J. Abernethy, A. Agarwal, P. L. Barlett, and A. Rakhlin. A stochastic view of opti-
mal regret through minimax duality. In Proceedings of Annual Conference on
Learning Theory, Montreal, Quebec, 2009.
A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire. Algorithms for portfolio manage-
ment based on the newton method. In Proceedings of International Conference
on Machine Learning, Pittsburgh, PA, 9–16, 2006.
A. Agarwal, P. Bartlett, and M. Dama. Optimal allocation strategies for the dark pool
problem. In Proceedings of International Conference on Artificial Intelligence
and Statistics, Chia Laguna Resort, Sardinia, 9–16, 2010.
R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the
Eleventh International Conference on Data Engineering, Taipei, Taiwan, 3–14,
D.W.Aha. Case-based learning algorithms. In Proceedings of the DARPA Case-Based
Reasoning Workshop, 147–158, 1991.
D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine
Learning, 6(1):37–66, 1991.
K.Akcoglu, P. Drineas, and M.-Y. Kao. Fast universalization of investment strategies.
SIAM Journal on Computing, 34(1):1–22, 2005.
I. Aldridge. High-Frequency Trading: A Practical Guide to Algorithmic Strategies
and Trading Systems. Hoboken, NJ: Wiley, 2010.
P. Algoet. Universal schemes for prediction, gambling and portfolio selection. The
Annals of Probability, 20(2):901–941, 1992.
P. Algoet and T. Cover. Asymptotic optimality asymptotic equipartition properties of
log-optimum investments. Annals of Probability, 16:876–898, 1988.
P. H. Algoet. The strong law of large numbers for sequential decisions
under uncertainty. IEEE Transactions on Information Theory, 40:609–633,
R. F. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of
Risk, 12:61–63, 2000.
F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9:1179–1225, 2008.
T&F Cat #K23731 — K23731_A004 — page 193 — 9/26/2015 — 8:06
L. Bachelier. Théorie de la spéculation. Annales Scientifiques de l’École Normale
Supérieure, 3(17):21–86, 1900.
P. Baldi and P. Brunak. Bioinformatics: The Machine Learning Approach, 2nd
Edition. Cambridge, MA: MIT Press, 2001.
N. Barberis and R. Thaler. A survey of behavioural finance. In Handbook of the
Economics of Finance, G. M. Constantinides, M. Harris, and R. Stulz (eds.),
Elsevier, North Holland, Amsterdam, 1053–1128, 2003.
E. Bayraktar. Optimal trade execution in illiquid markets. Mathematical Finance,
21(4):681–701, 2011.
J. E. Beasley, N. Meade, and T. J. Chang. An evolutionary heuristic for the index
tracking problem. European Journal of Operational Research, 148(3):621–643,
C. Y. Belentepe. A Statistical View of Universal Portfolios. PhD thesis, University of
Pennsylvania, 2005.
D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time
series. In KDD Workshop, 359–370, 1994.
D. Bernoulli. Exposition of a new theory on the measurement of risk. Econometrica,
23:23–36, 1954.
D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial
Markets, 1(1):1–50, 1998.
J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. New York:
Springer, 1997.
A. Blum and A. Kalai. Universal portfolios with and without transaction costs.
Machine Learning, 35(3):193–205, 1999.
A. Blum and Y. Mansour. From external to internal regret. Journal of Machine
Learning Research, 8:1307–1324, 2007.
W. F. M. D. Bondt and R. Thaler. Does the stock market overreact? The Journal of
Finance, 40(3):793–805, 1985.
A. Borodin, R. El-Yaniv, and V. Gogan. Can we learn to beat the best stock. Journal
of Artificial Intelligence Research, 21:579–594, 2004.
S. Boyd and L. Vandenberghe. Convex Optimization. New York: Cambridge
University Press, 2004.
L. Breiman. The individual ergodic theorem of information theory. The Annals of
Mathematical Statistics, 31:809–811, 1957 (Correction version 1960).
L. Breiman. Investment policies for expanding businesses optimal in a long-run sense.
Naval Research Logistics Quarterly, 7(4):647–651, 1960.
L. Breiman. Optimal gambling systems for favorable games. Proceedings of the
Berkeley Symposium onMathematicalStatisticsandProbability,1:65–78,1961.
J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable
Markowitz portfolios. Proceedings of the National Academy of Sciences, 106
(30):12267–12272, 2009.
N. A. Canakgoz and J. E. Beasley. Mixed-integer programming approaches for index
tracking and enhanced indexation. European Journal of Operational Research,
196(1):384–399, 2009.
