References

  1. Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions. Dover, New York. page 228, 248, 256, 262, 263
  2. Adams, D. C. and Otárola-Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4): 393–399. page 173
  3. Adams, D. C., Rohlf, F. J., and Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the revolution. Italian Journal of Zoology, 71: 5–16. page 397
  4. Adams, D. C., Rohlf, F. J., and Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24(1): 7–14. page 397
  5. Afsari, B. (2011). Riemannian Lp center of mass: existence, uniqueness, and convexity. Proceedings of the American Mathematical Society, 139(2): 655–673. page 111, 112, 318
  6. Afsari, B., Tron, R., and Vidal, R. (2013). On the convergence of gradient descent for finding the Riemannian center of mass. SIAM Journal on Control and Optimization, 51(3): 2230–2260. page 320
  7. Airoldi, C. A., Bergonzi, S., and Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. PNAS, 107: 18898–18902. page 208, 209, 212
  8. Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall, London. page 40
  9. Albers, C. J. and Gower, J. C. (2010). A general approach to handling missing values in Procrustes analysis. Advanced Data Analysis Classification, 4(4): 223–237. page 339
  10. Allassonnière, S., Amit, Y., and Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1): 3–29. page 388
  11. Allassonnière, S., Kuhn, E., and Trouvé, A. (2010a). Bayesian consistent estimation in deformable models using stochastic algorithms: applications to medical images. Journal de la Société Français de Statistique, 151(1): 1–16. page 388
  12. Allassonnière, S., Kuhn, E., and Trouvé, A. (2010b). Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli, 16(3): 641–678. page 388
  13. Alshabani, A. K. S., Dryden, I. L., and Litton, C. D. (2007a). Partial size-and-shape distributions. Journal of Multivariate Analysis, 98(10): 1988–2001. page 259
  14. Alshabani, A. K. S., Dryden, I. L., Litton, C. D., and Richardson, J. (2007b). Bayesian analysis of human movement curves. Journal of the Royal Statistical Society, Series C, 56(4): 415–428. page 259, 325
  15. Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B. (2010a). k-means algorithm in statistical shape analysis. Communications in Statistics – Simulation and Computation, 39(5): 1016–1026. page 323
  16. Amaral, G. J. A., Dryden, I. L., Patrangenaru, V., and Wood, A. T. A. (2010b). Bootstrap confidence regions for the planar mean shape. Journal of Statistical Planning and Inference, 140(11): 3026–3034. page 322
  17. Amaral, G. J. A., Dryden, I. L., and Wood, A. T. A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association, 102(478): 695–707. page 193, 194, 203, 204, 322, 323
  18. Amaral, G. J. A. and Wood, A. T. A. (2010). Empirical likelihood methods for two-dimensional shape analysis. Biometrika, 97(3): 757–764. page 323
  19. Ambartzumian, R. V. (1982). Random shapes by factorisation. In: Statistics in Theory and Practice (ed. B. Ranneby). Swedish University of Agricultural Science, Umea. page 273
  20. Ambartzumian, R. V. (1990). Factorization, Calculus and Geometric Probability, pp. 35–42. Cambridge University Press, Cambridge. page 273, 394
  21. Amit, Y. (1997). Graphical shape templates for automatic anatomy detection with applications to MRI scans. IEEE Transactions on Medical Imaging, 16: 28–40. page 381
  22. Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9: 1545–1588. page 381
  23. Amit, Y. and Kong, A. (1996). Graphical templates for model registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18: 225–236. page 381
  24. Andersen, H., Højbjerre, M., Sørensen, D., and Eriksen, P. S. (1995). Linear and Graphical Models for the Multivariate Complex Normal Distribution. Springer-Verlag, New York. page 220
  25. Anderson, C. R. (1997). Object recognition using statistical shape analysis. PhD thesis, University of Leeds. page 11
  26. Arad, N., Dyn, N., Reisfeld, D., and Yeshurun, Y. (1994). Image warping by radial basis functions: application to facial expressions. Computer Vision and Graphical Image Processing: Graphical Models and Image Processing, 56: 161–172. page 309
  27. Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. (2006). Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 29(1): 328–347 (electronic). page 315, 396
  28. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38: 95–113. page 315
  29. Ashburner, J. and Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11: 805–821. page 390
  30. Awate, S. P., Yu, Y., and Whitaker, R. T. (2014). Kernel principal geodesic analysis. In: Machine Learning and Knowledge Discovery in Databases (eds T. Calders, F. Esposito, E. Hüllermeier, and R. Meo). Proceedings of the European Conference, ECML PKDD 2014, Nancy, France, September 15–19, 2014. Part I, Vol. 8724 of Lecture Notes in Computer Science, pp. 82–98. Springer, Heidelberg. page 375
  31. Aydin, B., Pataki, G., Wang, H., Bullitt, E., and Marron, J. S. (2009). A principal component analysis for trees. Annals of Applied Statistics, 3(4): 1597–1615. page 392
  32. Baddeley, A. J. and van Lieshout, M. N. M. (1993). Stochastic geometry models in high-level vision. In: Statistics and Images (eds K. V. Mardia and G. K. Kanji), Vol. 1, pp. 231–256. Carfax, Oxford. page 380
  33. Ball, F. G., Dryden, I. L., and Golalizadeh, M. (2006). Discussion to ‘Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes’ by A Beskos et al. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3): 367–368. page 266
  34. Ball, F. G., Dryden, I. L., and Golalizadeh, M. (2008). Brownian motion and Ornstein-Uhlenbeck processes in planar shape space. Methodology and Computing in Applied Probability, 10(1): 1–22. page 106, 266
  35. Bandulasiri, A. and Patrangenaru, V. (2005). Algorithms for nonparametric inference on shape manifolds. In: Proceedings of the Joint Statistical Meetings, pp. 1617–1622. American Statistical Association, Alexandria, VA. page 355
  36. Bär, C. (2010). Elementary Differential Geometry. Cambridge University Press, Cambridge. page 59
  37. Barden, D., Le, H., and Owen, M. (2013). Central limit theorems for Fréchet means in the space of phylogenetic trees. Electronic Journal of Probability, 18(25): 25. page 392
  38. Barry, S. J. E. and Bowman, A. W. (2008). Linear mixed models for longitudinal shape data with applications to facial modeling. Biostatistics, 9: 555–565. page 324
  39. Bartlett, M. S. (1933). On the theory of statistical regression. Proceedings of the Royal Society of Edinburgh, 53: 260. page 264
  40. Bates, D. (2005). Fitting linear mixed models in R. R News, 5(1): 27–30. page 324
  41. Bauer, M., Bruveris, M., and Michor, P. W. (2014). Overview of the geometries of shape spaces and diffeomorphism groups. Mathematical Imaging Vision, 50: 60–97. page 315
  42. Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2): 139–157. page 314, 384
  43. Bennani Dosse, M., Kiers, H. A. L., and Ten Berge, J. M. F. (2011). Anisotropic generalized Procrustes analysis. Computer Statistics Data Analysis, 55(5): 1961–1968. page 148
  44. Benson, P. J. and Perrett, D. I. (1993). Extracting prototypical facial images from exemplars. Perception, 22: 257–261. page 386
  45. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000). The protein data bank. Nucleic Acids Research, 28: 235–242. page 21
  46. Besag, J. E. (1986). On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society, Series B, 48: 259–302. page 379
  47. Besag, J. E., Green, P. J., Higdon, D., and Mengersen, K. L. (1995). Bayesian computation and stochastic systems. Statistical Science, 10(1): 3–66. page 234, 379
  48. Besl, P. J. and McKay, N. D. (1992). A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14: 239–256. page 375
  49. Bhattacharya, A. (2008). Statistical analysis on manifolds: a nonparametric approach for inference on shape spaces. Sankhyā, 70(2, Ser. A): 223–266. page 355
  50. Bhattacharya, A. and Bhattacharya, R. (2008). Statistics on Riemannian manifolds: asymptotic distribution and curvature. Proceedings of the American Mathematical Society, 136(8): 2959–2967. page 322, 397
  51. Bhattacharya, A. and Bhattacharya, R. (2012). Nonparametric Inference on Manifolds, Vol. 2 of Institute of Mathematical Statistics (IMS) Monographs. Cambridge University Press, Cambridge. page 322
  52. Bhattacharya, A. and Dunson, D. (2012a). Nonparametric Bayes classification and hypothesis testing on manifolds. Journal of Multivariate Analysis, 111: 1–19. page 323
  53. Bhattacharya, A. and Dunson, D. B. (2010). Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika, 97(4): 851–865. page 323
  54. Bhattacharya, A. and Dunson, D. B. (2012b). Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds. Annals of the Institute of Statistical Mathematics, 64(4): 687–714. page 323
  55. Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Annals of Statistics, 31(1): 1–29. page 112, 120, 318, 322
  56. Bhattacharya, R. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Annals of Statistics, 33(3): 1225–1259. page 112, 120, 318, 322
  57. Bhattacharya, R. N., Buibas, M., Dryden, I. L., et al. (2013). Extrinsic data analysis on sample spaces with a manifold stratification. In: Advances in Mathematics (eds L. Beznea, V. Brzaneseu, M. Iosifeseu, G. Marinosehi, R. Purice and D. Timotin), pp. 227–240. The Publishing House of the Romanian Academy, Bucharest. page 392
  58. Bhavnagri, B. (1995a). Construction of a Markov process to model a process arising in vision. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 76–81, University of Leeds Press, Leeds. page 350
  59. Bhavnagri, B. (1995b). Connected components of the space of simple, closed non-degenerate polygons. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 187–188. University of Leeds Press, Leeds. page 273
  60. Biasotti, S., Cerri, A., Bronstein, A. M., and Bronstein, M. M. (2014). Quantifying 3D shape similarity using maps: Recent trends, applications and perspectives. In: Eurographics 2014 (eds S. Lefebvre and M. Spagnuolo), pp. 135–159. Eurographics Association, Geneva. page 375
  61. Bigot, J. and Charlier, B. (2011). On the consistency of Fréchet means in deformable models for curve and image analysis. Electronic Journal of Statistics, 5: 1054–1089. page 388
  62. Billera, L. J., Holmes, S. P., and Vogtmann, K. (2001). Geometry of the space of phylogenetic trees. Advances in Applied Mathematics, 27(4): 733–767. page 392
  63. Bingham, C., Chang, T., and Richards, D. (1992). Approximating the matrix Fisher and Bingham distributions: applications to spherical regression and Procrustes analysis. Journal of Multivariate Analysis, 41: 314–337. page 222
  64. Boas, F. (1905). The horizontal plane of the skull and the general problem of the comparison of variable forms. Science, 21(544): 862–863. page 125, 132
  65. Bock, M. T. and Bowman, A. W. (2006). On the measurement and analysis of asymmetry with applications to facial modelling. Journal of the Royal Statistical Society, Series C, 55(1): 77–91. page 171, 324
  66. Bookstein, F. L. (1978). The Measurement of Biological Shape and Shape Change. Lecture Notes on Biomathematics, Vol. 24. Springer-Verlag, New York. page 32, 33, 305, 306, 307
  67. Bookstein, F. L. (1984). A statistical method for biological shape comparisons. Journal of Theoretical Biology, 107: 475–520. page 41, 249
  68. Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science, 1: 181–242. page 28, 33, 35, 41, 42, 53, 108, 249, 259, 260, 261, 262, 307
  69. Bookstein, F. L. (1989). Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 567–585. page xxii, 270, 279, 282, 284, 288, 292, 293
  70. Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge. page xx, 4, 22, 152, 239, 270, 279, 291, 384, 396
  71. Bookstein, F. L. (1994a). The morphometric synthesis: a brief intellectual history. In: Commemorative 100th Volume of Lecture Notes in Biomathematics (ed. S. A. Levin), pp. 212–237. Springer, New York. page 32
  72. Bookstein, F. L. (1994b). Can biometrical shape be a homologous character? In: Homology: the Hierarchical Basis of Comparative Biology (ed. B. K. Hall), pp. 197–227. Academic Press, New York. page 272
  73. Bookstein, F. L. (1995). Metrics and symmetries of the morphometric synthesis. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 139–153. University of Leeds Press, Leeds. page 297
  74. Bookstein, F. L. (1996a). Applying landmark methods to biological outline data. In: Proceedings in Image Fusion and Shape Variability Techniques (eds K. V. Mardia, C. A. Gill, and I. L. Dryden), pp. 59–70. University of Leeds Press, Leeds. page 5, 368, 369
  75. Bookstein, F. L. (1996b). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58: 313–365. page 15, 16, 81, 289, 297, 299, 303, 304
  76. Bookstein, F. L. (1996c). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1: 225–243. page 368, 369
  77. Bookstein, F. L. (1997). Shape and the information in medical images: a decade of the morphometric synthesis. Computer Vision and Image Understanding, 66: 97–118. page 193, 201
  78. Bookstein, F. L. (2000). Creases as local features of deformation grids. Medical Image Analysis, 4: 93–110. page 203, 285
  79. Bookstein, F. L. (2001). “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage, 14: 1454–1462. page 384
  80. Bookstein, F. L. (2002). Creases as morphometric characters. In: Morphology, Shape and Phylogeny (eds N. MacLeod and P. L. Forey), Vol. 64, pp. 139–174. Taylor and Francis, London. page 285
  81. Bookstein, F. L. (2013a). Allometry for the twenty-first century. Biological Theory, 7(1): 10–25. page 109, 305
  82. Bookstein, F. L. (2013b). It is not our data that are non-Euclidean, but only our models. In: Proceedings of LASR 2013 – Statistical Models and Methods for non-Euclidean Data with Current Scientific Applications (eds K. V. Mardia, A. Gusnanto, A. D. Riley and J. Voss), pp. 33–37. University of Leeds Press, Leeds. page 259
  83. Bookstein, F. L. (2014). Measuring and Reasoning: Numerical Inference in the Sciences. Cambridge University Press, Cambridge. page xx, 197, 239, 285, 299, 326, 396
  84. Bookstein, F. L. (2015a). Integration, disintegration, and self-similarity: Characterizing the scales of shape variation in landmark data. Evolutionary Biology, 42(4): 395–426. page 147, 150, 289, 295, 298, 311, 362
  85. Bookstein, F. L. (2015b). The relation between geometric morphometrics and functional morphology, as explored by Procrustes interpretation of individual shape measures pertinent to junction. The Anatomical Record 298: 314–327. page 163
