237
interface. Incubation time of heterogeneous nucleation of NiSi
2
has
been measured by high-resolution video to be much shorter than
that of homogeneous nucleation. The overall growth rate of NiSi
2
for the case of heterogeneous nucleation is faster than that for the
case of homogeneous nucleation. Kinetic analysis of both types of
nucleation is presented for a direct comparison in order to have a
better understanding of the nucleation events.
References
1. K.N. Tu, and J. W. Mayer, Thin Films—Interdiffusions and Reactions, J.M.

 Mater. Sci. Rep. 9, 141 (1993).
3. S.P. Murarka, Silicides for VLSI Applications, Academic Press, New York
(1983).
        Appl. Phys. Lett. 38, 626
(1981).
5. G. Ottaviani, K.N. Tu, and J.W. Mayer, Phys. Rev. Lett. 44, 284 (1980).
6. I. Ohdomari, and K.N. Tu, J. Appl. Phys. 51, 3735 (1980).
 J. Appl. Phys. 52, 861 (1981).
8. G. Ottaviani, K.N. Tu, and J.W. Mayer, Phys. Rev. B 24, 3354 (1981).
9. I. Ohdomari, M. Hori, T. Maeda, A. Ogura, H. Kawarada, T. Hamamoto,
K. Sano, K.N. Tu, M. Wittmer, I. Kimura, and K. Yoneda, J. Appl. Phys. 54,
4679, (1983).
 Appl. Phys. Lett. 63, 911 (1993).
11. K.N. Tu, W.H. Hammer, and J.O. Olowolafe, J. Appl. Phys. 51, 1663
(1980).
 J. Appl. Phys.
61, 1085 (1987).
 J. Appl. Phys. 53, 7436 (1982).
14. S. Saitoh, H. Ishiwara, T. Asano, and S. Furukawa, Japan. J. Appl. Phys.
20, 1649 (1981).
 Physics of Thin Films, Plenum Press, New York (1986).
 Thin Solid
Films 93, 77 (1982).
17. L.J. Chen, J. W. Mayer, K.N. Tu, and T.T. Sheng, Thin Solid Films 93, 91
(1982).
References
238
Formation of Epitaxial Silicide in Silicon Nanowires
18. H. Föll, P.S. Ho, and K.N. Tu, J. Appl. Phys. 52, 250 (1981).
19. R.T. Tung, Phys. Rev. Lett. 52, 461 (1984).
20. R.T. Tung, J. Vacuum Sci. Technol. B 2, 465 (1984).
 
Vol.27 of Treatises on Materials Science and Technology, Academic

 
Vol. 24 of Treatises on Materials Science and Technology, Academic
Press, New York, (1988).
23. K.N. Tu, J. Appl. Phys. 48, 3370 (1977).
 Appl. Phys. Lett. 36, 331
(1980).
        Appl. Phys. Lett. 38, 535
(1981).
26. R.D. Thompson, K.N. Tu, and G. Ottaviani, J. Appl. Phys. 58, 705 (1985).
27. K.N. Tu, Thin Solid Films 140, 71 (1986).
        Surface Science 152/153, 1185
(1985).
29. K.F. Kelton, A.L. Greer, and C.V.J. Thompson, Chem. Phys. 79, 6261
(1983).
30. D.W. Pashey, Epitaxial Growth
New York, 1975.
31. W.K. Chu, H. Krautle, J.W. Mayer, H. Muller, M-A. Nicolet, and K.N. Tu,
Appl. Phys. Lett. 25, 454 (1974).
32. J.W. Mayer, J.M. Poate, and K.N. Tu, Science 190, 228 (1975).
33. W.K. Chu, S.S. Lau, J.W. Mayer, H. Muller, and K.N. Tu, Thin Solid Films
25, 393 (1975).
34. K.N. Tu, W.K. Chu, and J.W. Mayer, Thin Solid Films 25, 403 (1975).
 Z. Krist. 110, 395 (1958).
 Phil. Mag. 3, 1042 (1958).
37. D.W. Pashley, M.J. Stowee, M.H. Jacobs, and T.J. Law, Phil. Mag. 10, 127
(1964).
38. C.M. Lieber, MRS Bull. 28, 486 (2003).
39. Y. Cui, and C.M. Lieber, Science 291, 851 (2001).
 
Yan, Adv. Mater. 15, 353 (2003).
239
  MRS Bull. 32, 142
(2007).
42. M.C. McAlpine, R.S. Friedman, and C.M. Lieber, Nano Lett. 3, 443
(2003).
 Nano Lett. 3, 343 (2003).
   McGraw-Hill Yearbook of Science
and Technology
272–276, McGraw Hill, 2003.
45. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C.M. Lieber, Nano Lett. 3, 149
(2003).
          Nature 421, 241
(2003).
 
assembled from the bottom-up, in Molecular Nanoelectronics, M.A.
         
