be in electronic formats, and that it included renovations to existing estates as well as new-build projects.

remember The requirement in the UK specified BIM and electronic data exchange. However, you shouldn’t treat BIM in isolation, but as part of a bigger change agenda such as Lean working practices, a system for eliminating waste and adding value in production processes like construction that originated at Toyota factories in Japan.

Wider benefits of the government’s strategy

The objective of the government’s strategy is to fast-track BIM adoption throughout the UK construction industry, but that’s because it has direct benefits on construction projects, most obviously significant cost savings. Understand that BIM can’t produce results such as efficiency and cost savings on its own; rather BIM is part of a much bigger picture that includes the following:

  • Intelligent clients: Know what they want, what it should cost, and how best to go to market.
  • Transparent pipelines of work: The UK government has been clear about the funding that it has allocated for work that is in either in the process of being developed, provided, or completed.
  • Early contractor engagement: The UK government has been experimenting with new forms of procurement that involve early contractor involvement to support BIM. However, of equal importance is early engagement of specialist or subcontractors, plus manufacturers who in most cases actually create the data for the construction and asset models.
  • Benchmarking/use of data: To measure efficiency and value of your data, you need a benchmark, which acts as your standard starting position that suits your organization and from which measurements can be taken. You especially need to know whether a project represents good value for money and clients need to have some idea of what projects should cost.
  • Lean delivery: The two concepts of Lean construction and BIM aren’t reliant on each other. However, only when project teams realize the benefits of both in combination will the construction industry revolutionize the way it works. Undoubtedly, an understanding of Lean insights and the adoption of appropriate Lean principles enhance an organization’s BIM implementation processes, and, equally, an understanding of the power of BIM helps individuals and organizations to implement their Lean strategies.
  • Designing for manufacture and assembly (DfMA) and build off-site (BOS) standardizations: The creation of standard digital libraries is helping to drive down capital expenditure costs and speed up delivery cycles through a build off-site agenda. Designing with accurate assembly in mind and taking more construction processes off-site directly reduces waste.
  • Government soft landings: A soft landing is about having the approach and plan to always keep operational needs, including the client’s original purpose, in mind all the way through design and construction. This means that all user’s needs will be picked up in the design and resolved in the final built asset. According to the UK government, soft landings is the “golden thread” joining the capital and operational stages. Refer to the next section for more on soft landings.

A building’s for life, not just for construction

One of the central themes of the government’s Construction Strategy was ensuring that clients get the assets they want, meeting their needs, and performing to the level that was planned in the brief. In support of this strategy, soft landings was mandated and powered by BIM, whereby the project team considers the end user’s needs from the outset and right the way through the design lifecycle, engaging the facilities management (FM) team from the start. Rather than handing the keys to the owner at the end of the job and making a quick getaway, designers and contractors are involved for an extended period of time post-construction and handover to iron out any wrinkles and make sure that the building is running through post-occupancy evaluation and refinement.

Pretend for a moment that you’re in the market for a new car. You see your perfect model. With leather seats and a top-of-the range entertainment system, not only are you going to make Bob next door jealous, but your golf clubs fit perfectly in the trunk. The car comes with a manual showing you everything you need to know about your new purchase, from how to adjust seat positions to what pressure the tires should be inflated to. The garage has access to a full digital record of the technical data on each material, component, assembly, and system in the car. They can understand the intended operation of the engine management systems and identify and replace any part simply by referring to the data. What’s more, they have access to guidance on how to carry out any maintenance procedures.

When you tell the manufacturer about any complaints, it accepts your feedback and either takes corrective action by recalling the vehicle for modification or making sure that future models overcome the problem so that future sales figures don’t dip. If that’s what you get when you buy a car, why wouldn’t clients want the same when buying a building, a rail system, a motorway, or a flood alleviation scheme? Acquiring a new asset should be just as positive an experience; unfortunately, there is often a significant gap between the client’s expectations and those of the design and construction teams.

The government believes that better outcomes in design and construction can be achieved by powering soft landings with BIM. You find the true value of built assets during their operational lifecycle, and soft landings helps you achieve that.

