5

CONCLUSIONS

5.1. DOING SCIENCE

Chapter 1 of this book highlighted the transformations occurring this century—unprecedented in their speed and in the stress they impose on the global environment. Chapter 2 focused on the scientific advances that we can expect in the coming decades, emphasising the benefits but also the ethical dilemmas and the risk of disruption or even catastrophe. Chapter 3 explored broader horizons in both space and time—speculating about domains far beyond our planet, and the prospects for a ‘posthuman’ future. Chapter 4 assessed the prospects of understanding ourselves and the world more deeply—what we may learn, and what may forever be beyond our grasp. In the last few pages I focus closer to the here and now—to explore, against this backdrop, the role of scientists. I distinguish their special obligations from those that fall to all of us, as humans and as citizens concerned about the world future generations will inherit.

But first, an important clarification: I’m using ‘science’ throughout as a shorthand that embraces technology and engineering as well. Harnessing and implementing a scientific concept for practical goals can be a greater challenge than the initial discovery. A favourite cartoon of my engineering friends shows two beavers looking up at a vast hydroelectric dam. One beaver says to the other: ‘I didn’t actually build it, but it’s based on my idea’. And I like to remind my theorist colleagues that the Swedish engineer Gideon Sundback, who invented the zipper, made a bigger intellectual leap than most of us ever will.

Scientists are widely believed to follow a distinctive procedure that’s described as the scientific method. This belief should be laid to rest. It would be truer to say that scientists follow the same rational style of reasoning as lawyers or detectives in categorising phenomena and assessing evidence. A related (and indeed damaging) misperception is the widespread presumption that there is something especially ‘elite’ about the quality of their thought. ‘Academic ability’ is one facet of the far wider concept of intellectual ability—possessed in equal measure by the best journalists, lawyers, engineers, and politicians. E. O. Wilson (the ecologist quoted in section 1.4) avers that to be effective in some scientific fields it’s actually best not to be too bright.1 He’s not disparaging the insights and eureka moments that punctuate (albeit rarely) scientists’ working lives. But, as the world expert on tens of thousands of ant species, Wilson’s research has involved decades of hard slog: armchair theorising is not enough. So, there is a risk of boredom. And he is indeed right that those with short attention spans—with ‘grasshopper minds’—may find happier (albeit less worthwhile) employment as ‘millisecond traders’ on Wall Street, or the like.

Scientists generally pay too little regard to philosophy, but some philosophers resonate with them. Karl Popper, in particular, caught the fancy of scientists in the second half of the twentieth century.2 He was right to say that a scientific theory must be in principle refutable. If a theory is so flexible—or its proponents so seemingly shifty—that it can be adjusted to fit any eventuality, then it isn’t genuine science. Reincarnation is an example. In a well-known book, the biologist Peter Medawar3 somewhat more controversially berated Freudian psychoanalysis on this score, putting the knife in firmly at the end: ‘Considered in its entirety, psychoanalysis won’t do. It is an end product, moreover, like a dinosaur or a zeppelin, no better theory can ever be erected on its ruins, which will remain for ever one of the saddest and strangest of all landmarks in the history of twentieth century thought’. But the Popper doctrine nonetheless has two weaknesses. Firstly, interpretation depends on the context. Consider, for instance, the Michelson-Morley experiment, which showed, at the end of the nineteenth century, that the speed of light (measured by a clock in the laboratory) was the same however fast the laboratory was moving—and the same at all times of the year, despite the Earth’s motion. This was later realised to be a natural consequence of Einstein’s theory. But had the same experiment been performed in the seventeenth century, it would have been adduced as evidence that the Earth didn’t move—and claimed as a refutation of Copernicus. Secondly, judgment is needed in deciding how compelling the contrary evidence needs to be before a well-supported theory is abandoned. As Francis Crick, codiscoverer of the structure of DNA, reputedly said, if a theory agrees with all the facts it is bad news, because some ‘facts’ are likely to be wrong.

