Chapter 11

Collaborating through BIM Requirements

In This Chapter

arrow Understanding interoperability and open BIM

arrow Looking at Industry Foundation Classes (IFC) and what you need to know

arrow Working with BIM standards like PAS 1192

arrow Exchanging information with COBie

The first time you open up websites or books that try to explain BIM, they almost always end up referring to complicated standards documents. The bunch of impenetrable letters and numbers can look downright confusing. PAS what? ISO what now?

Yes, we have to refer to standards in this chapter, because they’re the glue that holds collaborative BIM together and helps the industry to be consistent in its approach to this complete change of practice. We don’t expect you to have read the standards cover to cover, and we know you won’t understand them straight away or even be able to remember the difference between them all.

This chapter is a gradual, gentle introduction to a wealth of key documents and associated methods that aim to steer the processes and procedures of a notoriously complex industry toward collaborative harmony. Now we admit that this chapter focuses on UK BIM, partly because that’s where our expertise is, but also because we think the suite of documents supporting “Digital Built Britain” does a lot of things right.

Think of this chapter as a quick reference guide to the documentation you should read eventually, after you’re getting started with your own BIM implementation plan. BIM documents are like the Complete Works of Shakespeare; this chapter provides you with just what you need to know to get you through.

Running through Open Standards

On any given project, you want to be able to develop the ability to work effectively and efficiently no matter how many external consultants or teams are involved in the job. You should build up to pre-planned coordination and management of all the various parties in the project team through BIM standards and protocols. The full buy-in of everyone who’ll access the information model is fundamental to BIM success. Everyone needs to be on the same page … of the same BIM standard.

In these sections we explore why standards are vital to the BIM process and how they can form part of your best practice approach to collaboration.

Grasping why standards are important

Today’s world is built on standards that help people drive innovation and increase productivity. On a more rudimentary level, standardization makes your life easier; think about the standardized units of measurement that you encounter every day or labeled sizes that let you easily choose clothes or shoes.

Think about food labeling, which helps you to clearly understand the nutritional value of food and compare like for like, whether it’s the sodium content of lasagna or the amount of protein in an energy bar. Standards exist where allowing the providers of a service or the manufacturers of an object free reign would result in confusion or chaos.

Start by thinking about what would happen if you didn’t have access to standards:

  • Products of poor quality: Items that don’t meet standards may malfunction, break down, or even be unsafe.
  • Products that are totally incompatible with others: Imagine if every electrical item in your home had a different proprietary plug or socket design, or if every model of car needed custom tires.
  • Every manufacturer’s solution would be unique: The options to compare standard components or their performance and to learn from experience and previous mistakes wouldn’t exist.

Now just replace the references to products and manufacturers with projects and design teams. If you didn’t have access to standards, you’d have

  • Project work of poor quality: Construction processes that don’t meet standards may malfunction, break down, or even be unsafe.
  • Project work that’s totally incompatible with others: Imagine if every drawing or model in your project used a different proprietary file format, and if you had to buy different software for every single team.
  • Every designer’s solution would be unique: The options to compare standard components or their performance and to learn from experience and previous mistakes wouldn’t exist.

Interesting, yes? As you can see, BIM standards are vital.

In previous chapters, we discuss examples of standardization to demonstrate how valuable it can be — from credit cards to aeronautical design. We discuss in this chapter that the construction industry is ready for standardization and look at the documents that aim to equip the industry for a successful collaborative future.

Training the industry to think about open BIM

In today’s digitized world, standards allow people to create, use, and maintain information in a well-organized way. The standards not only encourage best practice, but they also offer a means to achieve real and measurable improvements. Sharing construction information, drawings, specifications, and schedules in an agreed and consistent manner can bring about savings in cost and reduce waste.

remember In order to achieve this, the members of the project team must be able to work together more effectively than ever before. The following processes are critical to the modern BIM-enabled project team:

  • Coordinating project information so that everyone has the most up-to-date version of the accurate and specific information they require for their next task.
  • Communicating at the earliest opportunity; for example, when a member of the project team sees an issue with constructability, highlighting the problem before it reaches site and before it impacts other design work carried out in parallel.
  • Reducing duplication of effort or abortive work by communicating decisions or analysis to the whole project team.

