References

1.1. TIMOSHENKO, S. P., History of Strength of Materials, Dover, New York, 1983.

1.2. TODHUNTER, I., and PEARSON, K., A History of the Theory of Elasticity and the Strength of Materials, Vols. I and II, Dover, New York, 1960.

1.3. LOVE, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, 1944.

1.4. GERE, J., and TIMOSHENKO, S. P., Mechanics of Materials, 3rd ed., PWS-Kent, Boston, 1990.

1.5. UGURAL, A. C., Mechanics of Materials, McGraw-Hill, New York, 1991, Sec. 4.2.

1.6. BORESI, A. P., and CHONG, K. P., Elasticity in Engineering Mechanics, 2nd ed., Wiley, New York, 2000.

1.7. SHAMES, I. H., and COZZARELLI, F. A., Elastic and Inelastic Stress Analysis, Prentice Hall, Englewood Cliffs, N.J., 1992, Sec. 2.8.

1.8. FORD, H., Advanced Mechanics of Materials, 2nd ed., Ellis Horwood, Chichester, England, 1977, Chap. 4.

2.1. SOKOLNIKOFF, I. S., Mathematical Theory of Elasticity, 2nd ed., Krieger, Melbourne, Fla., 1986.

2.2. CHOU, P. C., and PAGANO, N.J., Elasticity, Dover, New York, 1992.

2.3. AVALLONE, E. A., and BAUMEISTER III, T., eds., Mark’s Standard Handbook for Mechanical Engineers, 10th ed., McGraw-Hill, New York, 1997.

2.4. American Society of Testing and Materials, Annual Book of ASTM, Philadelphia, Pa.

2.5. HETÉNYI, M., ed., Handbook of Experimental Stress Analysis, 2nd ed., Wiley, New York, 1987.

2.6. See Ref. 2.1, Chap. 3.

2.7. See Ref. 1.7, Sec. 5.4.

2.8. STERNBERG, E., On St. Venant’s principle, Quart. Appl. Math. 11:393, 1954.

2.9. STERNBERG, E., and KOITER, T., The wedge under a concentrated couple, J. Appl. Mech. 25:575-581, 1958.

2.10. TIMOSHENKO, S. P., and GOODIER, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970, p. 60.

3.1. See Ref. 2.1, Sec. 27.

3.2. See Ref. 2.10, Chap. 3.

3.3. NEOU, C. Y., Direct method of determining Airy polynomial stress functions, J. Appl. Mech. 24/3:387, 1957.

3.4. BOLEY, B. A., and WEINER, J. H., Theory of Thermal Stresses, Wiley, New York, 1960, Chap. 2; reprinted, R. E. Krieger, Melbourne, Fla., 1985.

3.5. NOWACKI, W., Thermoelasticity, Addison-Wesley, Reading, Mass., 1963.

3.6. MICHELL, J. H., The Collected Mathematical Works of J. H. and A. G. M. Michell, P. Nordhoff, Ltd., Groningen, Holland, 1964.