Soft landings rely on the following:

  • Early engagement: Get both the client and end users involved early and include a soft landings champion on the project team during the design/construction process to ensure that operational considerations are included at every stage. As project time passes, the ability to make valuable change declines and the cost of change rises. The cost of operating and maintaining a building for more than 20 years can be up to three times the construction cost, so early engagement really becomes a no-brainer.
  • Aftercare commitment: A guarantee of post-construction assistance from the project team is essential. Aftercare is about fine-tuning, making sure building systems run smoothly and ensuring the end users have a good understanding of their working environment during a measured handover period.
  • Feedback: You can use post-occupancy evaluation (POE) for clients and operators to provide feedback to the project team so that you can capture lessons for the future. POE should be part of standard procedure on all your projects.

BIM goes hand-in-hand with soft landings because the collaborative way of working enables early engagement with the client. The use of a 3D model is beneficial not only for visualization and communication purposes but also for lifecycle model testing at the pre-construction stage. BIM also provides a dataset from an asset information model (AIM) that a facilities manager can use for a computer-aided facilities management (CAFM) system.

tip A great place to start is the BIM Task Group website at www.bimtaskgroup.org. Its aim is to support the main objective of the government’s Construction Strategy — achieving Level 2 BIM by 2016. The website provides up-to-date news on the group’s program, links to key resources, and access to lessons-learned documentation from exemplar projects.

Construction Strategy 2025

In 2013, the government published the Construction 2025 — Industry Strategy for Construction, which sets out a long-term vision and action plan by government and industry to work together to promote the success of the UK construction sector, including the benefits of BIM. The main objects are to

  • Reduce costs. The construction industry must lower costs by 33 percent in both the cost of construction and the whole-life cost of built assets.
  • Build faster. The construction industry must deliver faster, finding a 50 percent reduction in the overall time it takes from client request to project completion, for both new build and renovation of assets. This will be enabled by a move toward automation and designing for manufacture and assembly (DfMA).
  • Be kinder to the environment. The construction industry must lower greenhouse gas emissions by 50 percent.
  • Improve exports. The construction industry must see a 50 percent reduction in the trade gap between total exports and total imports for construction materials and products. You need to think more about how you build commercial opportunities around your datasets.

Through the implementation of BIM, the construction industry can meet these challenges and deliver more sustainable buildings, more quickly, and more efficiently.

Ready steady: You push, I’ll pull

The BIM Industry Working Group report “BIM Management for Value, Cost, and Carbon Improvement” looks at the construction and post-occupancy benefits of BIM for use in the UK buildings and infrastructure markets. The report recommends a push-pull strategy, which just means pushing the supply chain to achieve a minimum level of BIM use, and pulling from the client-side by requesting information and actually making best use of the data collected. These sections examine the push-pull aspects of this strategy in a bit more detail. (To read the report in full, visit www.bimtaskgroup.org/wp-content/uploads/2012/03/BIS-BIM-strategy-Report.pdf.)

Supply-chain push

The strategy supports the push element that aims to help the supply chain make BIM use simpler, including providing guidance about BIM processes and training resources about the deliverables required. You have seen software vendors who advertise that they offer the best BIM solution and members of the supply chain who indicate that they have the BIM method to rule them all.

The strategy set out to produce a package of standards and resources that support straightforward delivery of BIM Levels 2 and 3. BIM maturity can be measured along the Bew-Richards maturity model, which the UK industry commonly refers to as the BIM wedge. Refer to the “Exploring the BIM wedge” section for more information. In helping with the widespread adoption, the government won’t stop innovation or the freedom of the members of the supply chain to make their own decisions about the systems and software packages that they use.

Client-side pull

The flip side to the push is the pull. The government as a client has a strategy to be clear about what data it will buy and use and to standardize this wherever possible. The government as a sponsor of the construction industry has an interest in maximizing the benefits of BIM, and it needs to be specific about its own requirements. For example, it has a responsibility to set out the data deliverables necessary at key stages in the project and lifecycle of a built asset, which means digital submittals and handover information can be checked consistently on every project.

tip Including BIM in national policy has accelerated adoption in the UK. Contact government representatives to start encouraging the same legislative change in your local region.