In the UK, the government has a clear BIM strategy that focuses on the efficient production, exchange, and use of data and information as the main means of delivering improved construction performance and savings.

The construction industry needs to safeguard against information loss and to start collecting, producing, submitting, and retrieving information digitally. You can currently manipulate digital information manually to suit different contexts, requirements, and exchanges. The next step is to enable automated information exchange, improve analysis capabilities, and encourage compliance checking.

In this emerging BIM environment, content needs to be

  • Open
  • Accessible
  • Structured
  • Understood
  • Controlled
  • Secure
  • Standardized

To achieve this, you need to have standards around data, processes, and terms. Consider:

  • Where is your information stored and backed up? At some point in the life of the asset, components will require replacement, upgrade, and maintenance. Knowing where to find the relevant information about the component at hand in the first place will save time and frustration.
  • Who owns the data? The specifics of this question will be covered within the contractual documents. Make sure everyone within the project team including the client is clear about where the ownerships rest.
  • What does the data represent — is the project sensitive or confidential? For example, making all information about a secure prison available wouldn’t be wise. It’s not unheard of for prisoners to get hold of sensitive building plans and tunnel their way out.
  • Who has access to the information? Although not all team members need access to every piece of information, they do need the right information to contribute to a successful collaborative environment.
  • How can you control access — can everyone manipulate it? Not everyone requires read-and-write access. In many cases, a read-only version of the data is adequate.
  • How do you record changes? Can you track who’s accessed the information? Having a robust audit trail helps you see who has accessed and changed information, which may have an effect on others.

tip The opposite of interoperable (or open) is proprietary (or closed). Consultants and construction professionals sometimes use the word native rather than proprietary. If the client asks for native BIM outputs, you need to include the original file format of your 3D information as well as the 2D deliverables that you’ve extracted from the model.

remember A proprietary data format that’s particular to a BIM software vendor can be quickly, reliably, and efficiently updated and adapted to suit a changing market. However, in the long term, proprietary data formats prove expensive to maintain and support. You want to be able to exchange data no matter which software it came from; this is the very ethos of BIM.

technicalstuff Standards for the open exchange of digital data aren’t a new thing. They started to emerge in the late 1970s, based on agreements between the leading CAD vendors and users. In fact, in the mid-1980s the International Standards Organization (ISO) technical committee (TC) 184 Automation systems and integration, subcommittee 184/SC 4 Industrial data, developed something called the Standard for Exchange of Product (STEP) model data. ISO created STEP (ISO 10303) because ISO thought that none of the existing formats, on their own, could support an open standard across multiple industries.

The problem was that STEP took a long time and was just too slow and unresponsive to meet the fast-paced needs of an upcoming market in the construction industry. You can imagine that motivation started to develop for something specific to the architecture, engineering, and construction (AEC) and facilities management (FM) industries, and a separate way of working began to evolve from the structure of STEP — open BIM and the use of Industry Foundation Classes (IFC).

tip You rarely hear anyone use the full term “Industry Foundation Classes.” BIM users commonly understand IFC without necessarily knowing what the acronym means, just like people say JPEG or Scuba (joint photographic experts group and self-contained underwater breathing apparatus, in case you’re interested …).

Heading in the right direction: open BIM

Open BIM is an initiative of buildingSMART and several leading software venders and is a universal approach not only to collaborative design but also to the delivery, operation, and maintenance of assets, which are based upon open standards and workflows.

Open BIM is more than just IFC. It’s a commitment to open standards and engagement with the whole team across the life of a project. As a schema, IFC itself doesn’t and can’t provide interoperability alone; rather, it relies on the software packages interfacing with it. The schema sometimes sparks debate and criticism for omitted data or lost geometry, but is this due to the IFC standard or how the IFC schema is implemented in a particular platform? Limitations currently exist around IFC’s ability to contain parametric information and manipulate the size of an object; however, IFC Release 4 (IFC4) and subsequent future releases look to address this.