T&F Cat #K23731 — K23731_A004 — page 194 — 9/26/2015 — 8:06
A. Cañete, J. Constanzo, and L. Salinas. Kernel price pattern trading. Applied
Intelligence, 29(2):152–156, 2008.
L. J. Cao and F. E. H. Tay. Support vector machine with adaptive parameters in
financial time series forecasting. IEEE Transactions on Neural Networks, 14(6):
1506–1518, 2003.
N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. New York:
Cambridge University Press, 2006.
E. Chan. Quantitative Trading: How to Build Your OwnAlgorithmicTrading Business.
Hoboken, NJ: Wiley, 2008.
K. C. Chan. On the contrarian investment strategy. The Journal of Business, 61(2):
147–163, 1988.
L. K. C. Chan, N. Jegadeesh, and J. Lakonishok. Momentum strategies. The Journal
of Finance, 51(5):1681–1713, 1996.
K. Chaudhuri and Y. Wu. Mean reversion in stock prices: Evidence from emerging
markets. Managerial Finance, 29:22–37, 2003.
V. S. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods.
New York: Wiley, 1998.
V. K. Chopra and W. T. Ziemba. The effect of errors in means, variances, and covari-
ances on optimal portfolio choice. The Journal of Portfolio Management, 19:
6–11, 1993.
T. F. Coleman, Y. Li, and J. Henniger. Minimizing tracking error while restricting
the number of assets. Journal of Risk, 8:33–56, 2006.
J. Conrad and G. Kaul. An anatomy of trading strategies. Review of Financial Studies,
11(3):489–519, 1998.
R. Cont. Empirical properties of asset returns: stylized facts and statistical issues.
Quantitative Finance, 1(2):223–236, 2001.
P. Cootner. The Random Character of Stock Market Prices. Cambridge, MA:
MIT Press, 1964.
T. Cover and E. Ordentlich. Universal portfolios with short sales and margin. In
Proceedings of Annual IEEE International Symposium on Information Theory,
Cambridge, MA, 174, 1998.
T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.
T. M. Cover. Universal data compression and portfolio selection. In Proceedings of
Annual IEEE Symposium on Foundations of Computer Science, Burlington, VT,
534–538, 1996.
T. M. Cover and D. H. Gluss. Empirical Bayes stock market portfolios. Advances in
Applied Mathematics, 7(2):170–181, 1986.
T. M. Cover and E. Ordentlich. Universal portfolios with side information. IEEE
Transactions on Information Theory, 42(2):348–363, 1996.
T. M. Cover and J. A. Thomas. Elements of Information Theory. New York: Wiley,
K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive–
aggressive algorithms. Journal of Machine Learning Research, 7:551–585,
T&F Cat #K23731 — K23731_A004 — page 195 — 9/26/2015 — 8:06
K. Crammer, M. Dredze, andA. Kulesza. Multi-class confidence weighted algorithms.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Singapore, 496–504, 2009.
K. Crammer, M. Dredze, and F. Pereira. Exact convex confidence-weighted learn-
ing. In Proceedings of Annual Conference on Neural Information Processing
Systems, Vancouver, 345–352, 2008.
G.Creamer. Using BoostingforAutomated Planning andTrading Systems. PhDthesis,
Columbia University, 2007.
G. Creamer. Model calibration and automated trading agent for euro futures.
Quantitative Finance, 12(4):531–545, 2012.
G. Creamer and S. Stolfo. A link mining algorithm for earnings forecast and trading.
Data Mining and Knowledge Discovery, 18(3):419–445, 2009.
G. G. Creamer and Y. Freund. A boosting approach for automated trading. Journal
of Trading, 2(3):84–96, 2007.
G. G. Creamer and Y. Freund. Automated trading with boosting and expert weighting.
Quantitative Finance, 10(4):401–420, 2010.
J. E. Cross and A. R. Barron. Efficient universal portfolios for past-dependent target
classes. Mathematical Finance, 13(2):245–276, 2003.
P. Das and A. Banerjee. Meta optimization and its application to portfolio selection.
In Proceedings of International Conference on Knowledge Discovery and Data
Mining, San Diego, 1163–1171, 2011.
V. DeMiguel, L. Garlappi, and R. Uppal. Optimal versus naive diversification: How
inefficient is the 1 n portfolio strategy? Review of Financial Studies, 22(5):
1915–1953, 2009.
