PREFACE

The optical networking technology that suffered in the post-dot-com crash several years ago has since recovered and is once again poised for rapid growth due to the exhaustion of available bandwidth. Today, photonics networks transport Internet data over large distances in long-haul and metropolitan networks. Improvements in photonics components and silicon chips have enabled several new technologies that are changing how these networks are built and operated. While the network core has always been optical Internet access traditionally secured through wireline access networks, various DSL (ADSL, VDSL, VDSL2), cable (DOCSIS 2.0, DOCSIS 3.0), and passive optical networks (BPON, GPON, EPON) have been used. The challenge in the YouTube and Facebook era is to manage the amount of traffic and service growth while securing or preferably growing revenue. In particular, dynamic bandwidth allocation (DBA) in passive optical networks (PON) presents a key issue for providing efficient and fair utilization of the PON upstream bandwidth while supporting the quality of service (QoS) requirements for different traffic classes.

Wireless networks have been booming largely independently of changes in photonic and wireline networks. WLAN (IEEE 802.11), Zigbee (IEEE 802.15.4), WiMax (IEEE 802.16), and 3G/4G cellular telephony are growing quickly, while 60 GHz, wireless sensor networks and cognitive radios are starting to be considered for volume deployment. In the next 10 years, Internet access will likely become dominated by mobile wireless terminals. The fourth-generation wireless system (4G) is seen as an evolution and an integration of existing wireless network architectures such as 2G and 3G with new ones such as mobile ad hoc networks (MANETs). There are several challenges ahead to make this integration happen. Many issues in 4G related to provisioning of ubiquitous and seamless service access with different underlying wireless technologies remain to be solved.

The main objectives of next-generation networks are to efficiently provide adequate network quality to multimedia applications with high bandwidth and strict QoS requirements and to seamlessly integrate mobile and fixed architectures. These objectives are becoming increasingly relevant due to the huge increment of multimedia applications that require better quality than plain best effort. Wireless and wireline next-generation networks that access the photonic core will be as ubiquitous as traditional telephone networks, and today’s engineering students must be prepared to meet the challenges of their development and deployment.

Filled with illustrations and practical examples from industry, this book provides a brief but comprehensive introduction to these technologies. A unique feature of this book is coverage of wireless, wireline, and optical networks in one volume. It describes access and transport network layer technologies while also discussing the network and services aspects. This text attempts to explain how the network will accommodate the foreseen tenfold increase in traffic over the next few years. I hope it will become an invaluable reference to engineers and researchers in industry and academia.

Krzysztof (Kris) Iniewski

Vancouver, British Columbia, Canada

May 2010

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.14.200