Today, most modern BIM authoring platforms support the import and/or export of IFC model data. buildingSMART even issues official certification to applications that comply with consistent procedures. This flow of information is critical for collaboration and interoperability, because it allows use between different authoring and downstream applications — just think of when facilities managers or structural engineers use your information.

remember buildingSMART together with a number of leading software venders designed open BIM around some fundamental principles to encourage the benefits of interoperability:

  • No matter what software various teams are using, you should be able to participate and collaborate equally. buildingSMART calls this a “transparent, open workflow.”
  • The size of BIM platform vendors isn’t an issue, because both small and large software companies should be able participate with system-independent solutions. They use an interesting term for this, “best-of-breed” — aiming to promote competition and innovation but within a specific area.
  • The aim is that the construction industry can use a common language throughout client and commercial groups during the procurement process, making comparing and evaluating outputs, service levels, and the quality of data much easier no matter what tools the project team uses. Software versions and upgrades shouldn’t cause problems in your project either, because they all should be interoperable.
  • By using open formats and standardization, open BIM also hopes that the project team will be able to use the output project data for much longer. If asset lifecycle tools for facility management can use the same formats then this avoids duplication of input and the errors that could result.

remember In the past, interdisciplinary collaboration has required cross-referencing each other’s 2D drawings, requiring the project lead to manage coordination manually. Clearly, complex 3D elements need a more robust level of coordination, and so open BIM uses a concept of a reference model. One of the benefits here is that open BIM maintains your authorship.

If you’re a consultant or supplier, because all vendors can participate in open BIM even with competing products, you can join any open project workflow without giving up the BIM tools you’re used to. If all projects were open, then nobody should be excluded based on their software platforms. You can work with anyone without having to use the same platforms.

Steering the Industry toward IFC

This open approach is as much about a new mind-set as anything else, because it requires a strict regime of classifying elements correctly, in order that all actors can filter and exchange all information. Doing so is going to require champions of this way of working (like you, hopefully) to encourage and steer the industry towards interoperability.

In the following sections, we look at not only IFC, but also the other open standards within the buildingSMART family and why you should consider using them.

IFC: Building bridges

BIM is often a solution to a problem that you didn’t know you had. However, parts of BIM can seem like solutions to problems you don’t have, not in your particular business anyway. Understand what part your information plays in the wider project team and find methods that meet your specific importing, editing, and exporting needs. IFC is an industry-wide, open, and neutral data format that’s fast becoming the de-facto standard for rich data exchange.

Ask yourself the following questions about the data you’ll use:

  • What data are you receiving from others? What format is it in?
  • What data are you supplying in proprietary formats?
  • What other outputs and published documents do the client or the design team expect as project deliverables?
  • What file formats will the rest of the project team be using?

If the people you’re working with are all using the same software, then interoperability isn’t an issue. But in the vast majority of projects, someone will be using tools you don’t use. Especially on international projects that move beyond traditional architectural, engineering, and construction (AEC) and into civil engineering, you may see structural modeling or data analysis that you haven’t even encountered.

More commonly, projects may use two of the four big brands of BIM platforms: Autodesk, Trimble (including Tekla), Bentley, or Nemetschek (including Graphisoft), and you want to work together. That’s where IFC aims to build the bridge.

Meeting buildingSMART International

So who’s behind IFC? Well, the Industry Alliance for Interoperability was formed in 1994, involving 12 companies under the leadership of Autodesk and HOK, to prove the concept of interoperability and full information exchange between various software used across the building industry.

As part of an effort to develop a nonproprietary standard and take it global, the Alliance renamed itself the International Alliance for Interoperability in 1997 and it became a nonprofit group. The Alliance’s aim was to support the creation of open, international standards for data exchange, moving away from private and proprietary standards that were a bit locked down.