Exploring the BIM wedge

The UK government has used a diagram to clearly indicate a target of Level 2 BIM in the UK maturity model, affectionately known as the BIM wedge due to its shape. The UK maturity model, developed by Mark Bew and Mervyn Richards, has become an integral part of any corporate presentation on BIM. It allows

  • The construction supply chain to clearly identify what it is to deliver
  • The client to precisely understand what the supply chain is offering

Figure 9-1 depicts four levels, as follows:

  • Level 0: Think of outputting 2D CAD information, consisting of lines, circles, and text, as paper pages and electronic printouts. At this level no collaboration is taking place.
  • Level 1: This is usually demonstrated by a mixture of 3D and 2D CAD production. Some file-based collaboration may be occurring, with you sharing data via document management, but generally no collaboration is taking place between different disciplines.
  • Level 2: This is defined as file-based collaboration and library management and is a series of domain-specific models (architectural, structural, services, and so on) within a single environment where the project team can share structured data based on Construction Operations Building information exchange (COBie). It’s generally based on historical data, rather than real-time information, so it relies on shared content, which could be work in progress, being federated with other inputs in order to make informed decisions.
  • Level 3: Although the exact requirements of Level 3 are yet to be defined, this is about fully integrated BIM (or iBIM) where the project team works on one central model somewhere in the cloud. Level 3 will rely on open-data standards and move toward real-time data (an integrated and automated environment where the project team will be working on a single model, at the same time) and look at improving organizational performance.
image

Illustration by the BIM Task Group

Figure 9-1: A simplified example of the Bew-Richards BIM maturity model.

When the industry talks about BIM, it’s talking about computer-readable data that people can use to make smart decisions. With artificial intelligence, will the computer make decisions for you in the future? As you move toward BIM Level 4 and beyond, the industry is thinking about behavioral datasets. For example, what effect would more natural lighting have on patient recovery time or school grades? The project team will start to simulate these kinds of outcomes, beyond traditional facilities management. If you’re interested in this, take a look at Chapter 19.

Building a framework

The BIM Task Group, Construction Industry Council (CIC), and UK British Standards Institute (BSI) have produced a suite of documents that give industry the tools, processes, and procedures to work at Level 2 BIM.

technicalstuff In the UK, the BSI is the primary publisher of standards-based documentation. Through its technical committee, B/555, the construction design, modeling, and data exchange, the BSI has been developing standards to support BIM. The BSI (B/555) roadmap, created in conjunction with the BIM Task Group, gives an overview of the committee’s activities that provide support in delivering clear guidance to the UK industry.

UK Level 1 standards

The UK Level 1 standards support Level 1 of the UK BIM maturity model. The standards are centered around the collaborative production of 3D and 2D CAD information and guidance on managing the design process. Table 9-1 lists the Level 1 standards.

Table 9-1 Level 1 Standards

Title

Description

BS 1192:2007

Collaborative production of architectural engineering and construction information.

BS 7000-4:2013

Design management systems, part 4; guide to managing design in construction.

BS 8541:2:2011

Library objects for architecture, engineering, and construction — recommended 2D symbols of building elements for use in BIM.

UK Level 2: Processes, tools, and guides

The UK Level 2 standards are standards, procedures, and supplementary documents that help you achieve BIM Level 2 compliance, which is known as collaborative BIM, where the project team use their own 3D models, but don’t necessarily work on a single, central model.

The documents support collaboration by describing how data is exchanged between the members of the project team. Level 2 collaboration often uses a common file format to share information, which means any company can merge project content with their own to create a federated model and run checking and validation tools on the BIM. Table 9-2 lists the Level 2 documents.

Table 9-2 Level 2 Standards

Title

Description

PAS 1192-2:2013

Specification for information management for the capital/delivery phase of a construction project using BIM.

PAS 1192-3

Specification for information management for the operation phase of assets using BIM.

BS 1192-4

Collaborative production of information part 4; fulfilling employer’s information exchange requirements using COBie — code of practice.

PAS 1192-5

Specification for security-minded BIM, digital built environments, and smart asset management.

CIC BIM protocol

Standard protocol for use in projects using BIM.

Soft landings and compendium 8356:2015

Graduated handover of a built asset from the design and construction team to allow structured familiarization of systems and components, and fine-tuning of controls and other building management systems.

Classification

Systematic arrangement of headings and sub-headings for aspects of construction work including the nature of assets, construction elements, systems, and products.

Digital plan of work (dPow)

Generic schedule of phases, roles, responsibilities, assets, and attributes, made available in a computable form.

Level 3 standards

The concept of Level 3 is centered around the idea of a shared, integrated BIM, also referred to as iBIM, and is yet to be fully defined in terms of detailed standards, but more clarity will emerge during the development of Digital Built Britain, the group responsible for helping the UK reach BIM Level 3. Refer to the next section for more information.