M. A. H. Dempster, T. W. Payne, Y. Romahi, and G. W. P. Thompson. Computational
learning techniques for intraday FX trading using popular technical indicators.
IEEE Transactions on Neural Networks, 12(4):744–754, 2001.
E. Dimson. Stock Market Anomalies. Cambridge, MA: Cambridge University Press,
M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification.
In Proceedings of International Conference on Machine Learning, Helsinki,
Finland, 246–271, 2008.
X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thornton Jr. Migration motif: A spatial-
temporal pattern mining approach for financial markets. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Paris, France, 1135–1144, 2009.
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto
the l
-ball for learning in high dimensions. In Proceedings of International
Conference on Machine Learning, Helsinki, Finland, 272–279, 2008.
M. Durbin. All About High-Frequency Trading. New York: McGraw-Hill, 2010.
R. El-Yaniv. Competitive solutions for online financial problems. ACM Computing
Surveys, 30:28–69, 1998.
J. Exley, S. Mehta, and A. Smith. Mean Reversion. Technical report, Fac-
ulty & Institute of Actuaries, Finance and Investment Conference, Brussels,
T&F Cat #K23731 — K23731_A004 — page 196 — 9/26/2015 — 8:06
E. Fagiuoli, F. Stella, and A. Ventura. Constant rebalanced portfolios and side-
information. Quantitative Finance, 7(2):161–173, 2007.
E. F. Fama and K. R. French. The cross-section of expected stock returns. The Journal
of Finance, 47(2):427–465, 1992.
M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences.
IEEE Transactions on Information Theory, 38(4):1258–1270, 1992.
M. Finkelstein and R. Whitley. Optimal strategies for repeated games. Advances in
Applied Probability, 13(2):415–428, 1981.
T. Foucault, O. Kadan, and E. Kandel. Limit order book as a market for liquidity.
Review of Financial Studies, 18(4):1171–1217, 2005.
W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7(3):397–416, 1998.
A. A. Gaivoronski and F. Stella. Stochastic nonstationary optimization for finding
universal portfolios. Annals of Operations Research, 100:165–188, 2000.
A. A. Gaivoronski and F. Stella. On-line portfolio selection using stochastic program-
ming. Journal of Economic Dynamics and Control, 27(6):1013–1043, 2003.
K. Ganchev, Y. Nevmyvaka, M. Kearns, and J. W. Vaughan. Censored explo-
ration and the dark pool problem. Communications of the ACM, 53(5):99–107,
M. Gilli and E. Këllezi. The threshold accepting heuristic for index tracking. In
Financial Engineering, E-Commerce, and Supply Chain, P. M. Pardalos and
V. Tsitsiringos (eds.), Boston: Kluwer Academic, 1–18, 2002.
G. H. Golub and C. F. Van Loan. Matrix Computations. Baltimore, MD: Johns
Hopkins University Press, 1996.
T. F. Gosnell, A. J. Keown, and J. M. Pinkerton. The intraday speed of stock
price adjustment to major dividend changes: Bid-ask bounce and order flow
imbalances. Journal of Banking & Finance, 20(2):247–266, 1996.
R. Grinold and R. Kahn. Active Portfolio Management: A Quantitative Approach for
Producing Superior Returns and Controlling Risk. New York: McGraw-Hill,
L. Györfi, G. Lugosi, and F. Udina. Nonparametric kernel-based sequential invest-
ment strategies. Mathematical Finance, 16(2):337–357, 2006.
L. Györfi, G. Ottucsák, and H. Walk. Machine Learning for Financial Engineering.
Singapore: World Scientific, 2012.
L. Györfi, A. Urbán, and I. Vajda. Kernel-based semi-log-optimal empirical portfolio
selection strategies. International Journal of Theoretical and Applied Finance,
10(3):505–516, 2007.
L. Györfi, F. Udina, and H. Walk. Nonparametric nearest neighbor based empirical
portfolio selection strategies. Statistics and Decisions, 26(2):145–157, 2008.
L. Györfi and D. Schäfer. Nonparametric prediction. In Advances in Learning Theory:
Methods, Models and Applications, J. Suykens, G. Horvath, and S. Basu (eds.),
The Netherlands: IOS Press, Amsterdam, 339–354, 2003.
L. Györfi and I. Vajda. Growth optimal investment with transaction costs. In Proceed-
ings of the International Conference on Algorithmic Learning Theory, Budapest,
Hungary, 108–122, 2008.
T&F Cat #K23731 — K23731_A004 — page 197 — 9/26/2015 — 8:06
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.