Renamed buildingSMART in 2005, the organization comprises chapters that are national membership organizations sharing the vision and goals of buildingSMART International. Chapters also develop and promote the use of open BIM in their countries through education and publications.

Investigating IFC

You may have seen people use the term IFC a lot when talking about interoperability and sharing information. In simple terms, IFC schemes provide the guidelines to determine what information is exchanged about an asset. Think of them as the rules for sharing the right data, a fundamental part of BIM.

IFC exists to help you collaborate by generating the rules, the model specification, as a standard. IFC schemes may include geometry, but aren’t limited to this. IFC presents your tangible building components, like walls and doors, and it allows you to link alphanumeric information (properties, quantities, and the classification structure) to your objects and maintain those relationships.

technicalstuff Since 1996, six principal schema releases have occurred: IFC1.5.1, IFC2.0, IFC2x, IFC2x2, IFC 2x3, and IFC4. (IFC4 is formally known as IFC 2x4.)

IFC4 is now registered with ISO as an official International Standard (ISO 16739:2013). buildingSMART hopes that software vendor implementation will increase. For further information on currently certified software and the software certification scheme, see the buildingSMART website (www.buildingsmart.com).

Supporting buildingSMART standards

Five basic standards and supporting frameworks overseen by buildingSMART surround open BIM and interoperability. They are

  • Industry Foundation Classes (IFC)
  • Information Delivery Manual (IDM)
  • International Framework for Dictionaries (IFD)
  • BIM Collaboration Format (BCF)
  • Model View Definition (MVD)

The previous section discusses IFC, and the following sections examine the other four in more detail.

The process standard — IDM

When you think about construction projects you’ve been involved in, try to recall how many various parties the client brought together. Was it clear what information each project team member required at what stage? How did the information manager communicate it? Did any problems occur because you didn’t receive the right data or the right formats?

IDMs specify communication and data exchange requirements during a project’s lifecycle. The IDM standard (ISO 29481–1:2010) sets out the method for capturing the process describing who, what, and when. Who needs to provide data, what do they need to provide, and at what points in the project?

The terminology standard — IFD

Have you worked on many international projects? Did language and terminology differences cause problems between offices or suppliers? The IFD standard (ISO 12006–3:2007) aims to enable models and systems used on projects to be language independent. In other words, it doesn’t matter if a faucet is called a faucet in the United States, in the UK it’s a tap, and in other languages it’s a Wasserhahn or a robinet, everyone is talking about the same object.

So buildingSMART manages something called the Data Dictionary (bSDD) based on the IFD standard, as a reference library to allow the construction industry to share and compare consistent product information, irrelevant of its origin. It promotes the linkage and transfer of information in existing databases too.

The change coordination concept — BCF

How do you inform another team that something’s wrong with the model? Two of the large BIM vendors, Tekla Corporation and Solibri Inc., proposed the idea of an additional open standard that would allow comments and snapshots in the model to improve communication across project teams using different platforms. BCF tries to resolve the problems that arise when merging and importing data from multiple sources.

The schema basically splits comments (from one team to another about issues in the model like clashes and design errors) from the model itself and allows another party to reopen just the references to precise locations in the model and not the entire BIM. buildingSMART agreed that this idea was worth adopting. At the time of writing this book, BCF is in the process of becoming a fully fledged buildingSMART specification.

The process translation concept — MVD

For a particular piece of work, how much of an entire information model are you going to require? In the same way as you used to generate just the drawings needed in 2D to explain the project, you can just select model views or portions of the BIM. In order to satisfy the varied information exchange requirements of the AEC industry, MVDs predefine the amount of the model required to support a specific stage of the project. buildingSMART calls these subsets of the model, and the MVD indicates what information is required.

The receiving party probably doesn’t require the full BIM, so by appropriately classifying elements using IFC classification headings, party A sends only the relevant elements and information to party B. For example, a mapping of the FM basic handover MVD, which includes operational information, is a COBie spreadsheet (which we explain in more detail later in this chapter). Other MDVs for IFC 2x3 include the coordination view and the structural analysis view.