The standards and processes around Level 3 BIM maturity will develop over the next few years from a technical, commercial, and indeed behavioral perspective. There’ll also be new forms of procurement: integrated and performance based. Key to this maturity will be service performance data, such as energy use on a wide scale, enabling smarter decisions to be made by clients and operators at all levels.

Table 9-3 highlights the open standards that will steer the construction industry toward BIM Level 3.

Table 9-3 Level 3 Standards

Title

Description

ISO 12006-3:2007

Building construction — organization of information about construction works — part 3, the framework for object-oriented information (IFD).

ISO 16739:2013

Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries.

ISO 29481-1:2010

BIM information delivery manual (IDM) — part 1; methodology and format.

ISO 29481-2:2012

Building Information Modeling — information delivery manual (IDM) — part 2: interaction framework.

Securing the future — Digital Built Britain

The Level 2 BIM program is the main enabling strategy for transforming UK construction into a digital industry, but don’t get out of the elevator just yet. The industrial strategy for construction announced that the UK is going to be “an industry that is efficient and technologically advanced.” Digital Built Britain (DBB) is the brand that will help the UK deliver BIM Level 3 capability to domestic and international markets and link BIM to smart cities and smart grids. Check out www.digital-built-britain.com.

UK BIM survey results suggest the industry is now reaching a stage where BIM is becoming the norm, although smaller practices are lagging behind their larger competitors. The UK construction industry sees adoption of BIM as bringing competitive advantage and that the current UK government’s BIM targets are achievable.

For example, HS2 Ltd, the company responsible for developing and promoting the UK’s new high-speed rail network, undertook a study to test whether the supply chain is ready to work to BIM Level 2. The study found that 94 percent of the supply chain is already using BIM and that 60 percent has a BIM strategy with defined goals.

Leading BIM in the United States

You can validly think of the United States as the founding fathers of BIM theory, being the home of parametric CAD innovators like Chuck Eastman at the Georgia Institute of Technology and Bill East of the US Army Corps of Engineers (US ACE) who devised the COBie data exchange structure. Even the successful BIM policy in the UK held up as a global exemplar was born out of development discussions with the US General Services Administration (GSA). Since 2003, the US federal government has expressed its BIM ambition, and the American Society of Civil Engineers proposed in 2009 that all road projects be built in BIM. However, very few national BIM strategies exist except those that are focused in the military.

The GSA has played a vital role in promoting BIM within the construction industry, being the first organization to lead the US government into BIM. Other government agencies such as the Naval Facilities Engineering Command (NAVFAC), US Coast Guard (USCG), US Air Force, and US Army are also using BIM. However, although BIM adoption is high in the United States, no central standards or nationwide organizing principles exist. Unlike the UK, the US government isn’t as responsive and the construction industry is spread out across states with unique requirements.

In the following sections you take a closer look at some of the good documentation, standards, and guides that the likes of the GSA, US ACE, and the National Institute of Building Science (NIBS) have produced that you can also use to your advantage.

Reviewing the GSA BIM guides

Since 2006, the GSA has mandated that those working on a new building designed through its Public Buildings Service (PBS) shall use BIM at the design stage. Since 2007, those receiving design funding must use BIM for spatial programming as a minimum requirement on all major projects when submitting to the Office of Design and Construction (ODC) for final concept approvals by the Public Buildings Service (PBS) commissioner and the chief architect. You can find out more about the GSA National 3D-4D-BIM Program at www.gsa.gov/portal/content/105075.

The GSA has developed the following suite of BIM guides and documentation:

  • GSA BIM Guide 01-Overview: This document is a good starting point and acts as an introductory text, providing the foundations and a common starting point. It introduces the GSA’s National 3D-4D BIM program and provides background information on the concept, definition, and expectations underlying 3D and 4D BIM technologies and models.
  • GSA BIM Guide 02-Spatial Program Validation: This guide describes the tools, processes, definitions, and requirements to use BIM effectively for GSA’s spatial BIM minimum requirements. The GSA aims to leverage the use of BIM and interoperability to automate the checking of model integrity and design performance.
  • GSA BIM Guide 03-3D Laser Scanning: With 3D laser scanning becoming a valuable way in which to obtain spatial data, the GSA is currently encouraging, documenting, and evaluating laser scanning technology on a project-by-project basis. This guide is currently in draft and contains good advice when contracting for and ensuring quality in 3D imaging contracts.
  • GSA BIM Guide 04-4D Phasing: The focus of this document is on describing the tools and processes required to explore how phasing and time-related information will affect project development.
  • GSA BIM Guide 05-Energy Performance: This guide describes the use of space-based BIM modeling techniques and strategies to strengthen the reliability, consistency, and usability of predicted energy use and cost estimates during the design and operation phases.
  • GSA BIM Guide 08-Facilty Management: GSA understands that there is great benefit in using and maintaining data throughout the lifecycle of facilities. This guide describes how this data generates efficiencies such as reducing the cost of renovations and optimizing building systems to reduce carbon and energy usage.

