Selecting meaningful features

If we notice that a model performs much better on a training dataset than on the test dataset, this observation is a strong indicator for overfitting. Overfitting means that model fits the parameters too closely to the particular observations in the training dataset but does not generalize well to real data—we say that the model has a high variance. A reason for overfitting is that our model is too complex for the given training data and common solutions to reduce the generalization error are listed as follows:

  • Collect more training data
  • Introduce a penalty for complexity via regularization
  • Choose a simpler model with fewer parameters
  • Reduce the dimensionality of the data

Collecting more training data is often not applicable. In the next chapter, we will learn about a useful technique to check whether more training data is helpful at all. In the following sections and subsections, we will look at common ways to reduce overfitting by regularization and dimensionality reduction via feature selection.

Sparse solutions with L1 regularization

We recall from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that L2 regularization is one approach to reduce the complexity of a model by penalizing large individual weights, where we defined the L2 norm of our weight vector w as follows:

Sparse solutions with L1 regularization

Another approach to reduce the model complexity is the related L1 regularization:

Sparse solutions with L1 regularization

Here, we simply replaced the square of the weights by the sum of the absolute values of the weights. In contrast to L2 regularization, L1 regularization yields sparse feature vectors; most feature weights will be zero. Sparsity can be useful in practice if we have a high-dimensional dataset with many features that are irrelevant, especially cases where we have more irrelevant dimensions than samples. In this sense, L1 regularization can be understood as a technique for feature selection.

To better understand how L1 regularization encourages sparsity, let's take a step back and take a look at a geometrical interpretation of regularization. Let's plot the contours of a convex cost function for two weight coefficients Sparse solutions with L1 regularization and Sparse solutions with L1 regularization. Here, we will consider the sum of the squared errors (SSE) cost function that we used for Adaline in Chapter 2, Training Machine Learning Algorithms for Classification, since it is symmetrical and easier to draw than the cost function of logistic regression; however, the same concepts apply to the latter. Remember that our goal is to find the combination of weight coefficients that minimize the cost function for the training data, as shown in the following figure (the point in the middle of the ellipses):

Sparse solutions with L1 regularization

Now, we can think of regularization as adding a penalty term to the cost function to encourage smaller weights; or, in other words, we penalize large weights.

Thus, by increasing the regularization strength via the regularization parameter Sparse solutions with L1 regularization, we shrink the weights towards zero and decrease the dependence of our model on the training data. Let's illustrate this concept in the following figure for the L2 penalty term.

Sparse solutions with L1 regularization

The quadratic L2 regularization term is represented by the shaded ball. Here, our weight coefficients cannot exceed our regularization budget—the combination of the weight coefficients cannot fall outside the shaded area. On the other hand, we still want to minimize the cost function. Under the penalty constraint, our best effort is to choose the point where the L2 ball intersects with the contours of the unpenalized cost function. The larger the value of the regularization parameter Sparse solutions with L1 regularization gets, the faster the penalized cost function grows, which leads to a narrower L2 ball. For example, if we increase the regularization parameter towards infinity, the weight coefficients will become effectively zero, denoted by the center of the L2 ball. To summarize the main message of the example: our goal is to minimize the sum of the unpenalized cost function plus the penalty term, which can be understood as adding bias and preferring a simpler model to reduce the variance in the absence of sufficient training data to fit the model.

Now let's discuss L1 regularization and sparsity. The main concept behind L1 regularization is similar to what we have discussed here. However, since the L1 penalty is the sum of the absolute weight coefficients (remember that the L2 term is quadratic), we can represent it as a diamond shape budget, as shown in the following figure:

Sparse solutions with L1 regularization

In the preceding figure, we can see that the contour of the cost function touches the L1 diamond at Sparse solutions with L1 regularization. Since the contours of an L1 regularized system are sharp, it is more likely that the optimum—that is, the intersection between the ellipses of the cost function and the boundary of the L1 diamond—is located on the axes, which encourages sparsity. The mathematical details of why L1 regularization can lead to sparse solutions are beyond the scope of this book. If you are interested, an excellent section on L2 versus L1 regularization can be found in section 3.4 of The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer.

For regularized models in scikit-learn that support L1 regularization, we can simply set the penalty parameter to 'l1' to yield the sparse solution:

>>> from sklearn.linear_model import LogisticRegression
>>> LogisticRegression(penalty='l1')

Applied to the standardized Wine data, the L1 regularized logistic regression would yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting of our model. When we access the intercept terms via the lr.intercept_ attribute, we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the One-vs-Rest (OvR) approach by default where the first intercept belongs to the model that fits class 1 versus class 2 and 3; the second value is the intercept of the model that fits class 2 versus class 1 and 3; and the third value is the intercept of the model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[ 0.280, 0.000, 0.000, -0.0282, 0.000,
         0.000, 0.710, 0.000, 0.000, 0.000,
         0.000, 0.000, 1.236],
       [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
         0.000, 0.000, 0.000, 0.000, -0.927,
         0.060, 0.000, -0.371],
       [ 0.000, 0.061, 0.000, 0.000, 0.000,
         0.000, -0.637, 0.000, 0.000, 0.499,
        -0.358, -0.570, 0.000
       ]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of weight coefficients, one weight vector for each class. Each row consists of 13 weights where each weight is multiplied by the respective feature in the 13-dimensional Wine dataset to calculate the net input:

Sparse solutions with L1 regularization

We notice that the weight vectors are sparse, which means that they only have a few non-zero entries. As a result of the L1 regularization, which serves as a method for feature selection, we just trained a model that is robust to the potentially irrelevant features in this dataset.