3.7. See Ref. 2.10, Sec. 40.

3.8. PETERSON, R. E., Stress Concentration Design Factors, Wiley, New York, 1974.

3.9. NEUBER, H. P., Kerbspannungslehre, 2nd ed., Springer, New York, 1958.

3.10. YOUNG, W. C., Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill, New York, 1989, Sec. 2.10 and Table 37.

3.11. See Ref. 2.10, Sec. 35.

3.12. FLÜGGE, W., ed., Handbook of Engineering Mechanics, McGraw-Hill, New York, 1968, Chap. 42.

3.13. FAUPEL, J. H., and FISHER, F. E., Engineering Design, 2nd ed., Wiley, New York, 1981, Chap. 11.

3.14. See Ref. 2.10, Chap. 13.

3.15. BORESI, A. P., and SCHMIDT, R. J. Advanced Mechanics of Materials, 6th ed., Wiley, New York, 2003, Chap. 18.

3.16. UGURAL, A. C., Mechanical Design: An Integrated Approach, McGraw-Hill, New York, 2004.

4.1. NADAI, A., Theory of Flow and Fracture of Solids, McGraw-Hill, New York, 1950.

4.2. MARIN, J., Mechanical Behavior of Materials, Prentice Hall, Englewood Cliffs, N.J., 1962.

4.3. VAN VLACK, L. H., Elements of Material Science and Engineering, 6th ed., Addison-Wesley, Reading, Mass., 1989.

4.4. American Society of Metals (ASM), Metals Handbook, Metals Park, Ohio, 1985.

4.5. See Ref. 1.7, Chap. 6.

4.6. IRWIN, G. R., “Fracture Mechanics,” First Symposium on Naval Structural Mechanics, Pergamon, Elmsford, N.Y., 1958, p. 557.

4.7. TIMOSHENKO, S. P., Strength of Materials, Part II, 3rd ed., Van Nostrand, New York, 1956, Chap. 10.

4.8. SHIGLEY, J. E., and MISCHKE, C. R., Mechanical Engineering Design, McGraw-Hill, 6th ed., New York, 2001.

4.9. TAYLOR, G. I., and QUINNEY, H., Philosophical Transactions of the Royal Society, Section A, No. 230, 1931, p. 323.

4.10. SULLIVAN, J. L., Fatigue life under combined stress, Machine Design, January 25, 1979.

4.11. See Ref. 3.16, Chaps. 7 and 8.

4.12. DEUTSCHMAN, A. D., MICHELS, W. J, and WILSON, C.E., Machine Design, Theory and Practice, Macmillan, New York, 1975.

4.13. JUVINALL, R. C., Stress, Strain, and Strength, McGraw-Hill, New York, 1967.

4.14. HARRIS, C. M., Shock and Vibration Handbook, McGraw-Hill, New York, 1988.

5.1. See Ref. 2.10, Sec. 102.

5.2. See Ref. 2.1, Sec. 53.

5.3. COOK, R. D. and YOUNG, W. C., Advanced Mechanics of Materials, Macmillan, New York, 1985.

5.4. BUDYNAS, R. G., Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York, 1999.

5.5. See Ref. 3.15, Chap. 8.

5.6. See Ref. 2.10, Sec. 29.

5.7. See Ref. 3.15, Chap. 9.

6.1. See Ref. 1.5, Sec. 6.2.

6.2. See Ref. 2.10, Sec. 105.

6.3. WAHL, A. M., Mechanical Springs, McGraw-Hill, New York, 1963.

7.1. SOKOLNIKOFF, I. S., and REDHEFFER, R. M., Mathematics of Physics and Modern Engineering, 2nd ed., McGraw-Hill, New York, 1966, p. 668.

7.2. ZIENKIEWITCZ, O. C., and TAYLOR, R. I., The Finite Element Method, 4th ed., Vol. 2 (Solid and Fluid Mechanics, Dynamics and Non-Linearity), McGraw-Hill, London, 1991.

7.3. WEAVER, JR., W., and JOHNSTON, P. R., Finite Elements for Structural Analysis, Prentice Hall, Englewood Cliffs, N.J., 1984.

7.4. YANG, T. Y., Finite Element Structural Analysis, Prentice Hall, Englewood Cliffs, N.J., 1986, Chap. 13.

7.5. GALLAGHER, R. H., Finite Element Analysis-Fundamentals, Prentice Hall, Upper Saddle River, N.J., 1975.

7.6. LOGAN, D. L., A First Course in the Finite Element Method, PWS-Kent, Boston, Mass., 1986.

7.7. KNIGHT, E., The Finite Element Method in Mechanical Design, PWS-Kent, Boston, Mass., 1993.

7.8. COOK, R. D., Concepts and Applications of Finite Element Analysis, 2nd ed., Wiley, New York, 1980.

7.9. SEGERLIND, L. J., Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.

7.10. BATHE, K. I., Finite Element Procedures in Engineering Analysis, Prentice Hall, Upper Saddle River, N.J., 1996.

8.1. RANOV, T., and PARK, F. R., On the numerical value of the tangential stress on thick-walled cylinders, J. Appl. Mech., March 1953.