Viewing the NBIMS-US

The National BIM Standard-US (NBIMS) is a consensus document and an on-going initiative of the buildingSMART alliance, a council of the National Institute of Building Science, which focuses on providing standards that facilitate efficient lifecycle management of the built environment with support from digital technology.

It references existing standards, documents information exchanges, and delivers best business practice for the entire built environment. The document is built upon open BIM standards such as Industry Foundation Classes (IFC) and the scope covers BIM execution plans (BEP) and data exchange.

The first version of the standard was initially released in 2007 with an updated version following in 2012. Keep an eye out for Version 3 of the standard that will be available at www.nationalbimstandard.org. The NBIMS project committee is always looking for a cross-section of the construction industry that wants to get involved. You can refer to its website for further details.

Following the Veterans’ Affairs (VA) BIM guide

The US Department of Veterans Affairs (VA) Office of Construction & Facilities Management (CFM) provides a number of services to the VA to deliver facilities in support of US veterans. The VA found that digitizing its patient medical records generated process efficiencies in administration and management. The CFM now uses BIM to support similar process improvements in the built environment.

The VA BIM guide aims to support the adoption of BIM on relevant projects including help and guidance on the size and type of projects that BIM is most effective for. The guidance is intended to apply to a range of skill sets and discipline sectors.

You can access the VA BIM guide either as a PDF download or by using the interactive website at www.cfm.va.gov/til/bim/BIMGuide. The guide covers aspects such as design, construction and implementation, roles and responsibilities, modeling requirements, and security.

Remembering COBie and the US ACE

Construction Operation Building information exchange (COBie) started in the United States as part of the US Army Corps of Engineers. The Corps now produces additional CAD and BIM resources through the US ACE CAD BIM Technology Center at https://cadbim.usace.army.mil. The center’s guidance covers the application of BIM to facility management, planning, and civil engineering. The resources are organized around the US ACE BIM Roadmap and include information on BIM contract requirements. The site also includes an AEC CAD Standard and templates for Autodesk Revit and Bentley Microstation.

In the true spirit of collaboration, the center also includes a workspace for what is called the Tri-Service (made up of US Army and US ACE, Naval Facilities Engineering Command (NAVFAC), and the US Air Force), designed for military construction and civil works project teams including firms under contract as part of the wider supply chain.

Growing BIM Standards Internationally

More and more countries around the world are embracing BIM. Although some countries are creating a top-down approach by mandating BIM at a government level, other countries are using a bottom-up approach. Figure 9-2 shows the location of various BIM mandates around the world. The countries with wave shading have mandated BIM, and those with solid, black shading are on the road to BIM adoption and national policy.

image

© John Wiley & Sons, Inc.

Figure 9-2: Map of global BIM mandates.

The following sections take a high-level look at global BIM policy, introducing you to some great ideas, comparing international activity, and providing you with starting points to investigate BIM adoption in these territories.

Reviewing global BIM mandates

The UK is the only nation with a public-sector mandate. However, the private sector is keen to work with BIM-enabled teams, and private clients and contractors are beginning to mandate BIM on particular projects, in countries where government mandates are in place and those that haven’t yet adopted BIM. Although the UK’s global lead may not last, work has begun on the data-sharing guide PAS 1192:2 as an ISO international standard, making its impact felt globally.

tip The 60-page McGraw Hill “Smart Market Business Value of BIM for Construction” report gives a good insight and overview of the adoption and use of BIM worldwide. The report focuses on the largest global construction markets, including Australia, New Zealand, Brazil, Canada, France, Germany, Japan, South Korea, the United States, and the UK. The report gives further insight with market and profile of contractors using BIM, the benefits and return on investment (ROI) derived from their BIM investments, and the critical activities and practices for which they’re using BIM.