  86. Bookstein, F. L. (2016). The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evolutionary Biology. DOI: 10.1007/s11692-016-9382-7 page 111, 152, 165
  87. Bookstein, F. L. and Green, W. D. K. (1993). A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision, 3: 231–261. page 313
  88. Bookstein, F. L. and Mardia, K. V. (2001). EM-type algorithms for missing morphometric data. In: Proceedings of the International Conference on Recent Devlopments in Statistics and Probability and their Applications, pp. 66–68. page 339
  89. Bookstein, F. L. and Sampson, P. D. (1990). Statistical models for geometric components of shape change. Communications in Statistics –Theory and Methods, 19: 1939–1972. page 212, 307, 333, 334, 335
  90. Bookstein, F. L., Schäfer, K., Prossinger, H., et al. (1999). Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. The Anatomical Record, 257(6): 217–224. page 196
  91. Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A., and Hamelryck, T. (2008). A generative, probabilistic model of local protein structure. Proceedings of the National Academy of Sciences of the United States of America, 105(26): 8932–8937. page 208, 209
  92. Borg, I. and Groenen, P. (1997). Modern Multidimensional Scaling: Theory and Applications. Springer, New York. page 126
  93. Bowman, A. (2008). Statistics with a human face. Significance, 5(2): 74–77. page 324
  94. Bowman, A. W. and Bock, M. T. (2006). Exploring variation in three-dimensional shape data. Journal of Computational and Graphical Statistics, 15(3): 524–541. page 324
  95. Breuß, M., Bruckstein, A. M., and Maragos, P. (eds) (2013). Innovations for Shape Analysis, Models and Algorithms. Springer, Berlin. page 397
  96. Brignell, C. J. (2007). Shape analysis and statistical modelling in brain imaging. PhD thesis, University of Nottingham. page 148, 236
  97. Brignell, C. J., Browne, W. J., and Dryden, I. L. (2005). Covariance weighted Procrustes analysis. In: LASR 2005 – Quantitative Biology, Shape Analysis, and Wavelets (eds S. Barber, P. D. Baxter, K. V. Mardia and R. E. Walls), pp. 107–110. University of Leeds, Leeds. page 148
  98. Brignell, C. J., Dryden, I. L., and Browne, W. J. (2015). Covariance weighted Procrustes analysis. In: Riemannian Computing in Computer Vision (eds P. K. Turaga and A. Srivastava), pp. 189–209. Springer, New York. page 148, 149
  99. Brignell, C. J., Dryden, I. L., Gattone, S. A., et al. (2010). Surface shape analysis, with an application to brain surface asymmetry in schizophrenia. Biostatistics, 11: 609–630. page 4, 25, 171, 367
  100. Broadbent, S. (1980). Simulating the ley hunter. Journal of the Royal Statistical Society, Series A, 143: 109–140. page 30, 244
  101. Brody, D. C. (2004). Shapes of quantum states. Journal of Physics A, 37(1): 251–257. page 396
  102. Brombin, C., Pesarin, F., and Salmaso, L. (2011). Dealing with more variables than the sample size: an application to shape analysis. In: Nonparametric Statistics and Mixture Models, pp. 28–44. World Scientific Publishing, Hackensack, NJ. page 323
  103. Brombin, C. and Salmaso, L. (2009). Multi-aspect permutation tests in shape analysis with small sample size. Computer Statistics Data Analysis, 53(12): 3921–3931. page 323
  104. Brombin, C. and Salmaso, L. (2013). Permutation Tests in Shape Analysis. Springer Briefs in Statistics. Springer, New York. page xx, 323, 397
  105. Brombin, C., Salmaso, L., Fontanella, L., and Ippoliti, L. (2015). Non-parametric combination-based tests in dynamic shape analysis. Journal of Nonparametric Statistics, 27: 460–484. page 323
  106. Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., and Sapiro, G. (2010). A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision, 89(2-3): 266–286. page 375
  107. Bubenik, P., Carlsson, G., Kim, P. T., and Luo, Z.-M. (2010). Statistical topology via Morse theory persistence and nonparametric estimation. In: Algebraic Methods in Statistics and Probability II, Vol. 516 of Contemporary Mathematics, pp. 75–92. American Mathematical Society, Providence, RI. page 393
  108. Burl, M. and Perona, P. (1996). Recognition of planar object classes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 223–230. IEEE Computer Society Press, Los Alamitos, CA. page 258
  109. Burt, D. M. and Perrett, D. I. (1995). Perception of age in facial aging in adult caucasian male faces: computer graphic manipulation of shape and colour information. Proceedings of the Royal Society of London, Series B, 259: 137–143. page 386
  110. Buser, P. and Karcher, H. (1981). Gromov’s Almost Flat Manifolds, Vol. 81 of Astérisque. Société Mathématique de France, Paris. page 318
  111. Cao, Y., Zhang, Z., Czogiel, I., Dryden, I. L., and Wang, S. (2011). 2D non-rigid partial shape matching using MCMC and contour subdivision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2345–2352. IEEE Computer Society Press, Los Alamitos, CA. page 349
  112. Cardini, A. (2014). Missing the third dimension in geometric morphometrics: how to assess if 2D images really are a good proxy for 3D structures? Hystrix, the Italian Journal of Mammalogy, 25(2): 73–81. page 173
  113. Cardini, A., Polly, D., Dawson, R., and Milne, N. (2015). Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evolutionary Biology, 42(2): 169–176. page 109
  114. Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society (NS), 46(2): 255–308. page 393
  115. Carne, T. K. (1990). The geometry of shape spaces. Proceedings of the London Mathematical Society, 61: 407–432. page 393
  116. Charpiat, G., Faugeras, O., and Keriven, R. (2005). Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics, 5(1): 1–58. page 364
  117. Cheng, W., Dryden, I. L., Hitchcock, D. B., and Le, H. (2014). Analysis of AneuRisk65 data: internal carotid artery shape analysis. Electronic Journal of Statistics, 8: 1905–1913. page 4, 374
  118. Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11: 447–475. page 4, 325, 371, 372, 373, 374, 389
  119. Cheverud, J. M., Lewis, J. L., Bachrach, W., and Lew, W. D. (1983). The measurement of form and variation in form: and application of three dimensional quantitive morphology by finite element methods. American Journal of Physical Anthropology, 62: 151–165. page 305
  120. Cheverud, J. M. and Richtsmeier, J. T. (1986). Finite element scaling applied to sexual dimorphism in rhesus macaque (Macaca mulatta) facial growth. Systematic Zoology, 35: 381–399. page 303, 305, 307
  121. Chikuse, Y. (2003). Statistics on Special Manifolds, Vol. 174 of Lecture Notes in Statistics. Springer, New York. page 396
  122. Christaller, W. (1933). Die Zentralen Orte in Suddeutschland. Prentice Hall, Upper Saddle River, NJ. page 28
  123. Christensen, G., Rabbitt, R. D., and Miller, M. I. (1996). Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5: 1435–1447. page 314
  124. Chui, H. and Rangarajan, A. (2000). A feature registration framework using mixture models. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 190–197. page 341, 348
  125. Chui, H. and Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89(2–3): 114–141. page 341, 348
  126. Chung, M. K., Dalton, K. M., Shen, L., Evans, A. C., and Davidson, R. J. (2007). Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Transactions on Medical Imaging, 26(4): 566–581. page 365
  127. Claeskens, G., Silverman, B. W., and Slaets, L. (2010). A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(5): 673–694. page 325
  128. Claude, J. (2008). Morphometrics with R. Springer, New York. page xx, 396
  129. Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31: 33–42. page 125
  130. Cohen, F. and Sternberg, J. (1980). On the prediction of protein structure: The significance of the root-mean-square deviation. Journal of Molecular Biology, 38: 321–333. page 100
  131. Coombes, A. M., Moss, J. P., Linney, A. D., Richards, R., and James, D. R. (1991). A mathematical method for the comparison of three dimensional changes in the facial surface. European Journal of Orthodontics, 13: 95–110. page 375
  132. Cooper, W., Goodall, C. R., Suryawanshi, S., and Tan, H. (1995). Euclidean shape tensor analysis. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 179–180. University of Leeds Press, Leeds. page 361
  133. Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 681–685. page 381
  134. Cootes, T. F. and Taylor, C. J. (1995). Active shape models: A review of recent work. In: Proceedings in Current Issues in Statistical Shape Analysis, pp. 108–114. University of Leeds Press, Leeds. page 381
  135. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1992). Training models of shape from sets of examples. In: Proceedings of the British Machine Vision Conference (eds D. C. Hogg and R. D. Boyle), pp. 9–18. Springer-Verlag, Berlin. page 4, 95, 150, 163, 380
  136. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1994). Image search using flexible shape models generated from sets of examples. In: Statistics and Images, (ed. K. V. Mardia), Vol. 2, pp. 111–139. Carfax, Oxford. page 4, 163, 164, 381
  137. Cox, T. F. and Cox, M. A. A. (1994). Multidimensional Scaling. Chapman and Hall, London. page 126, 133
  138. Craw, I. and Cameron, P. (1992). Face recognition by computer. In: Proceedings of the British Machine Vision Conference (eds D. Hogg and R. D. Boyle), pp. 498–507. Springer-Verlag, Berlin. page 384
  139. Crawley, M. (2007). The R Book. John Wiley & Sons, Ltd, Chichester. page 7
  140. Cressie, N. A. C. (1993). Statistics for Spatial Data, Revised Edition. John Wiley & Sons, Inc., New York. page 287, 308, 311
  141. Czogiel, I. (2010). Statistical inference for molecular shapes. PhD thesis, The University of Nottingham. page 195
  142. Czogiel, I., Dryden, I. L., and Brignell, C. J. (2011). Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment. Annals of Applied Statistics, 5: 2603–2629. page 13, 349, 375
  143. da Fontoura Costa, L. and Marcondes Cesar Jr, R. (2009). Shape Classification and Analysis: Theory and Practice, 2nd edn. CRC Press, Boca Raton. page xx, 397
  144. Darroch, J. N. and Mosimann, J. E. (1985). Canonical and principal components of shape. Biometrika, 72: 241–252. page 40
  145. Das, S. and Vaswani, N. (2010). Nonstationary shape activities: Dynamic models for landmark shape change and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4): 579–592. page 325
  146. Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., and Taylor, C. J. (2002). A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21(5): 525–537. page 349
  147. Davies, R. H., Twining, C. J., and Taylor, C. J. (2008a). Groupwise surface correspondence by optimization: Representation and regularization. Medical Image Analysis, 12(6): 787–796. page 349
  148. Davies, R. H., Twining, C. J., and Taylor, C. J. (2008b). Statistical Models of Shape: Optimisation and Evaluation. Springer, New York. page xx, 349, 377, 381, 390, 397
  149. de Souza, K. M. A., Jackson, A. L., Kent, J. T., Mardia, K. V., and Soames, R. W. (2001a). An assessment of the accuracy of stereolithographic skull models. Clinical Anatomy, 14: 296. page 36
  150. de Souza, K. M. A., Jackson, A. L., Kent, J. T., Mardia, K. V., and Soames, R. W. (2001b). A technique for assessing the accuracy of stereolithographic models. Clinical Anatomy, 14: 296. page 36
  151. Deane, C. M., Dunbar, J., Fuchs, A., Mardia, K. V., Shi, J., and Wilman, H. R. (2013). Describing protein structure geometry to aid in functional understanding. In: Proceedings of LASR 2013 – Statistical Models and Methods for non-Euclidean Data with Current Scientific Applications (eds K. V. Mardia, A. Gusnanto, A. D. Riley and J. Voss), pp. 49–51. University of Leeds Press, Leeds. page 374
  152. Dette, H. and Wiens, D. P. (2009). Robust designs for 3D shape analysis with spherical harmonic descriptors. Statistica Sinica, 19(1): 83–102. page 365
  153. Dryden, I. L. (1989). The statistical analysis of shape data. PhD thesis, University of Leeds. page 9, 121
  154. Dryden, I. L. (1991). Discussion to ‘Procrustes methods in the statistical analysis of shape’ by C.R. Goodall. Journal of the Royal Statistical Society, Series B, 53: 327–328. page 136, 146, 228, 232
  155. Dryden, I. L. (1999). General shape and registration analysis. In: Stochastic Geometry: Likelihood and Computation (eds O. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout), pp. 333–364. Chapman and Hall, London. page 393
  156. Dryden, I. L. (2003). Statistical shape analysis in high-level vision. In: Mathematical Methods in Computer Vision (eds P. J. Olver and A. Tannenbaum), pp. 37–55. Springer-Verlag, New York. page 163
  157. Dryden, I. L. (2005a). Shape analysis. In: Encyclopaedia of Biostatistics. (eds P. Armitage and T. Colton), 2nd edn, Vol. 7, pp. 4919–4928. John Wiley & Sons, Ltd, Chichester. page 397
  158. Dryden, I. L. (2005b). Statistical analysis on high-dimensional spheres and shape spaces. Annals of Statistics, 33(4): 1643–1665. page 223, 367
  159. Dryden, I. L. (2014). Shape and object data analysis [discussion of the paper by Marron and Alonso (2014)]. Biometrical Journal, 56(5): 758–760. page 391
  160. Dryden, I. L. (2015). shapes: Statistical shape analysis. R package version 1.1-11. http://cran.r-project.org/package=shapes (accessed 20 March 2016). page xix, 7
  161. Dryden, I. L., Bai, L., Brignell, C. J., and Shen, L. (2009a). Factored principal components analysis, with applications to face recognition. Statistics and Computing, 19(3): 229–238. page 147
  162. Dryden, I. L., Faghihi, M. R., and Taylor, C. C. (1995). Investigating regularity in spatial point patterns using shape analysis. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 40–48. University of Leeds Press, Leeds. page 351
  163. Dryden, I. L., Faghihi, M. R., and Taylor, C. C. (1997). Procrustes shape analysis of spatial point patterns. Journal of the Royal Statistical Society, Series B, 59: 353–374. page 351, 362
  164. Dryden, I. L., Hirst, J. D., and Melville, J. L. (2007). Statistical analysis of unlabeled point sets: comparing molecules in chemoinformatics. Biometrics, 63(1): 237–251, 315. page 13, 234, 341, 345, 346, 347, 348, 349
  165. Dryden, I. L. and Kent, J. T. (eds) (2015). Geometry Driven Statistics. John Wiley & Sons, Ltd, Chichester. page 397
  166. Dryden, I. L., Koloydenko, A., and Zhou, D. (2009b). Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Annals of Applied Statistics, 3(3): 1102–1123. page 396
  167. Dryden, I. L., Kume, A., Le, H., and Wood, A. T. A. (2008a). A multi-dimensional scaling approach to shape analysis. Biometrika, 95(4): 779–798. page 355, 356