Second only to Popper, it is the American philosopher Thomas Kuhn—with his concept of ‘normal science’ being punctuated by ‘paradigm shifts’—who has gained traction.4 The Copernican revolution, overturning the concept of an Earth-centred cosmos, qualifies as a paradigm shift. So does the realisation that atoms are governed by quantum effects—utterly counterintuitive and still mysterious. But many of Kuhn’s disciples (though maybe not Kuhn himself) used the phrase too freely. For instance, it’s routinely claimed that Einstein overthrew Newton. But it’s fairer to say that he transcended Newton. Einstein’s theory applied more widely—to contexts where forces are very strong or speeds very high—and gave a much deeper understanding of gravity, space, and time. Piecemeal modification of theories, and their absorption in new ones of greater generality, has been the pattern in most sciences.5

The sciences demand a range of different types of expertise and different styles; they can be pursued by speculative theorists, by lone experimenters, by ecologists gaining data in the field, and by quasi-industrial teams working on giant particle accelerators or big space projects. Most commonly, scientific work involves collaboration and debate in a small research group. Some people aspire to write a pioneering paper opening up a subject; others gain more satisfaction from writing a definitive monograph tidying up and codifying a topic after it’s become well understood.

Indeed, the sciences are as diverse as sports. It’s hard for generic writing about sports to get beyond vacuous generalities—extolling humanity’s competitive streak and so forth. It’s more interesting to write about the distinctive features of a particular sport; still more compelling are the particularities of especially exciting games and the personalities of key players. So it is with the sciences. Each particular science has its methods and conventions. And what most compels our interest is the fascination of the individual discovery or insight.

The cumulative advance of science requires new technology and new instruments—in symbiosis, of course, with theory and insight. Some instruments are ‘tabletop’ in scale. At the other extreme, the Large Hadron Collider at CERN in Geneva, 9 kilometres in diameter, is currently the world’s most elaborate scientific instrument. Its completion in 2009 generated enthusiastic razzmatazz and wide public interest, but at the same time questions were understandably raised about why such a large investment was being made in the seemingly recondite science of subnuclear physics. But what is special about this branch of science is that its practitioners in many different countries have chosen to commit most of their resources over a time-span of nearly twenty years to construct and operate a single vast instrument in a European-led collaboration. The annual contribution made by participant nations (like the United Kingdom) amounts to only about 2 percent of their overall budget for academic science, which doesn’t seem a disproportionate allocation to a field so challenging and fundamental. This global collaboration on a single project to probe some of nature’s most fundamental mysteries—and push technology to its limits—is surely something in which our civilisation can take pride. Likewise, astronomical instruments are run by multinational consortia, and some are truly global projects—for instance, the ALMA radio telescope in Chile (Atacama Large Millimeter/Submillimeter Array) has participation from Europe, the United States, and Japan.

Those embarking on research should pick a topic to suit their personality, and also their skills and tastes (for fieldwork? For computer modelling? For high-precision experiments? For handling huge data sets? And so forth). Moreover, young researchers can expect to find it especially gratifying to enter a field where things are advancing fast—where you have access to novel techniques, more powerful computers, or bigger data sets—so that the experience of the older generation is at a deep discount. And another thing: it is unwise to head straight for the most important or fundamental problem. You should multiply the importance of the problem by the probability that you’ll solve it, and maximise that product. Aspiring scientists shouldn’t all swarm into, for instance, the unification of cosmos and quantum, even though it’s plainly one of the intellectual peaks we aspire to reach, and they should realise that the great challenges in cancer research and in brain science need to be tackled in a piecemeal fashion, rather than head-on. (As mentioned in section 3.5, investigating the origin of life used to be in this category, but it now is deemed timely and tractable in a way it wasn’t until recently.)

What about those who switch to a new field of science in mid-career? The ability to bring in new insights, and a new perspective, is a ‘plus’—indeed, the most vibrant fields often cut across traditional disciplinary boundaries, On the other hand, it’s conventional wisdom that scientists don’t improve with age—that they ‘burn out’. The physicist Wolfgang Pauli had a famous put-down for scientists past thirty: ‘still so young, and already so unknown’. But I hope it’s not just wishful thinking on the part of an aging scientist to be less fatalistic. There seem to be three destinies for us. First, and most common, is a diminishing focus on research—sometimes compensated by energetic efforts in other directions, sometimes just by a decline into torpor. A second pathway, followed by some of the greatest scientists, is an unwise and overconfident diversification into other fields. Those who follow this route are still, in their own eyes, ‘doing science’—they want to understand the world and the cosmos, but they no longer get satisfaction from researching in the traditional piecemeal way: they over-reach themselves, sometimes to the embarrassment of their admirers. This syndrome has been aggravated by the tendency for the eminent and elderly to be shielded from criticism—though one of the many benefits of a less hierarchical society is that this insulation is now rarer, at least in the West; moreover, the increasingly collaborative nature of science makes isolation less likely. But there is a third way—the most admirable. This is to continue to do what one is competent at, accepting that there may be some new techniques that the young can assimilate more easily than the old, and that one can probably at best aspire to be on a plateau rather than scaling new heights.