Europe

Demand for BIM is growing in continental Europe, with the formation of the EU BIM Task Group and implementation of BIM into public works legislation, as we describe in the earlier section “Interpreting the Requirements.” If you think of the United States as the fathers of BIM theory, then Europe is the home of many of the software vendors that have evolved CAD tools into BIM platforms, like Nemetschek (Germany) and Dassault (France). As well as the UK government, many other client bodies have established BIM requirements, such as Germany’s Deutsche Bahn Transport and the Netherlands’ water management ministry, Rijkswaterstaat.

Fourteen countries have indicated particular enthusiasm for Europe-wide specification of BIM: Austria, Denmark, Estonia, Finland, France, Germany, Iceland, Italy, the Netherlands, Norway, Portugal, Slovakia, Sweden, and the UK. France, Germany, and Norway, in particular, are starting government-led initiatives similar to that in the UK. Others, like Sweden and the Netherlands, have put the focus on particular agencies to develop requirements with industry. Central and Eastern Europe is building an impressive portfolio of technology companies and a digitally advanced workforce to facilitate BIM from practice.

The following list gives a brief overview of the BIM activities taking place across Europe:

  • Denmark: A national mandate from the Ministry of Climate, Energy, and Building exists in the form that Danish state clients such as the Palaces and Properties Agency now require their supply chain to use BIM for projects over DKK5 million.
  • Finland: Established in 2012, the Common BIM Requirements BIM to be used for all state property and national public projects. Finland is often held up as an exemplar of BIM adoption and early innovation, because of its relatively small industry and high levels of technology and open data exchange.
  • France: A task group has been established to develop a BIM mandate first put forward by the Ministry of Dwellings (Ministère du Logement). With a budget of €20 million ($22 million), the group is taking plans announced in June 2014 to build 500,000 BIM-developed houses by 2017. To take the housing ambition forward, Le Plan Transition Numérique dans le Bâtiment (the Digital Building Transition Plan) task group has been formed. Also, the French National research Project MINnD has been set up, and the consortium joins together contractors, engineers, software vendors, academia, and professional institutes. The “Interoperable Information Model for Sustainable Infrastructures” project has commenced to develop and explore open BIM standards for infrastructure projects. See more at www.minnd.fr/en.
  • Germany: The Federal Ministry of Transport and Infrastructure has led the creation of an industry “Digital Building Platform,” in coordination with industry organizations, with a key focus on standardization, digital data exchange, and new BIM-ready legal contracts. The strategy is part of a reform commission for construction that looks to understand why a number of large German public sector projects had significant time and cost problems.
  • The Netherlands: In combination with many other European countries, especially for infrastructure, BIM has been developing in the Netherlands for many years. In 2012, a Building Information Council was set up as part of the Rijkswaterstaat highways and waterways BIM program. There are many aspects to the project, including a standard format for data exchange and cross-discipline translation.
  • Norway: Statsbygg, which is Norway’s public and civil client, developed a phased approach to mandating BIM, putting frameworks in place as early as 2005. By 2010, all the Statsbygg projects had used openBIM principles like Industry Foundation Classes (IFC). Attention focuses on lifecycle costs and the environmental impact of infrastructure.
  • Russia: BIM development is a fairly recent focus outside of academic institutions. In March 2015, the Expert Council, under the government of the Russian Federation, selected some pilot projects to explore the potential of BIM implementation.
  • Spain: The first BIM Working Group in Spain has been set up by the government of Catalonia and Barcelona City Council.
  • Sweden: The Swedish Road Authority, Trafikverket, is researching BIM for the Virtual Construction for Roads (V-Con). V-Con is a European project co-funded by the European Commission concerning standardization and implementation of BIM in the road construction and management sector.

The Americas

The following list gives a brief overview of the BIM activities taking place outside of the United States, across North, Central, and South America:

  • Brazil: The National Department for Transport Infrastructure (DNIT) is embracing BIM, with major road schemes such as the 927-kilometer federal highway expected to adopt BIM.
  • Canada: The Institute for BIM in Canada (IBC) has been formed by a number of partner organizations, including government representatives and buildingSMART Canada, to standardize the coordination of BIM across the Canadian construction industry. Canada BIM Council (CanBIM) has been a key driver for advocating BIM in the AEC industry.
  • Mexico: The new international airport for Mexico City project is using BIM to produce a facility that will welcome 50 million passengers annually.
  • Panama: The expansion project to the Panama Canal, one of the most important waterways with respect to handling global trade, has adopted BIM from the outset. MWH Global, a lock design specialist, is using BIM to construct a third set of locks to allow more traffic.