Reviewing the Key Standards

Standards are important to you because they set out the framework for a BIM process and the guiding principles that you should follow. In the following sections, we discuss more about the BS and PAS 1192 documents and their main highlights you should know.

Developing and updating standards

You may work with standards on a regular basis in your daily work, and sometimes you receive notification that an update to the standard is available. As the industry evolves and changes, the construction industry needs to review standards documents to reflect current practice and future direction.

To do these reviews, the standards organisations like ISO and BSI set up committees of industry experts. The B/555 Committee is responsible for standards within construction design, modeling, and data exchange. B/555 sets out within its roadmap the maturity sequence that the standards will go through from Level 0 to Level 3 BIM, in accordance with the Bew-Richards BIM maturity model (refer to Chapter 9 for more information).

Analyzing PAS 1192

In the UK, the PAS plays a fundamental role in supporting the objectives of Level 2 BIM. It not only specifies the requirements for achieving it, but it also sets out the framework for collaborative working on BIM-enabled projects and provides specific guidance for the information management requirements associated with projects delivered using BIM.

PAS 1192 parts 2 and 3 together with its older sister standard BS 1192:2007 and now younger brother BS 1192:4 are the only tried and tested standards that support the UK Construction BIM Strategy to achieve Level 2 compliance and the desired reduction in CAPEX outturn cost. In the following sections you get to know them personally and what part each plays within the BIM process.

Taking away from BS 1192

When the industry moved from paper and pens into CAD software, BS 1192 (first published in 1998) provided a guide for the structuring and exchange of CAD data.

The standard was revised in 2007 and given a new title: Collaborative Production of Architectural Engineering and Construction Information. The revision put more emphasis on collaboration so that the construction industry would effectively reuse data. It promoted the avoidance of wasteful activities such as

  • Waiting and searching for information
  • Overproducing information with no defined use
  • Overprocessing information simply because technology allowed it
  • Reducing defects caused by poor coordination and resulting in rework

PAS 1192-2

The need to understand future use of information and what happens farther along the supply chain led to the creation of PAS 1192-2:2013, “Specification for information management for the capital/delivery phase of construction projects using building information modelling.” As the name implies, the document focuses on BIM in the delivery phase of projects.

technicalstuff A PAS document is a Publicly Available Specification, which is based on the principles of British Standards but proposed for adoption by an industry very quickly. A full British Standard would need all stakeholders to reach a consensus on its detail, but a PAS can get an entire sector of industry working to the same code of practice, rather than everyone trying to document their own processes and share them informally.

The benefit of using the PAS process is that a new industry standard that helps with a specific market need can be developed and released to the construction industry in a very short space of time. PAS 1192-2 was sponsored by the Construction Industry Council and is free to download.

BS 1192 is still at the core of PAS 1192-2:2013, and both supports and underpins the means of achieving Level 2 BIM compliance.

BIM: A standard framework and guide to BS 1192

To accompany the PAS standard, a helpful guide document covers the processes required for public project delivery, which the UK government has set as the initial target sector. It’s one of a number of documents supporting the government’s strategic objectives. These include

  • BIM protocol
  • Employer’s information requirements (EIR)
  • Construction Operations Building information exchange (COBie)
  • A digital, cross-industry plan of work
  • A digital, unified classification for the construction industry

For more information on the Level 2 BIM suite of supporting documents, flip to Chapter 8, where we explain these standards and documents in more detail.

PAS 1192-3

PAS 1192-3 is officially titled, “Specification for information management for the operational phase of construction projects using building information modelling.” They sure don’t make these names short!

Whereas PAS 1192-2 focuses on the delivery phase, Part 3 moves on to the operational phase; in other words, how the project team transfers data to the owners and operators of assets and buildings when they’re in use. One of the most interesting aspects is how the asset management team then transfers information from the design and construction model to an existing enterprise system.

