Preface to the Fourth Edition

Introduction

This text is a development of classroom notes prepared in connection with advanced undergraduate and first-year graduate courses in elasticity and the mechanics of solids. It is designed to satisfy the requirements of courses subsequent to an elementary treatment of the strength of materials. In addition to its applicability to aeronautical, civil, and mechanical engineering and to engineering mechanics curricula, the authors have endeavored to make the text useful to practicing engineers. Emphasis is given to numerical techniques (which lend themselves to computerization) in the solution of problems resisting analytical treatment. The stress placed on numerical solutions is not intended to deny the value of classical analysis, which is given a rather full treatment. It instead attempts to fill what the authors believe to be a void in the world of textbooks.

An effort has been made to present a balance between the theory necessary to gain insight into the mechanics, but which can often offer no more than crude approximations to real problems because of simplifications related to geometry and conditions of loading, and numerical solutions, which are so useful in presenting stress analysis in a more realistic setting. The authors have thus attempted to emphasize those aspects of theory and application that prepare a student for more advanced study or for professional practice in design and analysis.

The theory of elasticity plays three important roles in the text: It provides exact solutions where the configurations of loading and boundary are relatively simple; it provides a check on the limitations of the mechanics of materials approach; and it serves as the basis of approximate solutions employing numerical analysis.

To make the text as clear as possible, attention is given to the presentation of the fundamentals of the mechanics of materials. The physical significance of the solutions and practical applications are given emphasis. The authors have made a special effort to illustrate important principles and applications with numerical examples. Consistent with announced national policy, problems are included in the text in which the physical quantities are expressed in the International System of Units (SI). All important quantities are defined in both SI and U.S. Customary System of units. A sign convention, consistent with vector mechanics, is employed throughout for loads, internal forces, and stresses. This convention conforms to that used in most classical strength of materials and elasticity texts, as well as to that most often employed in the numerical analysis of complex structures.

Text Arrangement

Because of the extensive subdivision into a variety of topics and the employment of alternative methods of analysis, the text should provide flexibility in the choice of assignments to cover courses of varying length and content. Most chapters are substantially self-contained. Hence, the order of presentation can be smoothly altered to meet an instructor’s preference. It is suggested, however, that Chapters 1 and 2, which address the analysis of basic concepts, should be studied first. The emphasis placed on the treatment of two-dimensional problems in elasticity (Chapter 3) may differ according to the scope of the course.

This fourth edition of Advanced Strength and Applied Elasticity seeks to preserve the objectives and emphases of the previous editions. Every effort has been made to provide a more complete and current text through the inclusion of new material dealing with the fundamental principles of stress analysis: failure criteria; fracture mechanics; compound cylinders; numerical methods; energy and variational methods; buckling of stepped columns; and common shell types. The entire text has been reexamined and many improvements have been made throughout by a process of elimination and rearrangement. Some sections have been expanded to improve on previous expositions.

The references, provided as an aid to the student who wishes to pursue further certain aspects of a subject, have been updated and identified at the end of the text. I have resisted the temptation to increase the material covered except where absolutely necessary. However, it was considered desirable to add a number of illustrative examples and a large number of problems important in engineering practice and design. Most changes in subject-matter coverage were prompted by the suggestions of faculty familiar with earlier editions.

As before, it is hoped that I have maintained clarity of presentation, simplicity as the subject permits, unpretentious depth, an effort to encourage intuitive understanding, and a shunning of the irrelevant. In this context, as throughout, emphasis is placed on the use of fundamentals in order to build student understanding and an ability to solve the more complex problems.

Supplement

The book is accompanied by a Solutions Manual available to instructors. It features complete solutions to all problems in the text. Answers to selected problems are given at the end of the book.

Acknowledgments

It is a particular pleasure to acknowledge the contributions of those who assisted the authors in the evaluation of the text. Thanks, of course, are due to the many readers who have contributed general ideas and to reviewers who have made detailed comments on previous editions. These particularly include the following: F. Freudenstein, Columbia University; R. A. Scott, University of Michigan; M. W. Wilcox and Y. Chan Jian, Southern Methodist University; C. T. Sun, University of Florida; B. Koplik, H. Kountouras, K. A. Narh, R. Sodhi, and C. E. Wilson, New Jersey Institute of Technology; H. Smith, Jr., South Dakota School of Mines and Technology; B. P. Gupta, Gannon University; S. Bang, University of Notre Dame; B. Koo, University of Toledo; J. T. Easley, University of Kansas; J. A. Bailey, North Carolina State University; W. F. Wright, Vanderbilt University; R. Burks, SUNY Maritime College; G. E. O. Widera, University of Illinois; R. H. Koebke, University of South Carolina; B. M. Kwak, University of Iowa; G. Nadig, Widener University; R. L. Brown, Montana State University; S. H. Advani, West Virginia University; E. Nassat, Illinois Institute of Technology; R. I. Sann, Stevens Institute of Technology; C. O. Smith, University of Nebraska; J. Kempner, Polytechnic University of New York; and P. C. Prister, North Dakota State University.

Accuracy checking of the problems and typing of Solutions Manual were done expertly and with considerable care by Dr. Youngjin Chung. I am grateful to him for his hard work. I am deeply indebted to my colleagues who have found the text useful through the years and to Bernard Goodwin, publisher of Prentice Hall PTR, who has encouraged the preparation of this edition. Copy editing and production were handled skillfully by the staff of Pine Tree Composition, Inc. and Prentice Hall. Their professional help is appreciated.

A. C. Ugural
Holmdel, NJ

About Prentice Hall Professional Technical Reference

With origins reaching back to the industry’s first computer science publishing program in the 1960s, and formally launched as its own imprint in 1986, Prentice Hall Professional Technical Reference (PH PTR) has developed into the leading provider of technical books in the world today. Our editors now publish over 200 books annually, authored by leaders in the fields of computing, engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical revolution. Our bookshelf contains many of the industry’s computing and engineering classics: Kernighan and Ritchie’s C Programming Language, Nemeth’s UNIX System Adminstration Handbook, Horstmann’s Core Java, and Johnson’s High-Speed Digital Design.

Image

PH PTR acknowledges its auspicious beginnings while it looks to the future for inspiration. We continue to evolve and break new ground in publishing by providing today’s professionals with tomorrow’s solutions.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.141.47.51