There are some ‘late-flowering’ exceptions. But whereas there are many composers whose last works are their greatest, there are few scientists for whom this is so. The reason, I think, is that composers, though influenced in their youth (like scientists) by the then-prevailing culture and style, can thereafter improve and deepen solely through ‘internal development’. Scientists, in contrast, need continually to absorb new concepts and new techniques if they want to stay at the frontier—and that’s what gets harder as we get older.

Many sciences—astronomy and cosmology among them—advance decade by decade so that practitioners can observe an ‘arc of progress’ during their career. Paul Dirac, a leader in the extraordinary revolution in the 1920s that codified quantum theory, said that it was an era when ‘second-rate’ people did ‘first-rate’ work. Luckily for my generation of astronomers, that’s been true in our field in recent decades.

The best laboratories, like the best start-ups, should be optimal incubators of original ideas and young talent. But there’s an insidious demographic trend that militates against this in traditional universities and institutes. Fifty years ago, the science profession was still growing exponentially, riding on the expansion of higher education, and the young outnumbered the old; moreover, it was normal (and generally mandatory) to retire by one’s mid-sixties. The academic community, at least in the West, isn’t now expanding much (and in many areas has reached saturation level), and there is no enforced retirement age. In earlier decades, it was reasonable to aspire to lead a group by one’s early thirties—but in the United States’ biomedical community, it’s now unusual to get your first research grant before the age of forty. This is a very bad augury. Science will always attract ‘nerds’ who can’t envisage any other career. And laboratories can be staffed with those content writing grant applications, which usually fail to get funding. But the profession needs to attract a share of those with flexible talent, and the ambition to achieve something by their thirties. If that perceived prospect evaporates, such people will shun academia, and maybe attempt a start-up. This route offers great satisfaction and public benefit—many should take it—but in the long run it’s important that some such people dedicate themselves to the fundamental frontiers. The advances in IT and computing can be traced back to basic research done in leading universities—in some cases nearly a century ago. And the stumbling blocks encountered in medical research stem from uncertain fundamentals. For instance, the failure of anti-Alzheimer’s drugs to pass clinical tests, which has caused Pfizer to abandon its programme to develop neurological drugs, may indicate that not enough is known about how the brain functions and that the effort should refocus on basic science.

The expansion of wealth and leisure—coupled with the connectivity offered by IT—will offer millions of highly educated amateurs and ‘citizen scientists’ anywhere in the world greater scope than ever before to follow their interests. Moreover, these trends will enable leading researchers to do cutting-edge work outside a traditional academic or governmental laboratory. If enough make this choice, it will erode the primacy of research universities and boost the importance of ‘independent scientists’ to the level that prevailed before the twentieth century—and perhaps enhance the flowering of genuinely original ideas.

5.2. SCIENCE IN SOCIETY

A main theme of this book is that our future depends on making wise choices about key societal challenges: energy, health, food, robotics, environment, space, and so forth. These choices involve science. But key decisions shouldn’t be made just by scientists; they matter to us all and should be the outcome of wide public debate. For that to happen, we all need enough ‘feel’ for the key ideas of science, and enough numeracy to assess hazards, probabilities, and risks, so as not to be bamboozled by experts or credulous of populist sloganising.

Those who aspire to a more engaged democracy routinely bemoan how little the typical voter knows about the relevant issues. But ignorance isn’t peculiar to science. It’s equally sad if citizens don’t know their nation’s history, can’t speak a second language, and can’t find North Korea or Syria on a map—and many can’t. (In one survey, only a third of Americans could find Britain!) This is an indictment of our education system and culture in general—I don’t think scientists have a special reason to moan. Indeed, I’m gratified and surprised that so many people are interested in dinosaurs, Saturn’s moons, and the Higgs boson—all blazingly irrelevant to our day-to-day lives—and that these topics feature so frequently in the popular media.

