So, in the previous recipe, we have built the body deforming Armature for the Gidiosaurus character.
However, the Gidiosaurus is an (almost) evolved and a civilized creature, and being also a warrior, it wears a metallic Armor; this armor will need to be later parented to the rig as well in order to be animated.
Some of the bones that we have already created will be perfect to skin the Armor object too, by assigning the right vertex group to the right mesh part (for example, the head vertex group for the Helm or the chest vertex group for the Breastplate). However, because the Armor is made also by different parts that cannot be simply driven by the already existing bones (for example, the belts, Vambraces, and especially Groinguard), some modification and/or addition to the rig must be done anyway.
Start from the previously saved Gidiosaurus_rig_from_scratch_01.blend
file:
Gidiosaurus_rig_from_scratch_02.blend
.Let's start by adding bones dedicated to the Armor:
Alternatively, for steps 6 and 7, select the forearm.L bone and then use Shift to select the vanbrace.L bone. Hence, press Shift + Ctrl + C to call the Add Constraint (with Targets) pop-up menu and select the Copy Rotation item. This will automatically add the Copy Rotation constraint to the vanbrace.L bone, with the first select bone (forearm.L) as a target; the other setting must be enabled and/or tweaked in the constraint subpanel instead.
The rig can now drive the vambraces and greaves; let's see the knee guards and Groinguard.
We couldn't directly use the forearm and calf bones to rig the vanbraces and greaves parts because being subdivided B-bones, they would curve these armor parts along the length as they actually do by deforming organic parts as the forearms and shins, and this would look awkward, as you can see in the following screenshot:
Instead, we just duplicated the bones, restored Segments and Ease In and Ease Out to default values, and assigned 2 bone constraints (note that, as already mentioned, the bones have a Bone Constraints panel of their own, which is different from the Object Constraints one).
The Copy Rotation constraint, as the name itself explains, copies the rotation in space of the target B-bone; the position inside the chain is granted because the duplicated bones, although not connected, are children of the same bones as the original ones.
The Inverse Kinematics constraint—in this case, is used simply to track the local y rotation of the hand bone in order to rotate correctly on its y axis— is necessary because the Copy Rotation constraint doesn't seem to read the local y rotation of a subdivided B-bone (besides the technical details, it makes sense because that's actually not a rotation in space):
The constraints assigned to the groinguard_ctrl bone are a cheap, but quite an effective, way to fake a rigid body simulation for the plate that—in actions, for example, a walk cycle—should interact by colliding with the Gidiosaurus thighs. The Locked Track constraints, targeted to the leg bones, automatically rotate the plate according to the thighs movements, and the Dumped Track constraints, targeted to the leg bones as well but with a low influence, add a swinging movement.
The groinguard bone, actually the one affecting the armor plate, is the child of the groinguard_ctrl bone, and so it inherits the constraint's movements but can be used to refine, tweak, or modify the final animation of the plate by hands:
The armor_ctrl bone is the bone controlling the armor's Breastplate; it's the child of the chest bone, so it inherits the rotation of the chest, but has four Transformation constraints.
By using as an input the rotation angle of the rotarmor.L and rotarmor.R bones (which are children themselves of the arm.L and arm.R bones), the constraints give to the Armor chest plate a slight rotation on the vertical axis and a lateral swinging, driven by the oscillations of the Gidiosaurus arms, and simulating of the character's shoulders colliding with the armor plate during the walk.
Also, the spaulders are, in turn, partially rotated by bones with the Copy Rotation constraints targeted to the arms, but with quite a low influence.
Although better appreciated in motion, the following screenshot will show you the effects as the arms rotate backward:
18.116.42.136