  168. Dryden, I. L., Kume, A., Le, H., and Wood, A. T. A. (2010). Statistical inference for functions of the covariance matrix in the stationary Gaussian time-orthogonal principal components model. Annals of the Institute of Statistical Mathematics, 62(5): 967–994. page 325
  169. Dryden, I. L., Kume, A., Le, H., Wood, A. T. A., and Laughton, C. (2002). Size-and-shape analysis of DNA molecular dynamics simulations. In: Proceedings of LASR 2002 (eds K. V. Mardia, R. G. Aykroyd and P. McDonnell), pp.23–26. University of Leeds Press, Leeds. page 325
  170. Dryden, I. L., Le, H., Preston, S. P., and Wood, A. T. (2014). Mean shapes, projections and intrinsic limiting distributions. Journal of Statistical Planning and Inference, 145: 25–32. page 115, 117, 197, 322, 354, 355
  171. Dryden, I. L. and Mardia, K. V. (1991a). Distributional and theoretical aspects of shape analysis. In: Probability Measures on Groups X (ed. H. Heyer), pp. 95–116. Plenum, New York. page 393
  172. Dryden, I. L. and Mardia, K. V. (1991b). General shape distributions in a plane. Advances in Applied Probability, 23: 259–276. page 121, 147, 239, 252, 253
  173. Dryden, I. L. and Mardia, K. V. (1992). Size and shape analysis of landmark data. Biometrika, 79: 57–68. page 35, 36, 259, 260, 263
  174. Dryden, I. L. and Mardia, K. V. (1993). Multivariate shape analysis. Sankhya Series A, 55: 460–480. page 12, 93, 95, 193
  175. Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. John Wiley & Sons, Ltd, Chichester. page xix, 5
  176. Dryden, I. L., Oxborrow, N., and Dickson, R. (2008b). Familial relationships of normal spine shape. Statistics in Medicine, 27(11): 1993–2003. page 236
  177. Dryden, I. L., Taylor, C. C., and Faghihi, M. R. (1999). Size analysis of nearly regular delaunay triangulations. Methodology and Computing in Applied Probability, 1: 97–117. page 362
  178. Dryden, I. L. and Walker, G. (1998). Shape analysis using highly resistant regression. Technical Report STAT98/03, Department of Statistics, University of Leeds. page 338
  179. Dryden, I. L. and Walker, G. (1999). Highly resistant regression and object matching. Biometrics, 55: 820–825. page 336, 337
  180. Dryden, I. L. and Zempléni, A. (2006). Extreme shape analysis. Journal of the Royal Statistical Society, Series C, 55: 103–121. page 351
  181. Du, J., Dryden, I. L., and Huang, X. (2015). Size and shape analysis of error-prone shape data. Journal of the American Statistical Association, 110(509): 368–379. page 63, 146
  182. Dubuisson, M.-P. and Jain, A. K. (1994). A modified Hausdorff distance for object matching. In: Proceedings of the International Conference on Pattern Recognition, pp. 566–568. IEEE Computer Society Press, Los Alamitos, CA. page 364
  183. Duchon, J. (1976). Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces. RAIRO Analyse Numérique, 10: 5–12. page 280, 287
  184. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge. page 208
  185. Dürer, A. (1528). Vier Bücher von Menschlicher Proportion. Hieronymus Formschneider, Nuremberg. page 303, 304
  186. Durrleman, S., Pennec, X., Trouvé, A., and Ayache, N. (2007). Measuring brain variability via sulcal lines registration: a diffeomorphic approach. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) (eds N. Ayache, S. Ourselin and A. Maeder), Vol. 4791 of Lecture Notes in Computer Science. Brisbane. page 390
  187. Durrleman, S., Pennec, X., Trouvé, A., and Ayache, N. (2009). Statistical models on sets of curves and surfaces based on currents. Medical Image Analysis, 13(5): 793–808. page 315
  188. Durrleman, S., Pennec, X., Trouvé, A., Thompson, P. M., and Ayache, N. (2008). Inferring brain variability from diffeomorphic deformations of currents: An integrative approach. Medical Image Analysis, 12(5): 626–637. page 315
  189. Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, 64: 105–123. page 147
  190. Elad, A. and Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10): 1285–1295. page 375
  191. Everitt, B. S. and Rabe-Hesketh, S. (1997). The Analysis of Proximity Data. Kendall’s Library of Statistics 4. Arnold, London. page 126
  192. Evison, M. P., Morecroft, L., Fieller, N. R. J., and Dryden, I. L. (2010). A large database sample of 3D facial images and measurements. In: Computer-Aided Forensic Facial Comparison (eds M. P. Evison and R. W. V. Bruegge), pp. 53–69. CRC Press, Boca Raton. page 163
  193. Evison, M. P. and Vorder Bruegge, R. W. (eds) (2010). Computer-aided Forensic Facial Comparison. CRC Press, Boca Raton. page 384, 397
  194. Exner, H. E. and Hougardy, H. P. (1988). Quantitative Image Analysis of Microstructures. DGM Informationsgesellschaft mbH, Oberursel. page 363
  195. Faghihi, M. R. (1996). Shape analysis of spatial point patterns. PhD thesis, University of Leeds. page 351
  196. Faghihi, M. R., Taylor, C. C., and Dryden, I. L. (1999). Procrustes shape analysis of triangulations of a two coloured point pattern. Statistics and Computing, 9: 43–53. page 362
  197. Falconer, D. S. (1973). Replicated selection for body weight in mice. Genetical Research Cambridge, 22: 291–321. page 8
  198. Faraway, J. (2004a). Human animation using nonparametric regression. Journal of Computational and Graphical Statistics, 13: 537–553. page 324, 325
  199. Faraway, J. J. (2004b). Modeling continuous shape change for facial animation. Statistics and Computing, 14(4): 357–363. page 324
  200. Faraway, J. J. and Trotman, C.-A. (2011). Shape change along geodesics with application to cleft lip surgery. Journal of the Royal Statistical Society: Series C (Applied Statistics), 60(5): 743–755. page 327
  201. Fawcett, C. D. and Lee, A. (1902). A second study of the variation and correlation of the human skull, with special reference to the Naqada crania. Biometrika, 1: 408–467. page 31
  202. Feragen, A., Lauze, F., and Nielsen, M. (2010). Fundamental geodesic deformations in spaces of tree-like shapes. In: International Conference for Pattern Recognition, pp. 2089–2093. IEEE Computer Society Press, Los Alamitos, CA. page 392
  203. Feragen, A., Lo, P., de Bruijne, M., Nielsen, M., and Lauze, F. (2013). Toward a theory of statistical tree-shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 2008–2021. page 392
  204. Fillard, P., Arsigny, V., Pennec, X., and Ayache, N. (2007). Clinical DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics. IEEE Transactions on Medical Imaging, 26(11): 1472–1482. page 396
  205. Fisher, N. I., Lewis, T., and Embleton, B. J. (1987). Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge. page 325
  206. Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian manifolds. International Journal of Computer Vision, 105(2): 171–185. page 327
  207. Fletcher, P. T., Lu, C., Pizer, S. M., and Joshi, S. C. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8): 995–1005. page 326, 327
  208. Fletcher, P. T., Venkatasubramanian, S., and Joshi, S. (2009). The geometric median on Riemannian manifolds with application to robust atlas estimation. Neuroimage, 45(1): S143–S152. page 323
  209. Fotouhi, H. and Golalizadeh, M. (2012). Exploring the variability of DNA molecules via principal geodesic analysis on the shape space. Journal of Applied Statistics, 39(10): 2199–2207. page 327
  210. Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l'Institut Henri Poincaré, 10: 215–310. page 103, 111
  211. Free, S. L., O’Higgins, P., Maudgil, D. D., et al. (2001). Landmark-based morphometrics of the normal adult brain using MRI. Neuroimage, 13: 801–813. page 163
  212. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, pp. 432–441. page 197
  213. Fright, W. R. and Linney, A. D. (1993). Registration of 3-D head surfaces using multiple landmarks. IEEE Transactions on Medical Imaging, 12: 515–520. page 139
  214. Fritsch, D. S., Pizer, S. M., Chaney, E. L., Lui, A., Raghavan, S., and Shah, T. (1994). Cores for image registration. In: Proceedings of SPIE Medical Imaging ’94 (ed. M. H. Loew), Vol. 2167, pp. 128–142. SPIE Press, Bellingham, WA. page 390
  215. Galileo (1638). Discorsi e dimostrazioni matematiche, informo a due nuoue scienze attenti alla mecanica i movimenti locali. appresso gli Elsevirii; Opere VIII. page 2, 3
  216. Galton, F. (1878). Composite portraits. Journal of the Anthropological Institute of Great Britain and Ireland, 8: 132–142. page 384
  217. Galton, F. (1883). Enquiries into Human Faculty and Development. Dent, London. page 384, 387
  218. Galton, F. (1907). Classification of portraits. Nature, 76: 617–618. page 36, 42
  219. Gamble, J. and Heo, G. (2010). Exploring uses of persistent homology for statistical analysis of landmark-based shape data. Journal of Multivariate Analysis, 101(9): 2184–2199. page 393
  220. Gardner, R. J., Hobolth, A., Jensen, E. B. V., and Sørensen, F. B. (2005). Shape discrimination by total curvature, with a view to cancer diagnostics. Journal of Microscopy, 217(1): 49–59. page 368
  221. Gates, J. (1994). Shape distributions for planar triangles by dual construction. Advances in Applied Probability, 26: 324–333. page 351
  222. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd edn. CRC Press, Boca Raton. page 379
  223. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions of Pattern Analysis and Machine Intelligence, 6: 721–741. page 379
  224. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds) (1996). Markov Chain Monte Carlo in Practice. Chapman and Hall, London. page 234, 379
  225. Glasbey, C. A. and Horgan, G. W. (1995). Image Analysis for the Biological Sciences. John Wiley & Sons, Ltd, Chichester. page 363
  226. Glasbey, C. A., Horgan, G. W., Gibson, G. J., and Hitchcock, D. (1995). Fish shape analysis using landmarks. Biometrical Journal, 37: 481–495. page 147
  227. Glasbey, C. A. and Mardia, K. V. (2001). A penalized likelihood approach to image warping. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3): 465–514. page 375, 386
  228. Glaunès, J., Vaillant, M., and Miller, M. I. (2004). Landmark matching via large deformation diffeomorphisms on the sphere. Journal of Mathematical Imaging and Vision, 20(1–2): 179–200. page 315
  229. Good, P. (1994). Permutation Tests. Springer-Verlag, New York. page 193
  230. Goodall, C. R. (1991). Procrustes methods in the statistical analysis of shape (with discussion). Journal of the Royal Statistical Society, Series B, 53: 285–339. page 33, 35, 95, 125, 133, 135, 138, 146, 147, 197, 198, 200, 205, 277
  231. Goodall, C. R. (1995). Procrustes methods in the statistical analysis of shape revisited. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 18–33. University of Leeds Press, Leeds. page 66, 147, 361
  232. Goodall, C. R. and Bose, A. (1987). Models and Procrustes methods for the analysis of shape differences. In: Proceedings of the 19th INTERFACE Symposium (eds R. M. Heiberger), pp. 86–92. Interface Foundation, Fairfax Station. page 138
  233. Goodall, C. R. and Lange, N. (1989). Growth curve models for correlated triangular shapes. In: Proceedings of the 21st Symposium on the Interface between Computing Science and Statistics (eds K. Berk and L. Malone), pp. 445–454. Interface Foundation, Fairfax Station. page 22, 325
  234. Goodall, C. R. and Mardia, K. V. (1991). A geometrical derivation of the shape density. Advances in Applied Probability, 23: 496–514. page 243, 260, 264, 265, 266
  235. Goodall, C. R. and Mardia, K. V. (1992). The noncentral Bartlett decompositions and shape densities. Journal of Multivariate Analysis, 40: 94–108. page 68, 106, 121, 264, 267
  236. Goodall, C. R. and Mardia, K. V. (1993). Multivariate aspects of shape theory. Annals of Statistics, 21: 848–866. page 106, 121, 264, 267, 273
  237. Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Annals of Mathematical Statistics, 34: 152–177. page 220
  238. Gordon, A. D. (1995). Local transformations of facial features. Journal of Applied Statistics, 22: 179–184. page 276
  239. Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53: 325–338. page 79
  240. Gower, J. C. (1971). Statistical methods of comparing different multivariate analyses of the same data. In: Mathematics in the Archaeological and Historical Sciences (eds F. R. Hodson, D. G. Kendall and P. Tautu), pp. 138–149. Edinburgh University Press, Edinburgh. page 125
  241. Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika, 40: 33–50. page 125, 133, 136, 138
  242. Green, B. F. (1952). The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17: 429–440. page 125
  243. Green, P. J., Latuszyński, K., Pereyra, M., and Robert, C. P. (2015). Bayesian computation: a summary of the current state, and samples backwards and forwards. Statistics and Computing, 25(4): 835–862. page 379
  244. Green, P. J. and Mardia, K. V. (2004). Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Technical Report, University of Bristol. arXiv:math/0503712v1. page 21
  245. Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Biometrika, 93: 235–254. page 21, 234, 341, 342, 343, 344, 345, 349
  246. Green, P. J., Mardia, K. V., Nyirongo, V. B., and Ruffieux, Y. (2010). Bayesian modelling for matching and alignment of biomolecules. In: The Oxford Handbook of Applied Bayesian Analysis (eds A. O'Hagan and M. West), pp. 27–50. Oxford University Press, Oxford. page 344
  247. Green, P. J. and Sibson, R. (1978). Computing Dirichlet tessalations in the plane. Computer Journal, 21: 168–173. page 29
  248. Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, London. page 280, 287, 288, 313
  249. Green, W. D. K. (1995). A simple construction of triangle shape space. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 160–166. University of Leeds Press, Leeds. page 86
  250. Green, W. D. K. (1996). The thin-plate spline and images with curving features. In: Image Fusion and Shape Variability (eds K. V. Mardia, C. A. Gill and I. L. Dryden), pp. 79–87. University of Leeds Press, Leeds. page 5, 369
  251. Grenander, U. (1994). General Pattern Theory. Clarendon Press, Oxford. page 365, 379, 390
  252. Grenander, U., Chow, Y., and Keenan, D. M. (1991). Hands: A Pattern Theoretic Study of Biological Shapes. Research Notes in Neural Computing, Vol. 2. Springer-Verlag, New York. page 4
  253. Grenander, U. and Keenan, D. M. (1993). Towards automated image understanding. In: Statistics and Images (eds K. V. Mardia and G. K. Kanji), Vol. 1, pp. 89–103. Carfax, Oxford. page 379
  254. Grenander, U. and Manbeck, K. M. (1993). A stochastic shape and colour model for defect detection in potatoes. Journal of Computational and Statistical Graphics, 2: 131–151. page 365, 366, 368
  255. Grenander, U. and Miller, M. I. (1994). Representations of knowledge in complex systems (with discussion). Journal of the Royal Statistical Society, Series B, 56: 549–603. page 4, 367, 368, 390