Moreover, quite apart from their practical use, these ideas should be part of our common culture. More than that, science is the one culture that’s truly global: protons, proteins, and Pythagoras are the same from China to Peru. Science should transcend all barriers of nationality. And it should straddle all faiths too. It’s an intellectual deprivation not to understand our natural environment and the principles that govern the biosphere and climate. And to be blind to the marvellous vision offered by Darwinism and modern cosmology—the chain of emergent complexity leading from a ‘big bang’ to stars, planets, biospheres, and human brains—rendering the cosmos aware of itself. These ‘laws’ or patterns are the great triumphs of science. To discover them required dedicated talent—even genius. And great inventions require equivalent talent. But to grasp the key ideas isn’t so difficult. Most of us appreciate music even if we can’t compose it, or even perform it. Likewise, the key ideas of science can be accessed and enjoyed by almost everyone—if conveyed using nontechnical words and simple images. The technicalities may be daunting, but they can be left to the specialists.

Advances in technology have led to a world where most people enjoy a safer, longer, and more satisfying life than previous generations, and these positive trends could continue. On the other hand, environmental degradation, unchecked climate change, and unintended downsides of advanced technology are collaterals of these advances. A world with a higher population more demanding of energy and resources, and more empowered by technology, could trigger serious, even catastrophic, setbacks to our society.

The public is still in denial about two kinds of threats: harm that we’re causing collectively to the biosphere, and threats that stem from the greater vulnerability of our interconnected world to error or terror induced by individuals or small groups. Moreover, what’s new in this century is that a catastrophe will resonate globally. In his book Collapse,6 Jared Diamond describes how and why five different societies have decayed or encountered catastrophes and gives contrasting prognoses for some modern societies. But these events weren’t global; for instance, the Black Death didn’t reach Australia. But in our networked world, there would be nowhere to hide from the consequences of economic collapse, a pandemic, or a collapse in global food supplies. And there are other global threats; for instance, intense fires after a nuclear exchange could create a persistent ‘nuclear winter’—preventing, in worst-case scenarios, the growing of conventional crops for several years (as could also happen after an asteroid impact or a super-volcano eruption).

In such a predicament it is collective intelligence that would be crucial. No single person fully understands the smartphone—a synthesis of several technologies. Indeed, if we were stranded after an ‘apocalypse’, as in extreme survival movies, even the basic technologies of the iron age and agriculture would be beyond almost all of us. That’s why, incidentally, James Lovelock—the polymath who introduced the Gaia hypothesis (the self-regulating planetary ecology)—has urged that ‘handbooks for survival’, codifying basic technology, should be prepared, widely dispersed, and securely stored. This challenge has been taken up, for instance, by the UK astronomer Lewis Dartnell in his excellent book The Knowledge: How to Rebuild Our World from Scratch.7

More should be done to assess, and then minimise, the probability of global hazards. We live under their shadow, and they are raising the stakes for humanity. The emergent threat from technically empowered mavericks is growing. The issues impel us to plan internationally (for instance, whether or not a pandemic gets global grip may hinge on how quickly a Vietnamese poultry farmer can report any strange sickness). And many of the challenges—for instance, planning how to meet the world’s energy needs while avoiding dangerous climate change, and ensuring food-source security for nine billion people without jeopardising a sustainable environment—involve multidecade timescales that are plainly far outside the ‘comfort zone’ of most politicians. There’s an institutional failure to plan long-term and to plan globally.

There’s no denying that futuristic technologies, if misapplied, could lead to hazards, even catastrophes. It is important to take advantage of the best expertise to assess which risks are credible, and which can be dismissed as science fiction, and to focus precautionary measures on the former. How can this be done? It’s not feasible to control the rate of advance, still less to relinquish potentially hazardous developments completely, unless a single organisation holds the purse strings—and that’s completely unrealistic in a globalised world with a mix of commercial, philanthropic, and governmental funding. But even if regulations can’t be anywhere near 100 percent effective—and can provide little more than a ‘nudge’—it’s important for the scientific community to do all it can to promote ‘responsible innovation’. In particular, it may be crucial to influence the order in which various innovations come to fruition. For instance, if a superpowerful AI ‘went rogue’, it would then be too late to control other developments; on the other hand, an AI firmly under human control, but highly accomplished, could aid in reducing the risk from biotech or nanotechnology.