Middle East

Generally, you can see the macro-scale adoption in the Middle Eastern BIM as passive, and you can characterize BIM diffusion as middle-out, which means rather than large practices pushing from the top down, or smaller agile companies influencing quick acceleration, the core market is driving it. The Middle East has seen BIM demand in the market as being artificially created by the imported expertise of consultants from the United States and UK. Middle Eastern owners are requesting BIM, but the countries’ organizational processes that should support that request aren’t yet in place.

The following gives a brief overview of the BIM activities taking place across the Middle East:

  • Qatar: Multiple projects are trialing BIM concepts. However, the development of a national or regional BIM policy should greatly help the success of Qatar’s BIM mega-projects surrounding the FIFA 2022 World Cup and the achievement of goals such as the Qatar 2030 National Vision. BIM has huge potential to influence health and safety.
  • United Arab Emirates (UAE): Dubai is the most populated city in the UAE, and Dubai Municipality has mandated the use of BIM for large-scale projects such as hospitals or stadiums, including buildings that are more than 40 stories high or 300,000 square feet. Interestingly, buildings delivered by foreign and international design and construction teams are automatically required to meet the BIM mandate.

Most clients in the Middle East aren’t mature and are only starting to ask for BIM. Generally, no employer’s information requirements (EIRs) are required, and the pull is mainly only from major clients and Tier 1 contractors.

Elsewhere in the world

A number of other countries are also insisting on the use of BIM, and countries like Malaysia and South Africa are at the very beginning of their BIM implementation strategies. The following list gives a brief overview of the BIM activities elsewhere in the world:

  • Australia and New Zealand: The driver for BIM in Australia has been a long-overdue desire to get local territories and states to coordinate construction policy. Government and the Australasian Procurement and Construction Council engaged international help and buildingSMART chapters to develop a BIM implementation plan and supporting guidance. BIM is mandated on all public sector projects from 2015. To the mutual benefit of both countries, Australia and New Zealand are planning to work together to define the processes and protocols required for BIM, infrastructure, and land works. Recently, the extensive asset management plan for the Sydney Opera House and the ongoing work to rebuild Christchurch after the 2011 earthquake have both been demonstrated as exemplar implementations of BIM.
  • China: National adoption of BIM is earmarked for 2016 and is being jointly organized through the Ministry of Housing and Ministry of Science and Technology, with a large influence from academia. However, the extreme pace of the industry to keep up with construction demand makes blanket implementation difficult. Like in many European countries, BIM is likely to be accelerated by infrastructure investment. It’s clear that national mandates for BIM need to be part of modernizing the construction industry, including bringing the environmental impact, accessibility, and structural safety of buildings to public attention.
  • Hong Kong: The Housing Authority of Hong Kong requires BIM for all new projects. In tandem with the Construction Industry Council, Hong Kong is developing a BIM roadmap for successful implementation and is looking to make the most of operational data and standardized methods.
  • Japan: BIM is an increasingly familiar subject, especially in Japanese academia and among professional institutes. The Japanese Ministry of Land, Infrastructure, Transport, and Tourism formed a construction task group made up of public and private construction industry members to develop BIM proposals.
  • Singapore: Singapore is a swiftly moving market for BIM, and through its Building and Construction Authority (BCA) the government has embedded BIM into its building code checking and approval requirements. The e-submission process allows a project team to submit a federated BIM with prerequisite inclusions for planning and building permit regulations. More local agencies are adopting the system for approval, and it has extended beyond structural design to include services and environmental considerations. The BIM Roadmap, a construction strategy document, aims for 80 percent of the industry to be using BIM on all projects and, most importantly, to report on the return on investment.
  • South Korea: The South Korean BIM Guide made BIM compulsory for all public sector projects by 2016, with a spotlight on long-term facility management.

Keeping Up to Date

The construction industry is typically adversarial and slow to change. However, to implement BIM and support digital ways of working requires a fundamental change in your approach. To prepare for new ways of working, the construction industry has needed to change and adapt a number of the aspects in which you operate. The following sections focus on why the UK industry has restructured existing plans of work and adopted a new unified classification system.

Restructuring plans of work

The Digital Plan of Work (DPoW) helps break down the barrier to BIM entry and build capacity. The deliverables from the DPoW, rather than the DPoW, are key.