  256. Grenander, U. and Miller, M. I. (2007). Pattern Theory: from Representation to Inference. Oxford University Press, Oxford. page xx, 314, 365, 377, 379, 390, 397
  257. Groisser, D. (2005). On the convergence of some Procrustean averaging algorithms. Stochastics, 77(1): 31–60. page 138
  258. Grove, K. and Karcher, H. (1973). How to conjugate C1-close group actions. Mathematische Zeitschrift, 132: 11–20. page 111, 318
  259. Grove, K., Karcher, H., and Ruh, E. A. (1974). Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems. Mathematische Annalen, 211: 7–21. page 318
  260. Grove, K., Karcher, H., and Ruh, E. A. (1975). Group actions and curvature. Bulletin of the American Mathematical Society, 81: 89–92. page 318
  261. Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation. Psychometrika, 35: 493–505. page 125
  262. Gunz, P., Mitteroecker, P., and Bookstein, F. L. (2005). Semi-landmarks in three dimensions. In: Modern Morphometrics in Physical Anthropology (ed. D. E. Slice), pp. 73–98. Kluwer Academic/Plenum Publishers, New York. page 5
  263. Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., and Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57: 48–62. page 339
  264. Guta, M., Kypraios, T., and Dryden, I. (2012). Rank-based model selection for multiple ions quantum tomography. New Journal of Physics, 14(10): 105002. page 396
  265. Hainsworth, T. J. and Mardia, K. V. (1993). A Markov random field restoration of image sequences. In: Markov Random Fields (eds R. Chellappa and A. Jain), pp. 409–445. Academic Press, Boston. page 379
  266. Hall, P., Marron, J. S., and Neeman, A. (2005). Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3): 427–444. page 8
  267. Hamelryck, T., Mardia, K. V., and Ferkinghoff-Borg, J. (eds) (2012). Bayesian Methods in Structural Bioinformatics. Springer, New York. page 349, 397
  268. Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 9. page 173
  269. Harris, J. (1992). Algebraic Geometry: A First Course. Springer-Verlag, Berlin. page 273
  270. Harris, S. A., Gavathiotis, E., Searle, M. S., Orozco, M., and Laughton, C. A. (2001). Co-operativity in drug-DNA recognition: a molecular dynamics study. Journal of the American Chemical Society, 123: 12658–12663. page 139
  271. Hastie, T. and Kishon, E. (1991). Discussion to Goodall (1991). Journal of the Royal Statistical Society, Series B, 53: 330–331. page 277, 314
  272. Hastie, T. and Simard, P. Y. (1998). Metrics and models for handwritten character recognition. Statistical Science, 13(1): 54–65. page 11
  273. Hastie, T. and Tibshirani, R. (1994). Handwritten digit recognition via deformable prototypes. Technical Report, AT&T Bell Laboratories. page 11
  274. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57: 97–109. page 382
  275. Hendriks, H. and Landsman, Z. (1996a). Asymptotic behavior of sample mean location for manifolds. Statistics & Probability Letters, 26(2): 169–178. page 318
  276. Hendriks, H. and Landsman, Z. (1996b). Asymptotic tests for mean location on manifolds. Comptes Rendus de l'Academiedes Sciences – Series I – Mathematics, 322(8): 773–778. page 318
  277. Hendriks, H. and Landsman, Z. (1998). Mean location and sample mean location on manifolds: asymptotics, tests, confidence regions. Journal of Multivariate Analysis, 67(2): 227–243. page 318, 322
  278. Hendriks, H. and Landsman, Z. (2007). Asymptotic data analysis on manifolds. Annals of Statistics, 35(1): 109–131. page 318
  279. Hendriks, H., Landsman, Z., and Ruymgaart, F. (1996). Asymptotic behavior of sample mean direction for spheres. Journal of Multivariate Analysis, 59(2): 141–152. page 318
  280. Henry, G. and Rodriguez, D. (2009). Robust nonparametric regression on Riemannian manifolds. Journal of Nonparametric Statistics, 21(5): 611–628. page 323
  281. Heo, G., Gamble, J., and Kim, P. T. (2012). Topological analysis of variance and the maxillary complex. Journal of the American Statistical Association, 107. page 393
  282. Heo, G. and Small, C. G. (2006). Form representations and means for landmarks: a survey and comparative study. Computer Vision and Image Understanding, 102(2): 188–203. page 358, 397
  283. Hinkle, J., Fletcher, P. T., and Joshi, S. (2014). Intrinsic polynomials for regression on Riemannian manifolds. Journal of Mathematical Imaging and Vision, 50(1–2): 32–52. page 328
  284. Hobolth, A., Kent, J. T., and Dryden, I. L. (2002). On the relation between edge and vertex modelling in shape analysis. Scandinavian Journal of Statistics, 29: 355–374. page 368
  285. Hobolth, A., Pedersen, J., and Jensen, E. B. V. (2003). A continuous parametric shape model. Annals of the Institute of Statistical Mathematics, 55(2): 227–242. page 368
  286. Hobolth, A. and Vedel Jensen, E. B. (2000). Modelling stochastic changes in curve shape, with an application to cancer diagnostics. Advances in Applied Probability, 32(2): 344–362. page 368
  287. Hodgman, T. C., Ugartechea-Chirino, Y., Tansley, G., and Dryden, I. L. (2006). The implications for bioinformatics of integration across the scales. Journal of Integrative Bioinformatics, 3: Article 39. page 163
  288. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12: 55–67. page 214
  289. Holmes, S. (2003). Bootstrapping phylogenetic trees: theory and methods. Statistical Science, 18(2): 241–255. page 392
  290. Hopkins, J. W. (1966). Some considerations in multivariate allometry. Biometrics, 22: 747–760. page 31
  291. Horgan, G. W., Creasey, A., and Fenton, B. (1992). Superimposing two-dimensional gels to study genetic variation in malaria parasites. Electrophoresis, 13: 871–875. page 24, 25, 274
  292. Horn, A. (1954). Doubly stochastic matrices and the diagonal of a rotation matrix. American Journal of Mathematics, 76: 620–630. page 70
  293. Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 4: 629–642. page 63
  294. Hotz, T. and Huckemann, S. (2015). Intrinsic means on the circle: uniqueness, locus and asymptotics. Annals of the Institute of Statistical Mathematics, 67(1): 177–193. page 115
  295. Hotz, T., Huckemann, S., Le, H., et al. (2013). Sticky central limit theorems on open books. Annals of Applied Probability, 23(6): 2238–2258. page 392
  296. Hotz, T., Huckemann, S., Munk, A., Gaffrey, D., and Sloboda, B. (2010). Shape spaces for prealigned star-shaped objects—studying the growth of plants by principal components analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(1): 127–143. page 326, 327
  297. Huang, C., Styner, M., and Zhu, H. (2015). Clustering high-dimensional landmark-based two-dimensional shape data. Journal of the American Statistical Association, 110: 946–961. page 258
  298. Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35: 73–101. page 337
  299. Huckemann, S. (2011a). Inference on 3D Procrustes means: tree bole growth, rank deficient diffusion tensors and perturbation models. Scandinavian Journal of Statistics, 38(3): 424–446. page 322
  300. Huckemann, S. (2012). On the meaning of mean shape: Manifold stability, locus and the two sample test. Annals of the Institute of Statistical Mathematics, 64: 1227–1259. page 112, 113, 115, 117, 120
  301. Huckemann, S. and Hotz, T. (2009). Principal component geodesics for planar shape spaces. Journal of Multivariate Analysis, 100(4): 699–714. page 327
  302. Huckemann, S. and Hotz, T. (2014). On means and their asymptotics: circles and shape spaces. Journal of Mathematical Imaging and Vision, 50(1-2): 98–106. page 120
  303. Huckemann, S., Hotz, T., and Munk, A. (2010). Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions. Statistica Sinica, 20(1): 1–58. page 122, 327
  304. Huckemann, S. and Ziezold, H. (2006). Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Advances in Applied Probability, 38(2): 299–319. page 122, 327
  305. Huckemann, S. F. (2011b). Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by leaf growth. Annals of Statistics, 39(2): 1098–1124. page 326, 327
  306. Hull, J. J. (1990). Character recognition: the reading of text by computer. In: Encyclopaedia of Artificial Intelligence, (ed. S. C. Shapiro), Vols 1 and 2, pp. 82–88. John Wiley & Sons, Inc., New York. page 11
  307. Hurley, J. R. and Cattell, R. B. (1962). The Procrustes program: producing direct rotation to test a hypothesised factor structure. Behavioural Science, 7: 258–262. page 72
  308. Hurn, M. (1998). Confocal flourescence microscopy of leaf cells: an application of Bayesian image analysis. Applied Statistics, 47: 361–377. page 380
  309. Hurn, M., Steinsland, I., and Rue, H. (2001). Parameter estimation for a deformable template model. Statistics and Computing, 11(4): 337–346. page 368
  310. Hurn, M. A., Mardia, K. V., Hainsworth, T. J., Kirkbride, J., and Berry, E. (1996). Bayesian fused classification of medical images. IEEE Transactions on Medical Imaging, 15: 850–858. page 384
  311. Huxley, J. S. (1924). Constant differential growth ratios and their significance. Nature, 114: 895–896. page 31, 107
  312. Huxley, J. S. (1932). Problems of Relative Growth. Methuen, London. page 31, 107
  313. Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Components Analysis. John Wiley & Sons, Inc., New York. page 169
  314. Iaci, R., Yin, X., Sriram, T. N., and Klingenberg, C. P. (2008). An informational measure of association and dimension reduction for multiple sets and groups with applications in morphometric analysis. Journal of the American Statistical Association, 103(483): 1166–1176. page 168
  315. Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3): 299–314. page 7
  316. Jackson, C. M. (1915). Morris’s Human Anatomy. Churchill, London. page 303
  317. James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Annals of Mathematical Statistics, 35: 475–501. page 267
  318. James, G. S. (1954). Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the population variances are unknown. Biometrika, 41: 19–43. page 203
  319. Jardine, N. (1969). The observational and theoretical components of homology: a study based on the morphology of the derma-roofs of rhipidistan fishes. Biological Journal of the Linnean Society, 1: 327–361. page 3
  320. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2013a). Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80. IEEE Computer Society Press, Los Alamitos, CA. page 396
  321. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2015). Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(12): 2464–2477. page 375
  322. Jayasumana, S., Salzmann, M., Li, H., and Harandi, M. (2013b). A framework for shape analysis via Hilbert space embedding. In: IEEE International Conference on Computer Vision (ICCV), pp. 1249–1256. IEEE Computer Society Press, Los Alamitos, CA. page 375
  323. Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A. (2012). Elastic shape matching of parameterized surfaces using square root normal fields. In: Proceedings of Computer Vision – ECCV 2012 – 12th European Conference on Computer Vision, (eds A. W. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato and C. Schmid) Part V, Vol. 7576 of Lecture Notes in Computer Science, pp. 804–817. Springer, Heidelberg. page 374
  324. Johnson, D. R., O’Higgins, P., and McAndrew, T. J. (1988). The effect of replicated selection for body weight in mice on vertaebral shape. Genetical Research Cambridge, 51: 129–135. page 8
  325. Johnson, D. R., O’Higgins, P., McAndrew, T. J., Adams, L. M., and Flinn, R. M. (1985). Measurement of biological shape: a general method applied to mouse vertebrae. Journal of Embryology and Experimental Morphology, 90: 363–377. page 8, 9, 365
  326. Johnson, V. E., Bowsher, J. E., Jaszczak, R. J., and Turking, T. G. (1995). Analysis and reconstruction of medical images using prior information. In: Case Studies in Bayesian Statistics (eds C. Gastonis, J. S. Hodges, R. E. Kass and N. D. Singpurwalla), Vol. II, pp. 149–218. Springer-Verlag, New York. page 384
  327. Jolicoeur, J. and Mosimann, J. E. (1960). Size and shape variation in the painted turtle. Growth, 24: 339–354. page 40
  328. Jones, M. C. (1987). On moments of ratios of quadratic forms in normal variables. Statistics and Probability Letters, 6: 129–136, 369. page 251
  329. Joshi, S., Klassen, E., Srivastava, A., and Jermyn, I. (2007). A novel representation for Riemannian analysis of elastic curves in . In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7. IEEE Computer Society Press, Los Alamitos, CA. page 371
  330. Joshi, S. C. and Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8): 1357–1370. page 315
  331. Joshi, S. C., Wang, J., Miller, M. I., Van Essen, D. C., and Grenander, U. (1995). On the differential geometry of the cortical surface. Proceedings of SPIE, 2573: 304–311. page 390
  332. Jung, S., Dryden, I. L., and Marron, J. S. (2012). Analysis of principal nested spheres. Biometrika, 99(3): 551–568. page 122, 328
  333. Jung, S., Foskey, M., and Marron, J. S. (2011). Principal arc analysis on direct product manifolds. Annals of Applied Statistics, 5(1): 578–603. page 328
  334. Jupp, P. and Mardia, K. V. (1989). A unified view of the theory of directional statistics, 1975–1988. International Statistical Review, 57: 261–294. page 264
  335. Jupp, P. E. and Kent, J. T. (1987). Fitting smooth paths to spherical data. Journal of the Royal Statistical Society, Series C, 36(1): 34–46. page 328
  336. Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30(5): 509–541. page 111, 112, 318, 319
  337. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1: 321–331. page 382
  338. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10: 845–858. page 211
  339. Kendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9: 428–430. page 1, 33, 351
  340. Kendall, D. G. (1983). The shape of Poisson-Delaunay triangles. In: Studies in Probability and Related Topics (eds M. C. Demetreseu and M. Iosifescu), pp. 321–330. Nagard, Montreal. page 29, 56, 86, 325, 351
  341. Kendall, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society, 16: 81–121. page xxi, 7, 33, 34, 49, 61, 63, 64, 68, 70, 83, 84, 90, 125, 218, 239, 244, 321, 350
  342. Kendall, D. G. (1985). Exact distributions for shapes of random triangles in convex sets. Advances in Applied Probability, 17: 308–329. page 350
  343. Kendall, D. G. (1989). A survey of the statistical theory of shape (with discussion). Statistical Science, 4: 87–120. page 29, 32, 63, 74, 397
  344. Kendall, D. G. (1991a). Discussion to ‘Procrustes methods in the statistical analysis of shape’ by C. R. Goodall. Journal of the Royal Statistical Society, Series B, 53: 321–324. page 350