Nations may need to give up more sovereignty to new global organisations along the lines of the International Atomic Energy Agency, the World Health Organization, and so on. There are already international bodies that regulate air travel, radio frequency allocations, and such. And there are protocols such as the post-Paris climate change agreement. More such bodies may be needed, for planning energy generation, to ensure sharing of water resources, and for responsible exploitation of AI and of space technology. National boundaries are now being eroded, not least by the quasi-monopolies like Google and Facebook. The new organisations must retain accountability to governments but will need to use social media—as they are now and will be in future decades—and involve the public. Social media engage huge numbers in campaigns, but the barrier to their engagement is so low that most lack the commitment of participants in mass movements in the past. Moreover, the media make it easy to engineer a protest, as well as amplifying all dissident minorities—adding to the challenge of governance.

But will the world be governable by nation-states? Two trends are reducing interpersonal trust: firstly, the remoteness and globalisation of those we routinely have to deal with; and secondly, the rising vulnerability of modern life to disruption—the realisation that ‘hackers’ or dissidents can trigger incidents that cascade globally. Such trends necessitate burgeoning security measures. These are already irritants in our everyday life—security guards, knotty passwords, airport searches, and so forth—but they are likely to become ever more vexatious. Innovations like blockchain, the publicly distributed ledger that combines open access with security, could offer protocols that render the entire internet more secure. But their current applications—allowing an economy based on crypto-currencies to function independently of traditional financial institutions—seem damaging rather than benign. It’s both salutary and depressing to realise how much of the economy is dedicated to activities and products that would be superfluous if we felt we could trust each other.

The gaps in wealth and welfare levels between countries show little sign of narrowing. But if they persist, the risk of persistent disruption will grow. This is because the disadvantaged are aware of the injustice of their predicament; travel is easier, and therefore more aggressive measures will be needed in order to control migratory pressures if they build up. But apart from direct transfers of funds in the traditional way, the internet and its successors should make it easier for services to be provided anywhere in the world, and for educational and health benefits to spread more widely. It’s in the interests of the wealthy world to invest massively in improving the quality of life and job opportunities in poorer countries—minimising grievances and ‘levelling up’ the world.

5.3. SHARED HOPES AND FEARS

All scientists have special obligations over and above their responsibility as citizens. There are ethical obligations confronting scientific research itself: avoiding experiments that have even the tiniest risk of leading to catastrophe and respecting a code of ethics when research involves animals or human subjects. But less tractable issues arise when their research has ramifications beyond the laboratory and has a potential social, economic, and ethical impact that concerns all citizens—or when it reveals a serious but still-unappreciated threat. You would be a poor parent if you didn’t care what happened to your children in adulthood, even though you may have little control over them. Likewise, scientists shouldn’t be indifferent to the fruits of their ideas—their creations. They should try to foster benign spin-offs—commercial or otherwise. They should resist, so far as they can, dubious or threatening applications of their work, and alert politicians when appropriate. If their findings raise ethical sensitivities—as will happen acutely and often—they should engage with the public, while realising that they have no distinct credentials outside their specialism.

One can highlight some fine exemplars from the past: for instance, the atomic scientists who developed the first nuclear weapons during World War II. Fate had assigned them a pivotal role in history. Many of them—men such as Joseph Rotblat, Hans Bethe, Rudolf Peierls, and John Simpson (all of whom I was privileged to know in their later years)—returned with relief to peacetime academic pursuits. But for them the ivory tower wasn’t a sanctuary. They continued not just as academics but as engaged citizens—promoting efforts to control the power they had helped unleash, through national academies, the Pugwash movement, and other public forums. They were the alchemists of their time, possessors of secret specialised knowledge.

The technologies I’ve discussed in earlier chapters have implications just as momentous as nuclear weapons. But in contrast to the ‘atomic scientists’, those engaged with the new challenges span almost all the sciences, are broadly international—and work in the commercial sector as well as in academia and government. Their findings and concerns need to inform planning and policy. So how is this best done?