Two terms we mention we introduced in Chapter 1: we use project information model (PIM) and asset information model (AIM) here to separate the information model in the delivery phase from the operations phase. AIMs can also represent an existing building or project.

We can describe PAS 1192-3 as a partner document to PAS 1192-2. Part 2 has a clear sequence, whereas Part 3 describes events in the lifecycle of an asset that could happen in any order between the point of handover and eventual discard or demolition of the asset.

To use PAS 1192-3, you transfer information to lots of different stakeholders in the built environment. PAS 1192-3 focuses on the operations and maintenance of assets, so it’s intended for asset managers and owners. It makes a clear distinction between asset management and facilities management and the terms used. PAS 1192-3 uses the term asset to refer to concrete physical resources.

Some of the information received for the AIM is likely to come directly from computer-aided facilities management (CAFM) systems, including tracking of repair items and the causes of asset faults.

tip If you’re involved in asset management or interested in the operations phase of assets and buildings, then you’ll want to check out ISO 55000 (replacing the former PAS 55 documents). This series of international standards provides the international standard for whole lifecycle physical asset management.

BS 1192-4

The Construction Industry Council (CIC), on behalf of the UK BIM Task Group, sponsored the development of BS 1192-4, making it available as a free download. BS 1192-4 is a code of practice rather than a specification standard. A specification refers to absolute requirements that must be followed to achieve a specific outcome, via actions that are considered to be aligned with current accepted good practice. A code of practice means that the document recommends good practice and guidance with a degree of flexibility that is less rigorous than a specification but also offers reliable benchmarks.

BS 1192-4 replaces another schema called COBie-UK-2012 and is intended to assist the procurement and maintenance of assets, making it relevant for portfolio and facility managers to specify their expectations. For the design team and others producing information, it helps the preparation of concise, unambiguous, and accessible information. It defines the methodology for the transfer between parties of structured information relating to facilities, including buildings and infrastructure, and draws on experience gained on a number of UK government early-adoption BIM projects, such as Cookham Wood Prison.

You can find more information about COBie in the next section.

Coordinating Information

Standardized information is at the heart of BIM and especially at the heart of the UK BIM strategy. The suite of documents that defines Level 2 BIM requirements is built around that principle. Regardless of what software you are using or level of BIM maturity, a simple mechanism for data transfer is required. That mechanism is COBie, which acts as a bus to take information from one place to another. The next sections look at COBie in further detail, including what it is and what it does.

Providing the framework for data exchange

Originally developed by Bill East of the United States Army Corps of Engineers, COBie focuses on information rather than geometry and is described by the UK BIM Task Group as being “simple enough to be transmitted using a spreadsheet.”

COBie allows the project team to organize, document, and share information about assets in a standardized way. Simply, COBie allows the project team to capture the important data about a project in a really clear format, so that facility management and owner-operators can reuse it.

The spreadsheet format allows for high interoperability, and your COBie output could contain product manufacturer data, warranties, and equipment schedules.

Working with COBie

The purpose of COBie is to capture critical information for owners and operators to assist with the management of their assets. BS 1192-4 states that the “process of exchanging COBie deliverable should be integral to the whole facility lifecycle to maximise the benefit and efficiency of the employer-side pull for information.”

With the UK’s 2016 Level 2 BIM mandated deadline date fast approaching, the government has promoted COBie as the recommended open standard data format.

technicalstuff COBie is a subset of the BS ISO 16739 IFC, documented as a buildingSMART MVD, which includes operational information. The 2014 version of BS 1192-4 documents best practice recommendations for the implementation of COBie. (To use its full title, “Collaborative production of information Part 4: Fulfilling employer’s information exchange requirements using COBie — Code of practice.”)

In association with the open BIM network, NBS tested whether the buildingSMART IFC file format was capable of supporting the creation of COBie datasets. It did this by running a trial with the help of a number of principal UK contractors. The resulting IFC/COBie Report 2012 is available to download from www.thenbs.com.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
13.58.121.8