Lastly, let's plot the regularization path, which is the weight coefficients of the different features for different regularization strengths:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = plt.subplot(111)   
>>> colors = ['blue', 'green', 'red', 'cyan', 
...          'magenta', 'yellow', 'black', 
...          'pink', 'lightgreen', 'lightblue', 
...          'gray', 'indigo', 'orange']
>>> weights, params = [], []
>>> for c in np.arange(-4, 6):
...     lr = LogisticRegression(penalty='l1', 
...                             C=10**c, 
...                             random_state=0)
...     lr.fit(X_train_std, y_train)
...     weights.append(lr.coef_[1])
...     params.append(10**c)
>>> weights = np.array(weights)
>>> for column, color in zip(range(weights.shape[1]), colors):
...     plt.plot(params, weights[:, column],
...              label=df_wine.columns[column+1],
...              color=color)
>>> plt.axhline(0, color='black', linestyle='--', linewidth=3)
>>> plt.xlim([10**(-5), 10**5])
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.xscale('log')
>>> plt.legend(loc='upper left')
>>> ax.legend(loc='upper center', 
...           bbox_to_anchor=(1.38, 1.03),
...           ncol=1, fancybox=True)
>>> plt.show()

The resulting plot provides us with further insights about the behavior of L1 regularization. As we can see, all features weights will be zero if we penalize the model with a strong regularization parameter (Sparse solutions with L1 regularization); Sparse solutions with L1 regularization is the inverse of the regularization parameter Sparse solutions with L1 regularization.

Sparse solutions with L1 regularization

Sequential feature selection algorithms

An alternative way to reduce the complexity of the model and avoid overfitting is dimensionality reduction via feature selection, which is especially useful for unregularized models. There are two main categories of dimensionality reduction techniques: feature selection and feature extraction. Using feature selection, we select a subset of the original features. In feature extraction, we derive information from the feature set to construct a new feature subspace. In this section, we will take a look at a classic family of feature selection algorithms. In the next chapter, Chapter 5, Compressing Data via Dimensionality Reduction, we will learn about different feature extraction techniques to compress a dataset onto a lower dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms that are used to reduce an initial d-dimensional feature space to a k-dimensional feature subspace where k < d. The motivation behind feature selection algorithms is to automatically select a subset of features that are most relevant to the problem to improve computational efficiency or reduce the generalization error of the model by removing irrelevant features or noise, which can be useful for algorithms that don't support regularization. A classic sequential feature selection algorithm is Sequential Backward Selection (SBS), which aims to reduce the dimensionality of the initial feature subspace with a minimum decay in performance of the classifier to improve upon computational efficiency. In certain cases, SBS can even improve the predictive power of the model if a model suffers from overfitting.

Note

Greedy algorithms make locally optimal choices at each stage of a combinatorial search problem and generally yield a suboptimal solution to the problem in contrast to exhaustive search algorithms, which evaluate all possible combinations and are guaranteed to find the optimal solution. However, in practice, an exhaustive search is often computationally not feasible, whereas greedy algorithms allow for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features from the full feature subset until the new feature subspace contains the desired number of features. In order to determine which feature is to be removed at each stage, we need to define criterion function Sequential feature selection algorithms that we want to minimize. The criterion calculated by the criterion function can simply be the difference in performance of the classifier after and before the removal of a particular feature. Then the feature to be removed at each stage can simply be defined as the feature that maximizes this criterion; or, in more intuitive terms, at each stage we eliminate the feature that causes the least performance loss after removal. Based on the preceding definition of SBS, we can outline the algorithm in 4 simple steps:

  1. Initialize the algorithm with Sequential feature selection algorithms, where d is the dimensionality of the full feature space Sequential feature selection algorithms.
  2. Determine the feature Sequential feature selection algorithms that maximizes the criterion Sequential feature selection algorithms where Sequential feature selection algorithms.
  3. Remove the feature Sequential feature selection algorithms from the feature set: Sequential feature selection algorithms.
  4. Terminate if k equals the number of desired features, if not, go to step 2.