Direct ties forged with politicians and senior officials can help—and links with NGOs and the private sector too. But experts who’ve served as government advisors have often had frustratingly little influence. Politicians are, however, influenced by their in-boxes, and by the press. Scientists can sometimes achieve more as ‘outsiders’ and activists, leveraging their message via widely read books, campaigning groups, blogging and journalism, or—albeit via a variety of perspectives—through political activity. If their voices are echoed and amplified by a wide public, and by the media, long-term global causes will rise on the political agenda.

Rachel Carson and Carl Sagan, for instance, were both preeminent in their generation as exemplars of the concerned scientist—and they had immense influence through their writings and speeches. And that was before the age of social media and tweets. Sagan, had he been alive today, would have been a leader of the ‘marches for science’—electrifying crowds through his passion and eloquence.

A special obligation lies on those in academia or on self-employed entrepreneurs; they have more freedom to engage in public debate than those employed in government service or in industry. Academics, moreover, have the special opportunity to influence students. Polls show, unsurprisingly, that younger people, who expect to survive most of the century, are more engaged and anxious about long-term and global issues. Student involvement in, for instance, ‘effective altruism’ campaigns is burgeoning. William MacAskill’s book Doing Good Better8 is a compelling manifesto. It reminds us that urgent and meaningful improvements to people’s lives can be achieved by well-targeted redeployment of existing resources towards developing or destitute nations. Wealthy foundations have more traction (the archetype being the Bill & Melinda Gates Foundation, which has had a massive impact, especially on children’s health)—but even they cannot match the impact that national governments could have if there were pressure from their citizens.

I’ve already highlighted the role of the world’s religions—transnational communities that think long-term and care about the global community, especially the world’s poor. An initiative of a secular organisation, the California-based Long Now Foundation, will create a symbol that contrasts dramatically with our currently pervasive short-termism. In a cavern deep underground in Nevada, a massive clock will be built; it is designed to tick (very slowly) for ten thousand years, programmed to resound with a different chime every day over that expanse of time. Those of us who visit it in this century will contemplate a monument built to outlast the cathedrals, and will be inspired to hope that a hundred centuries from now it will indeed still be ticking—and that some of our progeny will still visit.

Although we live under the shadow of unfamiliar and potentially catastrophic hazards, there seems to be no scientific impediment to achieving a sustainable and secure world, where all enjoy a lifestyle better than those in the ‘West’ do today. We can be technological optimists, even though the balance of effort in technology needs redirection. Risks can be minimised by a culture of ‘responsible innovation’, especially in fields like biotech, advanced AI, and geoengineering, and by reprioritising the thrust of the world’s technological effort. We should remain upbeat about science and technology—we shouldn’t put the brakes on progress. Doctrinaire application of the ‘precautionary principle’ has a manifest downside. Coping with global threats requires more technology—but guided by social science and ethics.

The intractable geopolitics and sociology—the gap between potentialities and what actually happens—engenders pessimism. The scenarios I’ve described—environmental degradation, unchecked climate change, and unintended consequences of advanced technology—could trigger serious, even catastrophic, setbacks to society. But they have to be tackled internationally. And there’s an institutional failure to plan for the long term, and to plan globally. Politicians look to their own voters—and the next election. Stockholders expect a payoff in the short run. We downplay what’s happening even now in faraway countries. And we discount too heavily the problems we’ll leave for new generations. Without a broader perspective—without realising that we’re all on this crowded world together—governments won’t properly prioritise projects that are long-term in a political perspective, even if a mere instant in the history of the planet.

‘Space-Ship Earth’ is hurtling through the void. Its passengers are anxious and fractious. Their life-support system is vulnerable to disruption and breakdowns. But there is too little planning, too little horizon scanning, too little awareness of long-term risks. It would be shameful if we bequeathed to future generations a depleted and hazardous world.

I began this book by quoting H. G. Wells. I end by recalling the words of a scientific sage from the second half of the last century, Peter Medawar: ‘The bells which toll for mankind are—most of them anyway—like the bells on Alpine cattle; they are attached to our own necks, and it must be our fault if they do not make a cheerful and harmonious sound’.9

Now is the time for an optimistic vision of life’s destiny—in this world, and perhaps far beyond it. We need to think globally, we need to think rationally, we need to think long-term—empowered by twenty-first-century technology but guided by values that science alone can’t provide.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.221.165.246