A number of plans of work exist and each has a different focus. Plans of work have unique approaches to process. They also have wide variations in the amount of detail, depending upon the specific sector or domain’s needs. For example, plans of work for buildings allow for design work to continue after construction has begun, whereas plans for work for infrastructure usually imply that all design is completed when the project goes out to tender.

The Construction Industry Council (CIC) has produced a new, coordinated UK plan of work involving the consultation of a wide range of institutions and organizations. The plan of work has eight clear project stages (from 0 to 7) encompassing the whole project lifecycle, from identifying strategic need through to operations and end of life. The naming of the project stages is agnostic with regard to project type and construction sector. The plan of work follows:

  • Stage 0: Strategy
  • Stage 1: Brief
  • Stage 2: Concept
  • Stage 3: Definition
  • Stage 4: Design
  • Stage 5: Build and Commission
  • Stage 6: Handover and Close-out
  • Stage 7: Operation and End of Life

technicalstuff A report undertaken by David Churcher and Mervyn Richards called “Cross-discipline design deliverables for BIM” aimed to define a single set of data drops during the design and construction phases across both building and civil engineering projects.

tip The RIBA plan of work has been the definitive model for building design and construction processes in the UK since 1963, and has a significant influence internationally. The RIBA plan of work has evolved over the years in response to changing processes within the industry, but has required its biggest overhaul since its launch, in response to the radical way BIM has altered the way the project team’s process for designing asset design and development. Check out www.ribaplanofwork.com/about/Concept.aspx for a graph that shows the RIBA plan of work with its eight stages.

Going digital

A DPoW is a generic schedule of phases, roles, responsibilities, assets, and attributes, made available in a computable form. Produced on behalf of the UK government to support the BIM Level 2 process, the BIM Toolkit is specifically designed to enable the project leader to clearly define the team, responsibilities, and an information delivery plan for each stage of a project — who, what, when, where, and how — in terms of documents, geometry, and property sets.

warning Although the project team produces CAD or BIM information full size, the project team typically issues or exchanges it as drawings in hard copy (prints) or soft copy (electronic).

Standardizing classification structures

Adopting a classification structure is fundamental to BIM. Classification systems help project participants identify and locate things quickly. Think about a dictionary for a moment. This is perhaps one of the best examples of an effective classification system. It organizes information in a standardized way so that you can easily find and retrieve information. A dictionary also has a set of rules, or taxonomy, that are easy to understand and allow designers and other parties to add more information (and in the right place), and it also allows models to reference information and be better maintained.

These benefits underpin the purpose of all classification systems, such as Uniclass or Omniclass. The amount of construction information produced is vast and is generated by a number of people. Put into the equation the amount of information that capital programs can produce digitally and you can see that organizing information in a sensible and logical way is vital.

Classification structures such as Uniclass are being updated to take into account the requirements of object-oriented modeling. They’ve also been revised to enable a consistent approach to classification across building, infrastructure, and civil sectors.

Testing the requirements

The UK government has devised a simple ten-stage checklist to use when testing the requirements. Use Table 9-4 as a guide when looking to implement BIM. The checklist helps you determine whether the requirements have been achieved by asking a series of simple questions.

Table 9-4 Ten Tests of the UK Government’s BIM Approach

Consideration

Question

Valuable

What are the cost savings against benchmark costs? Are there any improvements on key performance indicators (KPIs)?

Understandable

Does everyone understand the requirements? What communication methods are people using? Has a department implemented any training or educational needs?

General

What’s the BIM adoption percentage of the department’s portfolio value? Can the BIM approach be applied to all projects?

Nonproprietary

What percentage of portfolio value requires open data deliverables such as COBie and IFC?

Competitive

Is an information delivery plan (IDP) being used for procurement to maximize options?

Open

Are tools and file formats being prescribed in an open and agnostic manner?

Verifiable

Is data being tested and verified at agreed exchange points?

Self-funding

Does the BIM approach pay for itself? What about client cost and departmental funding?

Timescales

Is BIM Level 2 business as usual? What about the next phase?

Compliant

Do data proposals meet the employer’s requirement?

Achieving the BIM targets

The UK government has set very clear targets around cost savings, carbon, and delivery times. Early adopter Level 2 BIM projects have regularly cemented cost savings between 12 to 20 percent against initial benchmark costs through BIM, and other initiatives such as soft landings. The Level 2 hypothesis is still to test the carbon agenda and embed it within the COBie data drops, but already trial projects are pointing toward better solutions.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.118.152.58