  345. Kendall, D. G. (1991b). The Mardia–Dryden distribution for triangles – a stochastic calculus approach. Journal of Applied Probability, 28: 225–230. page 239, 247
  346. Kendall, D. G. (1995). Looking at geodesics in the shape space for 4 points in 3 dimensions. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 6–8. University of Leeds Press, Leeds. page 32
  347. Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (1999). Shape and Shape Theory. John Wiley & Sons, Ltd, Chichester. page xx, 74, 75, 120, 397
  348. Kendall, D. G. and Kendall, W. S. (1980). Alignments in two dimensional random sets of points. Advances in Applied Probability, 12: 380–424. page 30, 350
  349. Kendall, D. G. and Le, H.-L. (1987). The structure and explicit determination of convex-polygonally generated shape densities. Advances in Applied Probability, 19: 896–916. page 350
  350. Kendall, M. and Colijn, C. (2015). A tree metric using structure and length to capture distinct phylogenetic signals. Technical Report, Imperial College London. http://arxiv.org/abs/1507.05211. page 392
  351. Kendall, W. S. (1988). Symbolic computation and the diffusion of triads. Advances in Applied Probability, 20: 775–797. page 266
  352. Kendall, W. S. (1990a). The diffusion of Euclidean shape. In: Disorder in Physical Systems (eds G. R. Grimmett and D. J. A. Welch), pp. 203–217. Oxford University Press, Oxford. page 319, 351
  353. Kendall, W. S. (1990b). Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence. Proceedings of the London Mathematical Society, 61(2): 371–406. page 112, 318, 319
  354. Kendall, W. S. (1998). A diffusion model for Bookstein triangle shape. Advances in Applied Probability, 30(2): 317–334. page 279
  355. Kendall, W. S. (2015). Barycentres and hurricane trajectories. In: Geometry Driven Statistics (eds I. L. Dryden and J. T. Kent), pp. 146–160. John Wiley & Sons, Ltd, Chichester. page 122
  356. Kendall, W. S. and Le, H. (2010). Statistical shape theory. In: New Perspectives in Stochastic Geometry (eds W. S. Kendall and I. Molchanov), pp. 348–373. Oxford University Press, Oxford. page 397
  357. Kendall, W. S. and Le, H. (2011). Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Brazilian Journal of Probability and Statistics, 25(3): 323–352. page 322
  358. Kenobi, K. and Dryden, I. L. (2012). Bayesian matching of unlabeled point sets using Procrustes and configuration models. Bayesian Analysis, 7(3): 547–565. page 234, 343, 347
  359. Kenobi, K., Dryden, I. L., and Le, H. (2010). Shape curves and geodesic modelling. Biometrika, 97(3): 567–584. page 22, 122, 327
  360. Kent, J. T. (1991). Discussion to ‘Procrustes methods in the statistical analysis of shape’ by C. R. Goodall. Journal of the Royal Statistical Society, Series B, 53: 324–325. page 179
  361. Kent, J. T. (1992). New directions in shape analysis. In: The Art of Statistical Science (ed. K. V. Mardia), pp. 115–127. John Wiley & Sons, Ltd, Chichester. page 95, 113, 115, 143, 146, 152, 179, 232, 323
  362. Kent, J. T. (1994). The complex Bingham distribution and shape analysis. Journal of the Royal Statistical Society, Series B, 56: 285–299. page 32, 33, 47, 85, 150, 178, 179, 182, 212, 220, 221, 224, 228, 231, 250, 251, 277, 335, 354, 362
  363. Kent, J. T. (1995). Current issues for statistical inference in shape analysis. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 167–175. University of Leeds Press, Leeds. page 90
  364. Kent, J. T. (1997). Data analysis for shapes and images. Journal of Statistical Inference and Planning, 57: 181–193. page 192, 231
  365. Kent, J. T. (2003). Discussion on the paper by Barndorff-Nielsen, Gill and Jupp. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(4): 809. page 396
  366. Kent, J. T., Constable, P. D. L., and Er, F. (2004). Simulation for the complex Bingham distribution. Statistics and Computing, 14(1): 53–57. page 226
  367. Kent, J. T., Dryden, I. L., and Anderson, C. R. (2000). Using circulant symmetry to model featureless objects. Biometrika, 87(3): 527–544. page 22, 367
  368. Kent, J. T., Ganeiber, A. M., and Mardia, K. V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. arXiv:1310.8110. page 226
  369. Kent, J. T., Lee, D., Mardia, K. V., and Linney, A. D. (1996a). Using curvature information in shape analysis. In: Image Fusion and Shape Variability (eds K. V. Mardia, C. A. Gill and I. L. Dryden), pp. 88–99. University of Leeds Press, Leeds. page 375
  370. Kent, J. T. and Mardia, K. V. (1994a). The link between kriging and thin-plate splines. In: Probability, Statistics and Optimization: a Tribute to Peter Whittle (ed. F. P. Kelly), pp 325–339. John Wiley & Sons, Ltd, Chichester. page 282, 287, 311
  371. Kent, J. T. and Mardia, K. V. (1994b). Statistical shape methodology. In: NATO Conference on Shape in Pictures (eds O. Ying-Lie, A. Toet, D. Foster, H. J. A. M. Heijmans and P. Meer), pp. 443–452. Springer-Verlag, Berlin. page 305
  372. Kent, J. T. and Mardia, K. V. (1997). Consistency of Procrustes estimators. Journal of the Royal Statistical Society, Series B, 59: 281–290. page 121, 318
  373. Kent, J. T. and Mardia, K. V. (2001). Shape, Procrustes tangent projections and bilateral symmetry. Biometrika, 88(2): 469–485. page 70, 71, 74, 90, 171
  374. Kent, J. T. and Mardia, K. V. (2012). A geometric approach to projective shape and the cross ratio. Biometrika, 99(4): 833–849. page 396
  375. Kent, J. T. and Mardia, K. V. (2013). Discrimination for spherical data. In: Proceedings of LASR 2013 (eds K. V. Mardia, A. Gusnanto, A. D. Riley and J. Voss), pp. 71–74. University of Leeds Press, Leeds. page 169
  376. Kent, J. T., Mardia, K. V., and McDonnell, P. (2006). The complex Bingham quartic distribution and shape analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(5): 747–765. page 231
  377. Kent, J. T., Mardia, K. V., Morris, R. J., and Aykroyd, R. G. (2001). Functional models of growth for landmark data. In: Proceedings of LASR 2001 (eds K. V. Mardia and R. G. Aykroyd), pp. 109–115. University of Leeds Press, Leeds. page 22, 324
  378. Kent, J. T., Mardia, K. V., and Taylor, C. C. (2010). An EM interpretation of the softassign algorithm for alignment problems. In: Proceedings of LASR 2010 (eds A. Gusnanto, K. V. Mardia, C. J. Fallaize and J. Voss), pp. 29–32. University of Leeds Press, Leeds. page 348
  379. Kent, J. T., Mardia, K. V., and Walder, A. N. (1996b). Conditional cyclic Markov random fields. Advances in Applied Probability, 28: 1–12. page 365
  380. Khatri, C. G. and Mardia, K. V. (1977). The von Mises–Fisher matrix distribution in orientation statistics. Journal of the Royal Statistical Society, Series B, 39(1): 95–106. page 343
  381. Killian, B. J., Kravitz, J. Y., and Gilson, M. K. (2007). Extraction of configurational entropy from molecular simulations via an expansion approximation. The Journal of Chemical Physics, 127: 024107. page 104, 105
  382. Kim, K., Kim, P. T., Koo, J., and Pierrynowski, M. R. (2013). Frenet–Serret and the estimation of curvature and torsion. IEEE Journal of Selected Topics in Signal Processing, 7(4): 646–654. page 374
  383. Kim, P. T., Pinder, S., and Rush, S. T. A. (2014). Fréchet analysis and the microbiome. Journal of Statistical Planning and Inference, 145: 37–41. page 393
  384. Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications, 33: 82–95. page 311
  385. Klassen, E., Srivastava, A., Mio, W., and Joshi, S. H. (2003). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3): 372–383. page 369
  386. Klingenberg, C. P. (1996). Multivariate allometry. In: Advances in Morphometrics (eds L. Marcus, M. Corti, A. Loy, G. Naylor and D. Slice), Vol. 284 of NATO ASI Series, pp. 23–49. Springer, New York. page 109
  387. Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2): 353–357. page 173
  388. Klingenberg, C. P. and McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52: 1363–1375. page 173
  389. Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. Annals of Statistics, 20(3): 1266–1305. page 325
  390. Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). Curve registration by local regression. Canadian Journal of Statistics, 28(1): 19–29. page 325
  391. Kobayashi, S. and Nomizu, K. (1969). Foundations of Differential Geometry, Vol. 2, Wiley, New York. page 83
  392. Koch, I. (2014). Analysis of Multivariate and High-Dimensional Data. Cambridge University Press, Cambridge. page 126
  393. Koenderink, J. J. (1990). Solid Shape. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, MA. page 330, 375, 376, 395
  394. Koenderink, J. J. and van Doorn, A. J. (1992). Surface shape and curvature scales. Image and Vision Computing, 10(8): 557–564. page 375
  395. Koenker, R. (2006). The median is the message: toward the Fréchet median. Journal de la Société Française de Statistique, 147(2): 61–64. page 323
  396. Kotz, S. and Johnson, N. L. (eds) (1988). Encyclopedia of Statistical Sciences, Vol. 8. John Wiley & Sons, Inc., New York. page 397
  397. Krim, H. and Yezzi, A. J. (eds) (2006). Statistics and Analysis of Shapes Birkhäuser, Boston. page 390, 397
  398. Kristof, W. and Wingersky, B. (1971). Generalization of the orthogonal Procrustes rotation procedure to more than two matrices. In: Proceedings of the 79th Annual Convention of the American Psychological Association, pp. 89–90. American Psychological Association, Washington, DC. page 137
  399. Krzanowski, W. J. and Marriott, F. H. C. (1994). Multivariate Analysis, Part 1: Distributions, Ordination and Inference. Edward Arnold, London. page 126, 133
  400. Kshirsagar, A. M. (1963). Effect of non-centrality on Bartlett decompositions of a Wishart matrix. Annals of the Institute of Statistical Mathematics, 14: 217–228. page 265
  401. Kume, A., Dryden, I. L., and Le, H. (2007). Shape-space smoothing splines for planar landmark data. Biometrika, 94(3): 513–528. page 24, 26, 328, 329, 330, 331
  402. Kume, A., Dryden, I. L., and Wood, A. T. A. (2015). Shape inference based on multivariate normal matrix distributions. Technical Report, University of Kent. page 258
  403. Kume, A. and Le, H. (2000). Estimating Fréchet means in Bookstein’s shape space. Advances in Applied Probability, 32(3): 663–674. page 396
  404. Kume, A. and Le, H. (2003). On Fréchet means in simplex shape spaces. Advances in Applied Probability, 35(4): 885–897. page 396
  405. Kume, A. and Walker, S. G. (2009). On the Fisher–Bingham distribution. Statistical Computing, 19(2): 167–172. page 226
  406. Kume, A. and Welling, M. (2010). Maximum likelihood estimation for the offset-normal shape distribution using EM. Journal of Computational and Graphical Statistics, 19(3): 702–723. page 258
  407. Kume, A. and Wood, A. T. A. (2005). Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants. Biometrika, 92(2): 465–476. page 225
  408. Kume, A. and Wood, A. T. A. (2007). On the derivatives of the normalising constant of the Bingham distribution. Statistics & Probability Letters, 77(8): 832–837. page 225
  409. Kurtek, S., Klassen, E., Ding, Z., and Srivastava, A. (2010). A novel Riemannian framework for shape analysis of 3D objects. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1625–1632. IEEE Computer Society Press, Los Alamitos, CA. page 374
  410. Kurtek, S., Klassen, E., Gore, J. C., Ding, Z., and Srivastava, A. (2011). Classification of mathematics deficiency using shape and scale analysis of 3d brain structures. Proceedings of SPIE, 7962: 796244. page 4
  411. Langron, S. P. and Collins, A. J. (1985). Perturbation theory for generalized Procrustes analysis. Journal of the Royal Statistical Society, Series B, 47: 277–284. page 125, 138, 197
  412. Le, H. (2001). Locating Fréchet means with application to shape spaces. Advances in Applied Probability, 33(2): 324–338. page 112
  413. Le, H. (2003). Unrolling shape curves. Journal of the London Mathematical Society, 68(2): 511–526. page 328, 330
  414. Le, H. and Barden, D. (2014). On the measure of the cut locus of a Fréchet mean. Bulletin of the London Mathematical Society, 46(4): 698–708. page 320
  415. Le, H. and Bhavnagri, B. (1997). On simplifying shapes by subjecting them to collinearity constraints. Mathematical Proceedings of the Cambridge Philosophical Society, 122(2): 315–323. page 350
  416. Le, H. and Kume, A. (2000a). Detection of shape changes in biological features. Journal of Microscopy, 200: 140–147. page 22, 326
  417. Le, H. and Kume, A. (2000b). The Fréchet mean shape and the shape of the means. Advances in Applied Probability, 32(1): 101–113. page 120
  418. Le, H.-L. (1987). Explicit formulae for polygonally generated shape densities in the basic tile. Mathematical Proceedings of the Cambridge Philosophical Society, 101: 313–332. page 350
  419. Le, H.-L. (1988). Shape theory in flat and curved spaces, and shape densities with uniform generators. PhD thesis, University of Cambridge. page 101, 103
  420. Le, H.-L. (1989a). Random spherical triangles I: geometrical background. Advances in Applied Probability, 21: 570–580. page 394
  421. Le, H.-L. (1989b). Random spherical triangles II: shape densities. Advances in Applied Probability, 21: 581–594. page 394
  422. Le, H.-L. (1991a). On geodesics in Euclidean shape spaces. Journal of the London Mathematical Society, 44: 360–372. page 75, 88, 90, 350
  423. Le, H.-L. (1991b). A stochastic calculus approach to the shape distribution induced by a complex normal model. Mathematical Proceedings of the Cambridge Philosophical Society, 109: 221–228. page 71, 243, 247, 253, 319, 351
  424. Le, H.-L. (1992). The shapes of non-generic figures, and applications to collinearity testing. Proceedings of the Royal Society of London, Series A, 439: 197–210. page 350
  425. Le, H.-L. (1994). Brownian motions on shape and size-and-shape spaces. Journal of Applied Probability, 31: 101–113. page 351
  426. Le, H.-L. (1995). Mean size-and-shapes and mean shapes: a geometric point of view. Advances in Applied Probability, 27: 44–55. page 101, 125, 146, 318
  427. Le, H. L. and Kendall, D. G. (1993). The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. Annals of Statistics, 21(3): 1225–1271. page 33, 74, 77, 319
  428. Lele, S. (1991). Some comments on a coordinate free and scale invariant method in morphometrics. American Journal of Physical Anthropology, 85: 407–418. page 357
  429. Lele, S. (1993). Euclidean distance matrix analysis (EDMA): estimation of mean form and mean form difference. Mathematical Geology, 25(5): 573–602. page 146, 147, 317, 357, 358