2003.
 Science 302,
1377 (2003).
49. M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, and C.M. Lieber,
Nano Lett. 3, 1531 (2003).
       , Materials, Properties and
Devices
2003.
51. G. Zheng, W. Lu, S. Jin, and C.M. Lieber, Adv. Mater. 16, 1890 (2004).
 
and J.R. Heath, Science 300, 112 (2003).
 Science 309, 113 (2005).
54. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, and C.M. Lieber,
Nano Lett. 4, 915 (2004).
55. L.J. Lauhon, M.S. Gudiksen, and C.M. Lieber, Phil. Trans. R. Soc. Lond. A
362, 1247 (2004).
 Nature 430, 61 (2004).
57. Y. Huang, and C.M. Lieber, Pure Appl. Chem. 76, 2051 (2004).
 Nature 430, 1 (2004).
 J.
Electrochem. Soc. 150, G577 (2003).
 Phys. Rev. Lett. 75, 4460 (1995).
References
240
Formation of Epitaxial Silicide in Silicon Nanowires
 Nano Lett. 7, 818
(2007).
62. A.L. Schmitt, J.M. Higgins, J.R. Szczech, and S. Jin, J. Mater. Chem. 20, 223
(2010).
63. H.V. Kanel, Mater. Sci. Rep. 8, 193 (1992).
         J. Appl. Phys. 77, 614
(1995).
65. C.P. Li, N. Wang, S.P. Wong, C.S. Lee, and S.T. Lee, Adv. Mater. 14, 218
(2002).
           
Liebau, W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreupl, Nano
Lett. 6, 2660 (2006).
67. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gosele, Small 2, 85
(2006).
68. T. Shan, and S.J. Fonash, ACS Nano 2, 429 (2008).
69. R.S. Friedman, M.C. McAlpine, D.S. Ricketts, D. Ham, and C.M. Lieber,
Nature 434, 1085 (2005).
              
Kwong, Appl. Phys. Lett. 93, 073503 (2008).
           
Liebau, W. Pamler, C. Che`ze, H. Riechert, P. Lugli, and F. Kreup, Nano
Lett. 6, 2660 (2006).
72. F. Patolsky, and C.M. Lieber, Mater. Today 8, 20 (2005).
 
S.T. Lee, Chem. Phys. Lett. 327, 263 (2000).
 Mater. Sci. Eng. R 60, 1 (2008).
 Phys. Rev.
B 68, 075311 (2003).
 Science
294, 1313 (2001).
 
Huang, Nano Lett. 8, 913 (2008).
78. Sze, S.M. Physics of Semiconductor Devices, John Wiley & Sons, New
York, 1981.
            Nano Lett. 8, 925
(2008).
 Nano Lett. 6,
1842 (2006).
241
81. D. Turnbull, Solid State Phys. 3, 225 (1965).
 Kinetic Processes in Materials,

edu/˜ccarter/3.21/Lecture_24/.
83. F.G. Shi, and J.H. Seinfeld, Mater. Chem. Phys. 37, 1 (1994).
 
Science 322, 1070 (2008).
 J. Appl. Phys. 21, 804 (1950).
86. J.H. Perepezko, J.L. Sebright, P.G. Hockel, and G. Wilde, Mater. Sci. Eng. A
326, 144 (2002).
87. K.N. Tu, Appl. Phys. Letts. 27, 221 (1975).
88. L.J. Chen, K.N. Tu, Mater. Sci. Rep. 6, 53 (1991).
89. U. Koster, K.N. Tu, P.S. Ho, Appl. Phys. Lett. 31, 634 (1976).
90. D. Turnbull, Solid State Phys. 3, 225 (1956).
91. U. Koster, D.R. Campbell, K.N. Tu, Thin Solid Films 3, 129 (1978).
 Appl. Phys. Lett. 37, 87 (1980).
93. M. Wittmer, K.N. Tu, Phys. Rev. B 29, 2010 (1984).
 Appl. Phys. Lett. 28, 624 (1976).
 Appl. Phys. Lett. 38, 922
(1981).
96. R.D Thompson, and K.N. Tu, Thin Solid Films 53, 4372 (1982).
97. K.N. Tu, A.M. Gusak, and I. Sobchenko, Phys. Rev. B 67, 245408 (2003).
98. K.N. Tu, Chapter 7: Metal-Silicon Reaction, Advances in Electronic
Materials, Metal Park, OH, 1986.
99. L.J. Chen, J.W. Mayer, and K.N. Tu, Thin Solid Films 93, 135 (1982).
100. K.C. Russell, Adv. Colloid Interface Sci. 13, 205 (1980).
101. K.F. Kelton, J. Non-Cryst. Solids 274, 147 (2000).
102. U. Gosele, and K.N. Tu, J. Appl. Phys. 53, 3252 (1982).
103. Y.C. Chou, W.W. Wu, L.J. Chen, and K.N. Tu, Nano Lett. 9, 2337 (2009).
104. L.A. Clevenger, C.V. Thompson, R.C. Cammarata, and K.N. Tu, Appl. Phys.
Lett. 52, 795 (1988).
 Jap. J.
Appl. Phys. 2, 669 (1974).
106. R.C. Cammarata, C.V. Thompson, and K.N. Tu, Appl. Phys. Lett. 51, 1106
(1987).
References
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.222.25.167