    Note

    You can find a detailed evaluation of several sequential feature algorithms in Comparative Study of Techniques for Large Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for large-scale feature selection. Pattern Recognition in Practice IV, pages 403–413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

class SBS():
    def __init__(self, estimator, k_features, 
        scoring=accuracy_score,
        test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
        self.random_state = random_state

    def fit(self, X, y):
        X_train, X_test, y_train, y_test = 
                train_test_split(X, y, test_size=self.test_size, 
                                 random_state=self.random_state)

        dim = X_train.shape[1]
        self.indices_ = tuple(range(dim))
        self.subsets_ = [self.indices_]
        score = self._calc_score(X_train, y_train, 
                                 X_test, y_test, self.indices_)
        self.scores_ = [score]

        while dim > self.k_features:
            scores = []
            subsets = []

            for p in combinations(self.indices_, r=dim-1):
                score = self._calc_score(X_train, y_train, 
                                         X_test, y_test, p)
                scores.append(score)
                subsets.append(p)

            best = np.argmax(scores)
            self.indices_ = subsets[best]
            self.subsets_.append(self.indices_)
            dim -= 1

            self.scores_.append(scores[best])
        self.k_score_ = self.scores_[-1]

        return self

    def transform(self, X):
        return X[:, self.indices_]

    def _calc_score(self, X_train, y_train, 
                          X_test, y_test, indices):
        self.estimator.fit(X_train[:, indices], y_train)
        y_pred = self.estimator.predict(X_test[:, indices])
        score = self.scoring(y_test, y_pred)
        return score

In the preceding implementation, we defined the k_features parameter to specify the desired number of features we want to return. By default, we use the accuracy_score from scikit-learn to evaluate the performance of a model and estimator for classification on the feature subsets. Inside the while loop of the fit method, the feature subsets created by the itertools.combination function are evaluated and reduced until the feature subset has the desired dimensionality. In each iteration, the accuracy score of the best subset is collected in a list self.scores_ based on the internally created test dataset X_test. We will use those scores later to evaluate the results. The column indices of the final feature subset are assigned to self.indices_, which we can use via the transform method to return a new data array with the selected feature columns. Note that, instead of calculating the criterion explicitly inside the fit method, we simply removed the feature that is not contained in the best performing feature subset.

Now, let's see our SBS implementation in action using the KNN classifier from scikit-learn:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> import matplotlib.pyplot as plt
>>> knn = KNeighborsClassifier(n_neighbors=2)
>>> sbs = SBS(knn, k_features=1)
>>> sbs.fit(X_train_std, y_train)

Although our SBS implementation already splits the dataset into a test and training dataset inside the fit function, we still fed the training dataset X_train to the algorithm. The SBS fit method will then create new training-subsets for testing (validation) and training, which is why this test set is also called validation dataset. This approach is necessary to prevent our original test set becoming part of the training data.

Remember that our SBS algorithm collects the scores of the best feature subset at each stage, so let's move on to the more exciting part of our implementation and plot the classification accuracy of the KNN classifier that was calculated on the validation dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets_]
>>> plt.plot(k_feat, sbs.scores_, marker='o')
>>> plt.ylim([0.7, 1.1])
>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Number of features')
>>> plt.grid()
>>> plt.show()

As we can see in the following plot, the accuracy of the KNN classifier improved on the validation dataset as we reduced the number of features, which is likely due to a decrease of the curse of dimensionality that we discussed in the context of the KNN algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Also, we can see in the following plot that the classifier achieved 100 percent accuracy for k={5, 6, 7, 8, 9, 10}:

Sequential feature selection algorithms

To satisfy our own curiosity, let's see what those five features are that yielded such a good performance on the validation dataset:

>>> k5 = list(sbs.subsets_[8])
>>> print(df_wine.columns[1:][k5])
Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue', 'Proline'], dtype='object')

Using the preceding code, we obtained the column indices of the 5-feature subset from the 9th position in the sbs.subsets_ attribute and returned the corresponding feature names from the column-index of the pandas Wine DataFrame.

Next let's evaluate the performance of the KNN classifier on the original test set:

>>> knn.fit(X_train_std, y_train)
>>> print('Training accuracy:', knn.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', knn.score(X_test_std, y_test))
Test accuracy: 0.944444444444

In the preceding code, we used the complete feature set and obtained ~98.4 percent accuracy on the training dataset. However, the accuracy on the test dataset was slightly lower (~94.4 percent), which is an indicator of a slight degree of overfitting. Now let's use the selected 5-feature subset and see how well KNN performs:

>>> knn.fit(X_train_std[:, k5], y_train)
>>> print('Training accuracy:', 
...        knn.score(X_train_std[:, k5], y_train))
Training accuracy: 0.959677419355
>>> print('Test accuracy:',
...        knn.score(X_test_std[:, k5], y_test))
Test accuracy: 0.962962962963

Using fewer than half of the original features in the Wine dataset, the prediction accuracy on the test set improved by almost 2 percent. Also, we reduced overfitting, which we can tell from the small gap between test (~96.3 percent) and training (~96.0 percent) accuracy.

Note

Feature selection algorithms in scikit-learn

There are many more feature selection algorithms available via scikit-learn. Those include recursive backward elimination based on feature weights, tree-based methods to select features by importance, and univariate statistical tests. A comprehensive discussion of the different feature selection methods is beyond the scope of this book, but a good summary with illustrative examples can be found at http://scikit-learn.org/stable/modules/feature_selection.html.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.138.67.27