  430. Lele, S. and Cole, T. M. (1995). Euclidean distance matrix analysis: a statistical review. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 49–53. University of Leeds Press, Leeds. page 359
  431. Lele, S. and Richtsmeier, J. T. (1991). Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology, 86: 415–427. page 239, 359
  432. Lele, S. R. and McCulloch, C. E. (2002). Invariance, identifiability, and morphometrics. Journal of the American Statistical Association, 97(459): 796–806. page 318
  433. Lele, S. R. and Richtsmeier, J. T. (2001). An Invariant Approach to the Statistical Analysis of Shapes. Chapman and Hall/CRC, Boca Raton. page xx, 32, 357, 358, 396
  434. Lestrel, P. (ed) (1997). Fourier Descriptors and their Application in Biological Science. Cambridge University Press, Cambridge. page 365
  435. Leu, R. and Damien, P. (2014). Bayesian shape analysis of the complex Bingham distribution. Journal of Statistical Planning and Inference, 149: 183–200. page 236
  436. Levitt, M. (1976). A simpified representation of protein conformations for rapid simulation of protein folding. Journal of Molecular Biology, 104: 59–107. page 100
  437. Lew, W. D. and Lewis, J. L. (1977). An anthropometric scaling method with application to the knee joint. Journal of Biomechanics, 10: 171–184. page 305
  438. Lipman, Y. and Daubechies, I. (2010). Conformal Wasserstein distances: comparing surfaces in polynomial time. Advances in Mathematics, 227: 1047–1077. page 375
  439. Lipman, Y., Puente, J., and Daubechies, I. (2013). Conformal Wasserstein distance: II. Computational aspects and extensions. Mathematics of Computation, 82(281): 331–381. page 375
  440. Liu, W., Srivastava, A., and Zhang, J. (2011). A mathematical framework for protein structure comparison. PLoS Computational Biology, 7(2): e1001075, 10. page 349
  441. Lohmann, G. P. (1983). Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Mathematical Geology, 15: 659–672. page 4, 28
  442. Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31: 983–1001. page 397
  443. Loubes, J.-M. and Pelletier, B. (2008). A kernel-based classifier on a Riemannian manifold. Statistical Decisions, 26(1): 35–51. page 323
  444. MacLeod, N. and Forey, P. L. (eds) (2002). Morphology, Shape and Phylogeny, Vol. 64 of Systematics Association Special Volume Series. Taylor and Francis, London. page 397
  445. Mallet, X. D. G., Dryden, I. L., Vorder Bruegge, R., and Evison, M. (2010). An exploration of sample representativeness in anthropometric facial comparison. Journal of Forensic Sciences, 55: 1025–1031. page 163
  446. Mancham, A. and Molchanov, I. S. (1996). Stochastic model of randomly perturbed images and related estimation problems. In: Image Fusion and Shape Variability (eds K. V. Mardia, C. A. Gill and I. L. Dryden), pp. 43–49. University of Leeds Press, Leeds. page 367
  447. Mannion, D. (1988). A Markov chain of triangle shapes. Advances in Applied Probability, 20: 348–370. page 351
  448. Mannion, D. (1990a). Convergence to collinearity of a sequence of random triangle shapes. Advances in Applied Probability, 22: 831–844. page 351
  449. Mannion, D. (1990b). The invariant distribution of a sequence of random collinear triangle shapes. Advances in Applied Probability, 22: 845–865. page 351
  450. Marchini, J., Heaton, C., and Ripley, B. D. (2013). fastICA package in R. R package version 1.2-0. http://cran.r-project.org/package=fastICA (accessed 20 March 2016). page 169
  451. Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London. page 63
  452. Mardia, K. V. (1975). Statistics of directional data (with discussion). Journal of the Royal Statistical Society, Series B, 37: 349–393. page 366
  453. Mardia, K. V. (1977). Mahalanobis distance and angles. In: Multivariate Analysis IV (ed. P. R. Krishnaiah), pp. 495–511. North-Holland, Amsterdam. page xxi, 297
  454. Mardia, K. V. (1980). Discussion to ‘Simulating the ley hunter’ by S. R. Broadbent. Journal of the Royal Statistical Society, Series A, 143: 147. page 219, 241, 248
  455. Mardia, K. V. (1984). Spatial discrimination and classification maps. Communications in Statistics – Theory and Methods, 13: 2181–2197. page 147
  456. Mardia, K. V. (1989a). Discussion to ‘A survey of the statistical theory of shape’ by D. G. Kendall. Statistical Science, 4: 108–111. page 9
  457. Mardia, K. V. (1989b). Shape analysis of triangles through directional techniques. Journal of the Royal Statistical Society, Series B, 51: 449–458. page 54, 56, 86, 226, 248, 351, 352
  458. Mardia, K. V. (1991). New advances in shape analysis with applications to image processing. Lectures under the late Professor M. C. Chakrabarti memorial lectureship endowment, University of Bombay. Technical Report, University of Leeds. page 43
  459. Mardia, K. V. (1993). Discussion to papers on ‘Gibbs sampler and other MCMC methods’. Journal of the Royal Statistical Society, Series B, 55: 83–84. page 384
  460. Mardia, K. V. (ed.) (1994). Statistics and Images, Vol. 2, Carfax, Oxford. page 377
  461. Mardia, K. V. (1995). Shape advances and future perspectives. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 57–75. University of Leeds Press, Leeds. page 251, 297
  462. Mardia, K. V. (1996a). The art and science of Bayesian object recognition. In: Proceedings in Image Fusion and Shape Variability Techniques (eds K. V. Mardia, C. A. Gill and I. L. Dryden), pp. 21–35. University of Leeds Press, Leeds. page 365, 382
  463. Mardia, K. V. (1996b). Shape analysis. Technical Report, Department of Statistics, University of Leeds. page 86, 226
  464. Mardia, K. V. (1997). Bayesian image analysis. Journal of Theoretical Medicine, 1: 63–77. page 165
  465. Mardia, K. V. (2009). Statistical complexity in protein bioinformatics. In: Statistical Tools for Challenges in Bioinformatics (eds A. Gusnanto, K. V. Mardia and C. J. Fallaize), pp. 9–20. Leeds University Press, Leeds. page 104
  466. Mardia, K. V. (2010). Statistical complexity in protein bioinformatics II. In: Proceedings of LASR 2010 (eds A. Gusnanto, K. V. Mardai, C. J. Fallaize and J. Voss), pp. 9–16. Leeds University Press, Leeds. page 100
  467. Mardia, K. V. (2013a). Some aspects of geometry driven statistical models. In: Proceedings of LASR 2013 (eds K. V. Mardia, A. Gusnanto, A. D. Riley and J. Voss), pp. 21–29. University of Leeds Press, Leeds. page 313
  468. Mardia, K. V. (2013b). Statistical approaches to three key challenges in protein structural bioinformatics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 62(3): 487–514. page 21, 208, 209, 344
  469. Mardia, K. V., Angulo, J. M., and Goitia, A. (2006a). Synthesis of image deformation strategies. Image and Vision Computing, 24: 1–12. page 389
  470. Mardia, K. V., Baczkowski, A. J., Feng, X., and Millner, P. A. (1996a). A study of three dimensional curves. Journal of Applied Statistics, 23: 139–148. page 236
  471. Mardia, K. V., Bookstein, F. L., and Kent, J. T. (2013a). Alcohol, babies and the death penalty: Saving lives by analysing the shape of the brain. Significance, 10(3): 12–16. page 16, 17, 168
  472. Mardia, K. V., Bookstein, F. L., Kent, J. T., and Meyer, C. R. (2006b). Intrinsic random fields and image deformations. Journal of Mathematical Imaging and Vision, 26: 59–71. page 389, 390
  473. Mardia, K. V., Bookstein, F. L., and Moreton, I. J. (2000). Statistical assessment of bilateral symmetry of shapes. Biometrika, 87(2): 285–300. page 171
  474. Mardia, K. V., Coombes, A., Kirkbride, J., Linney, A., and Bowie, J. L. (1996b). On statistical problems with face identification from photographs. Journal of Applied Statistics, 23: 655–675. page 40, 360, 384
  475. Mardia, K. V. and Dryden, I. L. (1989a). Shape distributions for landmark data. Advances in Applied Probability, 21: 742–755. page 33, 120, 239, 247
  476. Mardia, K. V. and Dryden, I. L. (1989b). The statistical analysis of shape data. Biometrika, 76: 271–282. page 8, 120, 239, 247, 335
  477. Mardia, K. V. and Dryden, I. L. (1994). Shape averages and their bias. Advances in Applied Probability, 26: 334–340. page 136, 146, 251
  478. Mardia, K. V. and Dryden, I. L. (1997). Bookstein’s shape coordinates for three dimensions. Technical Report STAT97/03, Department of Statistics, University of Leeds. page 47
  479. Mardia, K. V. and Dryden, I. L. (1999). The complex Watson distribution and shape analysis. Journal of the Royal Statistical Society, Series B, 61(4): 913–926. page 227, 228, 232
  480. Mardia, K. V., Dryden, I. L., Hurn, M. A., Li, Q., Millner, P. A., and Dickson, R. A. (1994). Familial spinal shape. Journal of Applied Statistics, 21: 623–641. page 236
  481. Mardia, K. V., Edwards, R., and Puri, M. L. (1977). Analysis of Central Place Theory. Bulletin of the International Statistical Institute, 47: 93–110. page 28, 29, 39, 40, 351
  482. Mardia, K. V., Fallaize, C. J., Barber, S., Jackson, R. M., and Theobald, D. L. (2013b). Bayesian alignment of similarity shapes. Annals of Applied Statistics, 7: 989–1009. page 236, 344, 346, 349
  483. Mardia, K. V., Ghali, N. M., Hainsworth, T. J., Howes, M., and Sheehy, N. (1993). Techniques for online gesture recognition on workstations. Image and Vision Computing, 11: 283–294. page 11
  484. Mardia, K. V. and Gill, C. A. (eds) (1995). Proceedings in Current Issues in Statistical Shape Analysis. University of Leeds Press, Leeds. page xx, xxiii
  485. Mardia, K. V., Gill, C. A., and Aykroyd, R. G. (eds) (1997a). Proceedings of the Leeds Annual Statistics Research Workshop. University of Leeds Press, Leeds. page xxiii
  486. Mardia, K. V., Gill, C. A., and Dryden, I. L. (eds) (1996c). Image Fusion and Shape Variability. University of Leeds Press, Leeds. page xxiii
  487. Mardia, K. V. and Goodall, C. R. (1993). Spatial-temporal analysis of multivariate environmental montioring data. In: Multivariate Environmental Statistics (eds G. P. Patil and C. R. Rao), pp. 347–386. North Holland, Amsterdam. page 282
  488. Mardia, K. V., Goodall, C. R., and Walder, A. N. (1996d). Distributions of projective invariants and model-based vision. Advances in Applied Probability, 28: 641–661. page 396
  489. Mardia, K. V., Gusnanto, A., Nooney, C., and Voss, J. (eds) (2015). LASR 2015: Geometry-Driven Statistics and its Cutting Edge Applications: Celebrating Four Decades of Leeds Statistics Workshops. University of Leeds Press, Leeds. page xx
  490. Mardia, K. V. and Hainsworth, T. J. (1993). Image warping and Bayesian reconstruction with grey-level templates. In: Statistics and Images (eds K. V. Mardia and G. K. Kanji), Vol. 1, pp. 257–280. Carfax, Oxford. page 382, 383, 385, 386
  491. Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd, Chichester. page 40, 63, 85, 396
  492. Mardia, K. V. and Kanji, G. K. (eds) (1993). Statistics and Images, Vol. 1. Carfax, Oxford. page 377
  493. Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, London. page 72, 79, 81, 116, 125, 133, 166, 179, 186, 188, 196, 201, 220, 243, 274, 276, 297, 298, 309, 353
  494. Mardia, K. V., Kent, J. T., Goodall, C. R., and Little, J. L. (1996e). Kriging and splines with derivative informations. Biometrika, 83: 207–221. page 286, 309, 311, 313
  495. Mardia, K. V., Kent, J. T., and Walder, A. N. (1991). Statistical shape models in image analysis. In: Computer Science and Statistics: Proceedings of the 23rd INTERFACE Symposium (ed. E. M. Keramidas), pp. 550–557. Interface Foundation, Fairfax Station. page 4, 281, 310, 379, 382
  496. Mardia, K. V., Kirkbride, J., and Bookstein, F. L. (2004). Statistics of shape, direction and cylindrical variables. Journal of Applied Statistics, 31(4): 465–479. page 313
  497. Mardia, K. V. and Little, J. L. (1994). Image warping using derivative information. In: Proceedings of Mathematical Methods in Medical Imaging III (eds F. L. Bookstein, J. S. Duncan, N. Lange, and D. C. Wilson), Vol. 2299, pp. 16–31. SPIE, Washington. page 308, 313, 383
  498. Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71: 135–146. page 308, 309
  499. Mardia, K. V., McCulloch, C., Dryden, I. L., and Johnson, V. (1997b). Automatic scale-space method of landmark detection. In: Proceedings of the Leeds Annual Statistics Research Workshop (eds K. V. Mardia, C. A. Gill, and R. G. Aykroyd), pp. 17–29, University of Leeds Press, Leeds. page 390
  500. Mardia, K. V., McDonnell, P., and Linney, A. D. (2006c). Penalized image averaging and discrimination with facial and fishery applications. Journal of Applied Statistics, 33(3): 339–371. page 387
  501. Mardia, K. V., Morris, R. J., Walder, A. N., and Koenderink, J. J. (1999). Estimation of torsion. Journal of Applied Statistics, 26: 373–381. page 374
  502. Mardia, K. V., Nyirongo, V. B., Fallaize, C. J., Barber, S., and Jackson, R. M. (2011). Hierarchical Bayesian modelling of pharmacophores in bioinformatics. Biometrics, 67(2): 611–619. page 344, 349
  503. Mardia, K. V., Nyirongo, V. B., Green, P. J., Gold, N. D., and Westhead, D. R. (2007). Bayesian refinement of protein functional site matching. BMC Bioinformatics, 8: 257. page 344
  504. Mardia, K. V. and Patrangenaru, V. (2005). Directions and projective shapes. Annals of Statistics, 33(4): 1666–1699. page 396
  505. Mardia, K. V., Petty, E. M., and Taylor, C. C. (2012). Matching markers and unlabeled configurations in protein gels. Annals of Applied Statistics, 6(3): 853–869. page 274
  506. Mardia, K. V. and Qian, W. (1995). Bayesian method for compact object recognition from noisy images. In: Complex Stochastic Systems in Science and Engineering (ed. D. M. Titterington), pp. 155–165. Clarendon Press, Oxford. page 366
  507. Mardia, K. V., Qian, W., Shah, D., and De Souza, K. (1996f). Deformable template recognition of multiple occluded objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19: 1036–1042. page 368
  508. Mardia, K. V., Rabe, S., and Kent, J. T. (1995). Statistics, shape and images. In: IMA Proceedings on Complex Stochastic Systems and Engineering Applications, pp. 85–103. Clarendon Press, Oxford. page 376, 379
  509. Mardia, K. V. and Walder, A. N. (1994a). Shape analysis of paired landmark data. Biometrika, 81: 185–196. page 333, 335
  510. Mardia, K. V. and Walder, A. N. (1994b). Size-and-shape distributions for paired landmark data. Advances in Applied Probability, 26: 893–905. page 335
  511. Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis. Biometrical Journal, 56(5): 732–753. page 391
  512. Marron, J. S., Jung, S., and Dryden, I. L. (2010). Speculation on the generality of the backward stepwise view of PCA. In: Proceedings of MIR 2010: 11th ACM SIGMM International Conference on Multimedia Information Retrieval, pp. 227–230. Association for Computing Machinery, Inc., Danvers, MA. page 122