8.2. BECKER, S. J., and MOLLICK, L., The theory of the ideal design of a compound vessel, Trans. ASME J. Engineering Industry, May 1960, p. 136.

8.3. See Ref. 7.4, Chap. 10.

9.1. See Ref. 3.13, Chap. 3.

9.2. HETÉNYI, M., Beams on Elastic Foundations, McGraw-Hill, New York, 1960.

9.3. TING, B.-Y., Finite Beams on Elastic Foundation with Restraints, J. Structural Division, Proc. of the American Society of Civil Engineers, Vol. 108, No. ST 3, March 1982, pp. 611-621.

9.4. See Ref. 3.12, Sec. 31.5.

9.5. IYENGAR, K. T., SUNDARA, R., and RAMU, S. A., Design Tables for Beams on Elastic Foundation and Related Problems, Applied Science Publications, London, 1979.

9.6. SHAFFER, B. W., Some simplified solutions for relatively simple stiff beams on elastic foundations, Trans. ASME J. Engineering Industry, February 1963, pp. 1-5.

9.7. UGURAL, A. C., Stresses in Plates and Shells, 2nd ed., McGraw-Hill, New York, 1999. Chap. 13.

10.1. LANGHAAR, H. L., Energy Methods in Applied Mechanics, Krieger, Melbourne, Fla., 1989.

10.2. See Ref. 2.1, Chap. 7.

10.3. ODEN, J. T., and RIPPERGER, E. A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill, New York, 1981.

10.4. TIMOSHENKO, S. P., and GERE, J. M., Theory of Elastic Stability, 3rd ed., McGraw-Hill, 1970, Sec. 1.11.

10.5. See Ref. 7.1, Chap. 1.

11.1. See Ref. 10.4, Sec. 2.7.

11.2. SHANLEY, R. F, Mechanics of Materials, McGraw-Hill, New York, 1967, Sec. 11.3.

11.3. Manual of Steel Construction, latest ed., American Institute of Steel Construction, Inc., Chicago.

11.4. See Ref. 1.5, Sec. 13.7.

11.5. See Ref. 10.4, Sec. 2.10.

11.6. See Ref. 10.4, Chaps. 2 through 6.

11.7. BRUSH, D. O., and ALMROTH, B. O., Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, 1975.

12.1. See Ref. 1.8, Part 4.

12.2. See Ref. 3.13, Chap. 6.

12.3. MENDELSON, A., Plasticity: Theory and Applications, Macmillan, New York, 1968 (reprinted, R. E. Krieger, Melbourne, Fla., 1983).

12.4. RAMBERG, W., and OSGOOD, W. R., Description of Stress-Strain Curves by Three Parameters, National Advisory Committee of Aeronautics, TN 902, 1943, Washington, D.C.

12.5. See Ref. 1.5, Sec. 12.6.

12.6. HODGE, P. G., Plastic Design Analysis of Structures, McGraw-Hill, New York, 1963.

12.7. See Ref. 4.1, Chap. 35.

12.8. HOFFMAN, O., and SOCHS, G., Theory of Plasticity for Engineers, McGraw-Hill, New York, 1953.

13.1. See Ref. 9.7, Chap. 5.

13.2. TIMOSHENKO, S. P., and WOINOWSKY-KRIEGER, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959, Chap. 5.

13.3. See Ref. 9.7, Sec. 5.12.

13.4. See Ref. 9.7, Sec. 13.11.

A.1. REISMANN, H., and PAWLIK, P. S., Elasticity: Theory and Applications, Wiley, New York, 1980, Chap. 1.

A.2. See Ref. 2.2, Chaps. 8 and 9.

B.1. MESSAI, E. E., Finding true maximum shear stress, Machine Design, December 7, 1978, pp. 166-169.

B.2. TERRY, E. S., A Practical Guide to Computer Methods for Engineers, Prentice Hall, Englewood Cliffs, N.J., 1979.

C.1. See Ref. 3.10, Chap. 5.

D.1. See Ref. 3.10, Chap. 7.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.217.138.138