Appendix

1k
Vector of ones (k × 1) vector
AT
Transpose of matrix A
||A|| = √trace(A*A)
Euclidean norm
Complex conjugate of a
a*
Transpose of the complex conjugate of a
Centring matrix (k × k)
D(X)
Baseline size (positive scalar)
dP(X1, X2)
Partial Procrustes distance (0 ≤ dP ≤ √2)
dF(X1, X2)
Full Procrustes distance (0 ≤ dF ≤ 1)
ρ(X1, X2)
Riemannian distance (0 ≤ ρ ≤ π/2)
dS(X1, X2)
Riemannian distance in size-and-shape space (0 ≤ dS < ∞)
H
Helmert sub-matrix ((k − 1) × k)
Hhat = XD(XTDXD)− 1XD
Hat matrix
Hj = XDj(XTDjXDj)− 1XDj
jth hat matrix
Ik
Identity matrix (k × k)
k
Number of landmarks
Dimension of shape space
m
Real dimension of object
R
Rotation and reflection matrix ( ∈ O(m)) (m × m)
S(X)
Centroid size (positive scalar)
Sl
Unit sphere in l + 1 real dimensions
Sl(r)
Sphere in l + 1 real dimensions with radius r
Coordinates of landmarks to be matched (k × m matrix)
UB = (uB3, …, ukB, vB3, …, vkB)T
Bookstein coordinates for 2D data ((2k − 4) × 1 vector)
UK = (uK3, …, ukK, vK3, …, vkK)T
Kendall coordinates for 2D data ((2k − 4) × 1 vector)
v
Tangent plane coordinates
W = XHΓ
Size-and-shape of X (Γ ∈ SO(k))
X
Configuration matrix of landmark coordinates (k × m matrix)
[X]
Shape of X
[X]I
Icon (representative configuration)
[X]S
Shape of X
[X]R
Reflection shape of X
[X]RS
Reflection size-and-shape of X
XH = HX
Helmertized landmark coordinates ((k − 1) × m matrix)
XD = Im⊗[1k, T]
Design matrix
XDj
Design matrix for the jth configuration
XP
Full Procrustes fitted configuration
Coordinates of reference configuration (k × m matrix)
Y = [1k, T]B
Affine transformation between configurations
vec(Y) = XDβ
Vectorized equation for affine/shape transformation
y = At + c
Affine transformation between points
Z = XH/||XH||
Pre-shape ((k − 1) × m matrix)
ZC = HTZH
Centred pre-shape
z
Complex pre-shape ((k − 1) × 1 complex vector)
zo
Original complex landmark coordinates (k × 1 complex vector)
zH
Helmertized complex landmarks ((k − 1) × 1 complex vector)
Γ
Rotation matrix ( ∈ SO(m)) (m × m matrix)
Φ(t) = [Φ1(t), …, Φm(t)]T
Deformation from to
ΘB = (θB3, …, θkB, ϕB3, …, ϕkB)T
Bookstein coordinates of population mean shape
ΘK = (θK3, …, θkK, ϕK3, …, ϕkK)T
Kendall coordinates of population mean shape
μ
Population average configuration (e.g., mean or mode)
Σ
Covariance matrix of Helmertized landmarks
Σkm
Shape space for k points in
SΣkm
Size-and-shape space
Ω
Covariance matrix of original landmarks
Set of coincident points
k-dimensional complex space
l-dimensional complex projective space
Unit complex sphere in l + 1 complex dimensions = S2l + 1
Set of less than full-rank points
1F1( · )
Confluent hypergeometric function
Iν( · )
Bessel function of the first kind
Simple Laguerre polynomial of degree j
Legendre polynomial of degree j
l-dimensional real space
j-dimensional simplex
arginf
value that gives the infemum
argsup
value that gives the supremum
Arg
argument of a complex number
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.223.205.163