  513. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5: 439–468. page 310
  514. Matheron, G. (1981). Splines and kriging: their formal equivalence. In: Down-to-earth Statistics: Solutions Looking for Geological Problems (ed. D. F. Merriam), pp. 77–95. Syracuse University Geology Contributions, Syracuse. page 311
  515. Mazza, C. (1997). Human type I 17beta-hydroxysteroid dehydrogenase: site directed mutagenesis and X-ray crystallography structure-function analysis. PhD thesis, Université Joseph Fourier. page 21
  516. McLachlan, A. D. (1972). A mathematical procedure for superimposing atomic coordinates of proteins. Acta Crystallography, A28. page 125
  517. Medawar, P. B. (1944). The shape of a human being as a function of time. Proceedings of the Royal Society of London, Series B, 132: 133–141. page 32, 303, 305
  518. Medawar, P. B. (1945). Size, shape and age. In: Essays on Growth and Form presented to D’Arcy Wentworth Thompson (eds W. E. Le Gros Clark and P. B. Medawar), pp. 157–187. Clarendon Press, Oxford. page 303
  519. Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. Zeitschrift Angewandte Mathematik und Physik, 30: 292–304. page 280, 287
  520. Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34(3): 1436–1462. page 197
  521. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21: 1087–1092. page 382
  522. Micheas, A. C. and Dey, D. K. (2005). Modeling shape distributions and inferences for assessing differences in shapes. Journal of Multivariate Analysis, 92(2): 257–280. page 233
  523. Micheas, A. C., Dey, D. K., and Mardia, K. V. (2006). Complex elliptical distributions with applications to shape analysis. Journal of Statistical Planning and Inference, 136(9): 2961–2982. page 233
  524. Micheas, A. C. and Peng, Y. (2010). Bayesian Procrustes analysis with applications to hydrology. Journal of Applied Statistics, 37(1–2): 41–55. page 236
  525. Michor, P. W. and Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society (JEMS), 8(1): 1–48. page 374
  526. Michor, P. W. and Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23(1): 74–113. page 374
  527. Miles, R. E. (1970). On the homogeneous planar Poisson point process. Mathematical Biosciences, 6: 85–127. page 36, 351
  528. Miller, K. S. (1964). Multidimensional Gaussian Distributions. John Wiley & Sons, Inc., New York. page 262
  529. Miller, M. I., Joshi, S., Maffit, D. R., McNally, J. G., and Grenander, U. (1994). Membranes, mitochondria and amoebae: shape models. In: Statistics and Images. (ed. K. V. Mardia), Vol. 2, pp. 141–163. Carfax, Oxford. page 367
  530. Miller, M. I., Trouvé, A., and Younes, L. (2002). On the metrics and Euler–Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4(1): 375–405. page 315
  531. Miller, M. I., Trouvé, A., and Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2): 209–228. page 315
  532. Mitchelson, J. R. (2013). MOSHFIT: Algorithms for occlusion-tolerant mean shape and rigid motion from 3D movement data. Journal of Biomechanics, 46: 2326–2329. page 320, 339
  533. Mitteroecker, P. and Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36(2): 235–247. page 397
  534. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., and Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6): 679–698. page 104, 109, 196
  535. Monteiro, L. R. (1999). Multivariate regresion models and geometric morphometrics: The search for causal factors in the analysis of shape. Systematic Biology, 48(1): 192–199. page 22
  536. Morecroft, L., Fieller, N. R., Dryden, I. L., and Evison, M. P. (2010). Shape variation in anthropometric landmarks in 3D. In: Computer-Aided Forensic Facial Comparison (eds M. P. Evison and R. W. V. Bruegge), pp. 35–52. CRC Press, Boca Raton. page 163
  537. Morris, R. J., Kent, J. T., Mardia, K. V., Fidrich, M., Aykroyd, R. G., and Linney, A. (1999). Analysing growth in faces. In: Proceedings of Conference on Imaging Science, Systems and Technology, (ed. H. R. Arabnia), pp. 404–409. Computer Science Research, Education and Applications (CSREA) Press, Bogart, GA. page 324
  538. Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4: 149–162. page 125
  539. Mosimann, J. E. (1970). Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association, 65: 930–948. page 38, 40
  540. Mosimann, J. E. (1975a). Statistical problems of size and shape. I. Biological applications and basic theorems. In: Statistical Distributions in Scientific Work, (ed. G. P. Patil), Vol. 2, pp. 187–217. D. Reidel, Dordrecht. page 40
  541. Mosimann, J. E. (1975b). Statistical problems of size and shape. II. Characterizations of the lognormal, gamma and Dirichlet distributions. In: Statistical Distributions in Scientific Work (ed. G. P. patil), Vol. 2, pp. 219–239. D. Reidel, Dordrecht. page 40
  542. Mosimann, J. E. (1988). Size and shape analysis. In: Encyclopedia of Statistical Sciences (eds S. Kotz and N. L. Johnson), Vol. 8, pp. 497–507. John Wiley & Sons, Inc., New York. page 40
  543. Moss, M. L., Vilman, H., Moss-Salentijn, L., Sen, K., Pucciarelli, H. M., and Skalak, R. (1987). Studies on orthocephalization: Growth behaviour of the rat skull in the period 13-19 days as described by the finite element method. American Journal of Physical Anthropology, 72: 323–342. page 305, 333, 335
  544. Moss, S. and Hancock, E. R. (1996). Registering incomplete radar images using the EM algorithm. In: Proceedings of the Seventh British Machine Vision Conference (eds R. B. Fisher and E. Trucco), pp. 685–694. BMVA Press, Manchester. page 341, 348
  545. Mumford, D. (1991). Mathematical theories of shape: do they model perception? In: Proceedings of the SPIE, 1570: 2–210. page 395
  546. Mumford, D. and Michor, P. W. (2013). On Euler’s equation and ‘EPDiff’. Journal of Geometric Mechanics, 5(3): 319–344. page 315
  547. Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., and Harer, J. (2015). Probabilistic Fréchet means for time varying persistence diagrams. Electronic Journal of Statistics, 9(1): 1173–1204. page 393
  548. Muralidharan, P. and Fletcher, P. T. (2012). Sasaki metrics for analysis of longitudinal data on manifolds. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pp. 1027–1034. IEEE Computer Society Press, Los Alamitos, CA. page 333
  549. Nagy, G. (1992). The dimensions of shape and form. In: Visual Form: Analysis and Recognition (eds C. Arcelli, L. P. Cordella, and G. Sanniti di Baja), pp. 409–419. Plenum, New York. page 395
  550. Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E. G., and Nishiura, Y. (2015). Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology, 26(30): 304001. page 393
  551. Neale, F. B. and Russ, J. C. (2012). Measuring Shape. CRC Press, Boca Raton. page 377, 390, 396
  552. Niethammer, M., Huang, Y., and Vialard, F. (2011). Geodesic regression for image time-series. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011), (eds G. Fichtinger, A. L. Martel, and F. Vialard), Part II, Vol. 6892 of Lecture Notes in Computer Science, pp. 655–662. Springer, New York. page 333
  553. Niethammer, M. and Vialard, F.-X. (2013). Riemannian metrics for statistics on shapes: Parallel transport and scale invariance. In: MICCAI Workshop Mathematical Foundations of Computational Anatomy (eds X. Pennec, S. Joshi, M. Nielsen, P. T. Fletcher, S. Durrelmand and S. Sommer), pp. 113. http://www-sop.inria.fr/asclepios/events/MFCA13/ (accessed 20 March 2016). page 333
  554. Nye, T. M. W. (2011). Principal components analysis in the space of phylogenetic trees. Annals of Statistics, 39(5): 2716–2739. page 392
  555. Nye, T. M. W. and White, M. C. (2014). Diffusion on some simple stratified spaces. Journal of Mathematical Imaging and Vision, 50(1–2): 115–125. page 392
  556. O’Higgins, P. (1989). A morphometric study of cranial shape in the Hominoidea. PhD thesis, University of Leeds. page 19
  557. O’Higgins, P. (2000). The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. Journal of Anatomy, 197(01): 103–120. page 196
  558. O’Higgins, P. and Dryden, I. L. (1992). Studies of craniofacial development and evolution. Archaeology and Physical Anthropology in Oceania, 27: 105–112. page 23
  559. O’Higgins, P. and Dryden, I. L. (1993). Sexual dimorphism in hominoids: further studies of craniofacial shape differences in pan, gorilla, pongo. Journal of Human Evolution, 24: 183–205. page 19, 212, 305, 308
  560. O’Higgins, P. and Jones, N. (1998). Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy, 193(02): 251–272. page 196
  561. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester. page 29, 305
  562. Owen, M. (2011). Computing geodesic distances in tree space. SIAM Journal on Discrete Mathematics, 25(4): 1506–1529. page 392
  563. Panaretos, V. M. (2006). The diffusion of Radon shape. Advances in Applied Probability, 38(2): 320–335. page 266
  564. Panaretos, V. M. (2008). Representation of Radon shape diffusions via hyperspherical Brownian motion. Mathematical Proceedings of the Cambridge Philosophical Society, 145(2): 457–470. page 266
  565. Panaretos, V. M. (2009). On random tomography with unobservable projection angles. Annals of Statistics, 37(6A): 3272–3306. page 266
  566. Panaretos, V. M. and Konis, K. (2011). Sparse approximations of protein structure from noisy random projections. Annals of Applied Statistics, 5(4): 2572–2602. page 266, 349
  567. Panaretos, V. M., Pham, T., and Yao, Z. (2014). Principal flows. Journal of the American Statistical Association, 109(505): 424–436. page 332
  568. Parui, S. and Majumder, D. D. (1983). Shape similarity measures for open curves. Pattern Recognition Letters, 1(3): 129–134. page 365
  569. Patrangenaru, V. and Ellingson, L. (2015). Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. CRC Press, Boca Raton. page xx, 397
  570. Patrangenaru, V. and Mardia, K. V. (2003). Affine shape analysis and image analysis. In: Proceedings of LASR 2003 (eds R. G. Aykroyd, K. V. Mardia, and M. J. Langdon), pp. 57–62. University of Leeds Press, Leeds. page 273
  571. Pavlidis, T. (1995). A review of algorithms for shape analysis. In: Document Image Analysis (eds L. O'Gorman and R. Kasturi), pp. 145–160. IEEE Computer Society Press, Los Alamitos, CA. page 397
  572. Pearson, K. (1926). On the coefficient of racial likeness. Biometrika, 18: 105–117. page 31, 41
  573. Pelletier, B. (2005). Kernel density estimation on Riemannian manifolds. Statistics & Probability Letters, 73(3): 297–304. page 323
  574. Pelletier, B. (2006). Non-parametric regression estimation on closed Riemannian manifolds. Journal of Nonparametric Statistics, 18(1): 57–67. page 323
  575. Pennec, X. (1996). Multiple registration and mean rigid shapes: application to the 3D case. In: Proceedings in Image Fusion and Shape Variability Techniques (eds K. V. Mardia, C. A. Gill, and I. L. Dryden), pp. 178–185. University of Leeds Press, Leeds. page 233
  576. Pennec, X. (1999). Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements. In: Proceedings of IEEE Workshop on Nonlinear Signal and Image Processing (NSIP99) (eds A. Cetin, L. Akarun, A. Ertuzun, M. Gurcan, and Y. Yardimci), Vol. 1, pp. 194–198. IEEE, Antalya. page 233
  577. Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1): 127–154. page 233
  578. Penrose, L. S. (1952). Distance, size and shape. Annals of Eugenics, 17: 337–343. page 41
  579. Phillips, D. B. and Smith, A. F. M. (1993). Dynamic image analysis using Bayesian shape and texture models. In: Statistics and Images. (eds K. V. Mardi and G. K. Kanji), Vol. 1, pp. 299–322. Carfax, Oxford. page 5, 380
  580. Phillips, D. B. and Smith, A. F. M. (1994). Bayesian faces via hierarchical template modeling. Journal of the American Statistical Association, 89: 1151–1163. page 5, 380, 382
  581. Phillips, R., O’Higgins, P., Bookstein, F., et al. (2010). EVAN (European Virtual Anthropology Network) toolbox. page 173
  582. Pigoli, D., Aston, J. A. D., Dryden, I. L., and Secchi, P. (2014). Distances and inference for covariance operators. Biometrika, 101(2): 409–422. page 396
  583. Piras, P., Evangelista, A., Gabriele, S., et al. (2014). 4D-analysis of left ventricular heart cycle using Procrustes motion analysis. PLOS One, 9(4): e94673. page 328
  584. Pizer, S. M., Fletcher, P. T., Joshi, S. C., et al. (2003). Deformable M-reps for 3D medical image segmentation. International Journal of Computer Vision, 55(2–3): 85–106. page 328
  585. Pizer, S. M., Jung, S., Goswami, D., et al. (2013). Nested sphere statistics of skeletal models. In: Innovations for Shape Analysis, pp. 93–115. Springer, Heidelberg. page 328
  586. Plamondon, R. and Srihari, S. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1): 63–84. page 11
  587. Polly, P. D., Lawing, A. M., Fabre, A.-C., and Goswami, A. (2013). Phylogenetic principal components analysis and geometric morphometrics. Hystrix, the Italian Journal of Mammalogy, 24: 1–9. page 298
  588. Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: a review. In: Algorithms for Approximations eds J. C. Mason and M. G. Cox), pp. 143–167. Clarendon Press, Oxford. page 309
  589. Prentice, M. J. and Mardia, K. V. (1995). Shape changes in the plane for landmark data. Annals of Statistics, 23(6): 1960–1974. page 228, 335
  590. Preston, S. P. and Wood, A. T. A. (2009). On definitions of mean reflection shape. In: 57th Session of the International Statistical Institute, Durban. pp. 356. page 355
  591. Preston, S. P. and Wood, A. T. A. (2010). Two-sample bootstrap hypothesis tests for three-dimensional labelled landmark data. Scandinavian Journal of Statistics, 37(4): 568–587. page 356
  592. Preston, S. P. and Wood, A. T. A. (2011). Bootstrap inference for mean reflection shape and size-and-shape with three-dimensional landmark data. Biometrika, 98(1): 49–63. page 356
  593. Pukkila, T. M. and Rao, C. R. (1988). Pattern recognition based on scale invariant discriminant functions. Information Sciences, 45: 379–389. page 40
  594. R Development Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. page xix, 7
  595. Rainville, E. D. (1960). Special Functions. Macmillan, New York. page 244
  596. Ramachandran, G., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7(1): 95–99. page 40
  597. Ramsay, J. O. and Li, X. (1998). Curve registration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2): 351–363. page 325
  598. Rangarajan, A., Chui, H., and Bookstein, F. L. (1997). The Softassign Procrustes matching algorithm. In: Information Processing in Medical Imaging (eds J. Duncan and G. Gindi), pp. 29–42. Springer, New York. page 341, 348
  599. Rao, C. R. (1948). Tests of significance in multivariate analysis. Biometrika, 35: 58–79. page 31
