Appendix J
Diode/BJT/FET

J.1 Diode

The junction (depletion) and diffusion capacitances are

Schematic illustrating the piecewise linear current (PWL) approximation of the v–i characteristic curve of a diode (left) and circuit diagram of a PWL model of a diode consists of resistors labeled rf and Rr, etc. (right).

Figure J.1 Piecewise linear current (PWL) approximation of the vi characteristic curve of a diode and the corresponding model.

Symbol for Zener diode (a), graph illustrating the v-I characteristics of a Zener diode (b), and PWL model of a Zener diode consists of 2 ideal diodes, 2 resistors, anode, cathode, and 2 battery sources (c).

Figure J.2 Symbol, vi characteristic, and PWL model of a Zener diode.

Circuit diagrams illustrating high-frequency AC model of a forward-biased diode consists of capacitor labeled Cj + Cd, etc. (a) and high-frequency AC model of a reversed-biased diode consists of resistors, etc. (b).

Figure J.3 High‐frequency AC (small‐signal) model of a diode.

Table J.1 PSpice model parameters of diode.

SPICE name Model parameter Default value
IS Transport saturation current Is 10−14
RS Ohmic (series) resistance Rs 0 [Ω]
N Emission (ideality) coefficient η 1
CJO Zero‐bias junction capacitance Cj0 0
VJ PN junction (built‐in) potential ϕB 1 [V]
MJ PN grading coefficient m 0.5
TT Transit time τt 0 [s]
BV Reverse breakdown voltage VZ ∞ [V]
IBV Reverse breakdown current IZ 10−3

(J.1)equation

J.2 BJT (Bipolar Junction Transistor)

  • gm: transconductance (gain)
    (J.2)equation
    (J.3)equation
  • Cbe/Cbc: zero‐bias B‐E/B‐C junction capacitances
    (J.4)equation
  • Cbe0(CJE)/Cbc0(CJC): zero‐bias B‐E/B‐C junction capacitances
  • VBE,Q/VBC,Q: quiescent B‐E/B‐C voltages [V]
  • mbe(MJE)/mbc(MJC): B‐E/B‐C grading coefficient
  • ϕbe(VJE)/ϕbc(VJC): B‐E/B‐C built‐in potential
Circuit diagrams illustrating high-frequency small-signal model consists of resistors labeled rbc, rb, rbe, etc. (left) and low-frequency small-signal model consists of resistors labeled rb, rbe, etc. (right).

Figure J.4 Hybrid‐π small‐signal models of NPN‐BJT with or without frequency dependence.

Table J.2 PSpice model parameters of BJT.

SPICE name Model parameter Default value
BF Forward active current gain βF 100
BR Reverse active current gain βR 1
IS Transport saturation current Is 10−16
ISC B‐C leakage saturation current Isc 0
CJE B‐E zero‐bias junction (depletion) capacitance Cbe0 0
CJC B‐C zero‐bias junction (depletion) capacitance Cbc0 0
VJE B‐E built‐in potential ϕbe 0.75 [V]
VJC B‐C built‐in potential ϕbc 0.75 [V]
VAF Forward mode Early voltage ∞ [V]
VAR Reverse mode Early voltage ∞ [V]
NF Forward ideality factor (current emission coefficient) 1
NR Reverse ideality factor (current emission coefficient) 1
MJE B‐E capacitance exponent mbe 0.33
MJC B‐C capacitance exponent mbc 0.33
RB Base resistance rb 0 [Ω]
RE Emitter resistance re 0 [Ω]
RC Collector resistance rc 0 [Ω]

Table J.3 Characteristics of CE/CC/CB amplifiers (β = gmrbe = (IC,Q/VT)rbe).

CE CC CB
Ri RB||{rb+rbe+(β+1)RE1}(3.2.1) RB||{rb+rbe+(β+1)(RE||RL)}(3.2.5) images(3.2.9)
Ro RC||roRC(3.2.4) images(3.2.8) RC||ro1(3.2.12)
Av images(3.2.3) images(3.2.7) images(3.2.11)
Ai images(3.2.2) images images
(J.5c)equation

J.3 FET (Field Effect Transistor)

The body effect or substrate sensitivity[J-1] of the threshold voltage Vt is described by

(J.6)equation

The gate‐source and gate‐drain capacitances are modeled as voltage‐dependent capacitances:

Circuit diagrams illustrating high-frequency small-signal model consists of capacitors labeled Cgd, Cgs, and Cds, etc. (a) and low-frequency small-signal model consists of resistor labeled ro, etc. (b).

Figure J.5 Small‐signal models of FET.

Table J.4 PSpice model parameters of FET.

SPICE name Model parameter Default value
VTO Zero‐bias threshold voltage Vt0 0 [V]
KP Transconductance parameter Kp = μpCOX(W/L) 2 × 10−5 [A/V2]
GAMMA Bulk threshold parameter γ 0 [V1/2]
PHI Surface (bulk) potential ϕ 0.6 [V]
LAMBDA Channel length modulation parameter λ 0 [V−1]
PB Built‐in potential for the bulk (substrate) junction Vb 0.8 [V]
CGSO Gate‐source overlap capacitance per meter channel length Cgs0 0 [F/m]
CGDO Gate‐drain overlap capacitance per meter channel length Cgd0 0 [F/m]
CGBO Gate‐bulk overlap capacitance per meter channel length Cgb0 0 [F/m]
MJ Bulk junction bottom grading coefficient m 0.5

Table J.5 Circuit symbols and iv relationships of JFET and MOSFET.

FET type n‐Channel p‐Channel
JFET Enhancement MOSFET Depletion MOSFET JFET Enhancement MOSFET Depletion MOSFET
Circuit symbols Symbol of n-channel JFET. Symbol of n-channel enhancement MOSFET. Symbol of n-channel depletion MOSFET. Symbol of p-channel JFET. Symbol of p-channel enhancement MOSFET. Symbol of p-channel depletion MOSFET.
Thresholdvoltage Vt + +
Conductionconstant Kp images Process conduction parameter
images
images Process conduction parameter
images
Turn‐on condition vGS > Vt and vDS > 0 vSG >  ∣Vt ∣and vSD > 0
Triode region (Ohmic mode) vGD = vG − vD > Vt > 0 vDG = vD − vG >  ∣Vt
images
with overdrive voltage vOV = vGS − Vt
images(4.1.13a)
with overdrive voltage vOV = vSG −  ∣Vt
Saturation region (Pinch‐off mode) vGD = vG − vD ≤ Vt vDG = vD − vG ≤  ∣Vt
iD ≅ Kp(vGS − Vt)2/2 iD ≅ Kp(vSG −  ∣Vt∣)2/2(4.1.13b)
equation

where Cgs0/Cgd0: zero‐bias gate‐source/gate‐drain junction capacitances, respectively, VGS,Q/VGD,Q [V]: quiescent gate‐source/gate‐drain voltages, respectively, m(MJ): gate pn grading coefficient (SPICE default = 0.5), and Vb(PB): gate junction (barrier) potential, typically 0.6 V (SPICE default = 1 V).

Table J.6 Characteristics of CS/CD/CG amplifiers.

CS (common source) CD (common drain) – source follower CG (common gate)
Ri R1R2 (4.2.5) R1R2 (4.2.10) images (4.2.15)
images
Ro RD‖{ro + (1 + gmro)RS1}
images (4.2.7)
images(4.2.12) RD‖{ro + (1 + gmro)(RsRS)}
images (4.2.17)

Av
images
images (4.2.6)
images(4.2.11)
images
images (4.2.16)
images
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.31.163