  600. Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd edn. John Wiley & Sons, Inc., New York. page 281
  601. Rao, C. R. and Suryawanshi, S. (1996). Statistical analysis of shape of objects based on landmark data. Proceedings of the National Academy of Sciences of the United States of America, 93: 12132–12136. page 360
  602. Renaud, S. (1995). Shape analysis of outlines through Fourier methods using curvature measures. In: Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 181–182. University of Leeds Press, Leeds. page 365
  603. Reyment, R. A., Blackith, R. E., and Campbell, N. A. (1984). Multivariate Morphometrics, 2nd. edn. Academic Press, New York. page 31, 40
  604. Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure non-parametrically when the data are curves. Journal of the Royal Statistical Society, Series B, 53: 233–243. page 236, 313
  605. Richstmeier, J. T. (1986). Finite element scaling analysis of human craniofacial growth. Journal of Craniofacial Genetics and Devopmental Biology, 6: 289–323. page 305
  606. Richstmeier, J. T. (1989). Application of finite element scaling in primatology. Folia Primatologica, 53: 50–64. page 305
  607. Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge. page 377
  608. Ripley, B. D. and Sutherland, A. I. (1990). Finding spiral structures in galaxies. Philosophical Transactions of the Royal Society of London, Series A, 332: 477–485. page 380
  609. Rodriguez, A. and Schmidler, S. C. (2014). Bayesian protein structure alignment. Annals of Applied Statistics, 8(4): 2068–2095. page 349
  610. Rohlf, F. (2010). tpsRelw, relative warps analysis. Department of Ecology and Evolution, State University of New York, Stony Brook, NY. page 173
  611. Rohlf, F. J. (1990). Fitting curves to outlines. In: Proceedings of the Michigan Morphometrics Workshop, Special publication No. 2, pp. 167–177. University of Michigan Museum of Zoology, Ann Arbor. page 365
  612. Rohlf, F. J. (2000). Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology, 111: 463–478. page 360
  613. Rohlf, F. J. and Archie, J. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes. Systematic Zoology, 33: 302–317. page 365
  614. Rohlf, F. J. and Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology and Evolution, 8(4): 129–132. page 397
  615. Rohlf, F. J. and Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39: 40–59. page 277, 336, 338
  616. Rosenthal, M., Wu, W., Klassen, E., and Srivastava, A. (2014). Spherical regression models using projective linear transformations. Journal of the American Statistical Association, 109(508): 1615–1624. page 396
  617. Rosman, G., Bronstein, M. M., Bronstein, A. M., and Kimmel, R. (2010). Nonlinear dimensionality reduction by topologically constrained isometric embedding. International Journal of Computer Vision, 89(1): 56–68. page 375
  618. Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79: 871–880. page 337, 338
  619. Rousseeuw, P. J. and Yohai, V. J. (1984). Robust regression by means of S-estimators. In: Robust and Non-linear Time Series Analysis (eds J. Franke, W. Härdle, and R. D. Martin), pp. 256–272. Springer-Verlag, New York. page 336
  620. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63: 581–592. page 339
  621. Rue, H. and Syversveen, A. R. (1998). Bayesian object recognition with Baddeley’s delta loss. Advances in Applied Probability, 30(1): 64–84. page 368
  622. Ruffieux, Y. and Green, P. J. (2009). Alignment of multiple configurations using hierarchical models. Journal of Computational and Graphical Statistics, 18(3): 756–773. page 344, 348
  623. Salomon-Ferrer, R., Case, D. A., and Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2): 198–210. page 18
  624. Samir, C., Absil, P.-A., Srivastava, A., and Klassen, E. (2012). A gradient-descent method for curve fitting on Riemannian manifolds. Foundations of Computational Mathematics, 12(1): 49–73. page 330
  625. Sampson, P. D., Lewis, S., Guttorp, P., Bookstein, F. L., and Hurley, C. B. (1991). Computation and interpretation of deformations for landmark data in morphometrics and environmetrics. In: Proceedings of the INTERFACE ’91 Symposium (ed. E. M. Keramidas), pp. 534–541. Interface Foundation, Fairfax Station. page 307
  626. Sangalli, L. M., Secchi, P., and Vantini, S. (2014). AneuRisk65: a dataset of three-dimensional cerebral vascular geometries. Electronic Journal of Statistics, 8(2): 1879–1890. page 4
  627. Schmidler, S. C. (2007). Fast Bayesian shape matching using geometric algorithms (with discussion). In: Proceedings of the Valencia/ISBA 8th World Meeting on Bayesian Statistics (eds J. M. Bernado, M. J. Bayarri, J. O. Berger et al.), pp. 471–490. Oxford University Press, Oxford. page 341, 345, 346, 349
  628. Schmidler, S. C., Liu, J. S., and Brutlag, D. L. (2002). Bayesian protein structure prediction. In: Case Studies in Bayesian Statistics, Vol. V, Vol. 162 of Lecture Notes in Statistics, pp. 363–378. Springer, New York. page 349
  629. Schmidler, S. C., Lucas, J. E., and Oas, T. G. (2007). Statistical estimation of statistical mechanical models: helix-coil theory and peptide helicity prediction. Journal of Computational Biology, 14(10): 1287–1310. page 349
  630. Schönemann, P. H. (1966). A generalized solution to the orthogonal Procrustes problem. Psychometrika, 31: 1–10. page 125
  631. Schönemann, P. H. (1968). On two sided orthogonal Procrustes problems. Psychometrika, 33: 19–33. page 125
  632. Schönemann, P. H. and Carroll, R. M. (1970). Fitting one matrix to another under choice of central dilation and rigid motion. Psychometrika, 35: 245–255. page 125
  633. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6: 461–464. page 349
  634. Seber, G. A. F. (1984). Multivariate Observations. John Wiley & Sons, Inc., New York. page 203
  635. Shelupsky, D. (1962). An introduction to spherical coordinates. American Mathematical Monthly, 69: 644–646. page 85
  636. Sherer, E., Harris, S. A., Soliva, R., Orozco, M., and Laughton, C. A. (1999). Molecular dynamics studies of DNA A-tract structure and flexibility. Journal of the American Chemical Society, 121: 5981–5991. page 139
  637. Sibson, R. (1978). Studies in the robustness of multidimensional scaling: Procrustes statistics. Journal of the Royal Statistical Society, Series B, 40: 234–238. page 125, 133, 197
  638. Sibson, R. (1979). Studies in the robustness of multidimensional scaling: perturbation analysis of classical scaling. Journal of the Royal Statistical Society, Series B, 41: 217–229. page 125, 133, 197
  639. Siegel, A. F. and Benson, R. H. (1982). A robust comparison of biological shapes. Biometrics, 38: 341–350. page 336, 338
  640. Silverman, B. W. (1995). Incorporating parametric effects into functional principal components analysis. Journal of the Royal Statistical Society, Series B, 57(4): 673–689. page 325
  641. Simard, P., Le Cun, Y., and Denker, J. (1993). Efficient pattern recognition using a new transformation distance. In: Advances in Neural Information Processing Systems (eds S. Hanson, J. Cowan, and C. Giles), Vol. 5, pp. 50–58. Morgan Kaufmann, San Mateo. page 11
  642. Skwerer, S., Bullitt, E., Huckemann, S., et al. (2014). Tree-oriented analysis of brain artery structure. Journal of Mathematical Imaging and Vision, 50(1–2): 126–143. page 392
  643. Slice, D. E., (ed.) (2005). Modern Morphometrics in Physical Anthropology. Springer, New York. page 397
  644. Slice, D. E. (2007). Geometric morphometrics. Annual Review of Anthropology, 36: 261–281. page 397
  645. Slice, D. E., Bookstein, F. L., Marcus, L. F., and Rohlf, F. J. (1996). A glossary for geometric morphometrics. In: Advances in Morphometrics (eds L. F. Marcus, A. Corti, A. Loy, G. J. P. Naylor, and D. Slice), Vol. 284 of NATO ASI Series A, pp. 531–551, Plenum, New York. page 32
  646. Small, C. G. (1982). Random uniform triangles and the alignment problem. Mathematical Proceedings of the Cambridge Philosophical Society, 91: 315–322. page 351
  647. Small, C. G. (1988). Techniques of shape analysis on sets of points. International Statistical Review, 56: 243–257. page 30, 279, 350
  648. Small, C. G. (1996). The Statistical Theory of Shape. Springer, New York. page xx, xxiii, 74, 350, 397
  649. Small, C. G. and Lewis, M. E. (1995). Shape metrics and Frobenius norms. In: Proceedings in Current Issues in Statistical Shape Analysis (eds K. V. Mardia and C. A. Gill), pp. 88–95. University of Leeds Press, Leeds. page 279
  650. Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society, Series B, 55: 3–24. page 234
  651. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17: 143–155. page 26
  652. Sneath, P. H. A. (1967). Trend surface analysis of transformation grids. Journal of Zoology, London, 151: 65–122. page 32, 125, 303, 306
  653. Sommer, S., Lauze, F., Nielsen, M., and Pennec, X. (2013). Sparse multi-scale diffeomorphic registration: the kernel bundle framework. Journal of Mathematical Imaging and Vision, 46: 292–308. page 315
  654. Sotiras, A., Davatzikos, C., and Paragios, N. (2013). Deformable medical image registration: A survey. IEEE Transactions on Medical Imaging, 32(7): 1153–1190. page 315, 377, 390
  655. Southworth, R., Mardia, K. V., and Taylor, C. C. (2000). Transformation- and label-invariant neural network for the classification of landmark data. Journal of Applied Statistics, 27: 205–215. page 169
  656. Sozou, P. D., Cootes, T. F., Taylor, C. J., and Mauro, E. C. D. (1995). Non-linear generalization of point distribution models using polynomial regression. Image Vision Computing, 13(5): 451–457. page 327
  657. Sparr, G. (1992). Depth computations from polyhedral images. In: Computer Vision – ECCV ’92, Lecture Notes in Computer Science (ed. G. Sandini), Vol. 588, pp. 378–386. Springer-Verlag, Berlin. page 273
  658. Sprent, P. (1972). The mathematics of size and shape. Biometrics, 28: 23–37. page 31, 107
  659. Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011a). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7): 1415–1428. page 369, 370, 371
  660. Srivastava, A., Turaga, P. K., and Kurtek, S. (2012). On advances in differential-geometric approaches for 2D and 3D shape analyses and activity recognition. Image and Vision Computing, 30(6–7): 398–416. page 373
  661. Srivastava, A., Wu, W., Kurtek, S., Klassen, E., and Marron, J. S. (2011b). Registration of functional data using the Fisher-Rao metric. Technical Report, Florida State University. arXiv:1103.3817v2 [math.ST]. page 325, 371
  662. Stigler, S. M. (1984). Can you identify these mathematicians? Mathematical Intelligencer, 6: 72. page 384
  663. Stone, G. (1988). Bivariate splines. PhD thesis, University of Bath. page 287
  664. Stoyan, D. (1990). Estimation of distances and variances in Bookstein’s landmark model. Biometrical Journal, 32: 843–849. page 357
  665. Stoyan, D. (1997). Geometrical means, medians and variances for samples of particles. Particle and Particle Systems Characterization, 14: 30–34. page 22, 364, 368
  666. Stoyan, D. and Frenz, M. (1993). Estimating mean landmark triangles. Biometrical Journal, 35: 643–647. page 146
  667. Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic Geometry and its Applications, 2nd edn, John Wiley & Sons, Ltd, Chichester. page xx, 30, 84, 350, 397
  668. Stoyan, D. and Molchanov, I. S. (1995). Set-valued means of random particles. Technical Report BS-R9511, CWI, Amsterdam. page 363, 364, 394
  669. Stoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields: Methods of Geometric Statistics. John Wiley & Sons, Ltd, Chichester. page xx, xxiii, 22, 358, 363, 364, 365, 397
  670. Stuart, A. and Ord, K. (1994). Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory. Arnold, London. page 239, 247
  671. Stuelpnagel, J. (1964). On the parametrization of the three-dimensional rotation group. SIAM Review, 6: 422–430. page 62
  672. Su, J., Dryden, I., Klassen, E., Le, H., and Srivastava, A. (2012). Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image and Vision Computing, 30(67): 428–442. page 77, 330, 331
  673. Subsol, G., Thirion, J.-P., and Ayache, N. (1996). A general scheme for automatically building 3D morphometric anatomical atlases: application to a skull and brain atlas. In: Image Fusion and Shape Variability (eds K. V. Mardia, C. A. Gill, and I. L. Dryden), pp. 115–122. University of Leeds Press, Leeds. page 375
  674. Tanaka, N., Nonaka, T., Nakanishi, M., Deyashiki, Y., Hara, A., and Mitsui, Y. (1996). Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure, 4: 33–45. page 21
  675. Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1701–1708, IEEE Computer Society Press, Los Alamitos, CA. page 384
  676. Taylor, C. C., Faghihi, M. R., and Dryden, I. L. (1995). An understanding of muscle fibre images. In: Image Analysis and Processing, ICIAP95 Conference Proceedings (eds C. Braccini, L. DeFloriani, and G. Vernazza), Vol. 974 of Lecture Notes in Computer Science, pp. 223–228. Springer-Verlag, Berlin. page 351
  677. Taylor, C. C., Mardia, K. V., and Kent, J. T. (2003). Matching unlabelled configurations using the EM algorithm. In: Proceedings of LASR 2003 (eds R. G. Aykroyd, K. V. Mardia, and M. J. Langdon), pp. 19–21. page 341, 348
  678. Taylor, S. (1996). Euclidean distance matrix analysis and MBU-20/P oxygen mask fit. In: Proceedings in Image Fusion and Shape Variability Techniques (eds K. V. Mardia, C. A. Gill, and I. L. dryden), pp. 220–221. University of Leeds Press, Leeds. page 359
  679. Ten Berge, J. M. F. (1977). Orthogonal Procrustes rotation for two or more matrices. Psychometrika, 42: 267–276. page 125, 136, 138
  680. Theobald, C. M., Glasbey, C. A., Horgan, G. W., and Robinson, C. D. (2004). Principal component analysis of landmarks from reversible images. Journal of the Royal Statistical Society, Series C, 53(1): 163–175. page 171
  681. Theobald, D. L. (2005). Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A, 61(4): 478–480. page 63
  682. Theobald, D. L. and Mardia, K. V. (2011). Full Bayesian analysis of the generalized non-isotropic Procrustes problem with scaling. In: Proceedings of LASR 2011 (eds A. Gusnanto, K. V. Mardia, C. J. Fallaize, and J. Voss), pp. 41–44. University of Leeds Press, Leeds. page 236
  683. Theobald, D. L. and Wuttke, D. S. (2006). Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proceedings of the National Academy of Sciences of the United States of America, 103(49): 18521–18527. page 147
  684. Theobald, D. L. and Wuttke, D. S. (2008). Accurate structural correlations from maximum likelihood superpositions. PLoS Computational Biology, 4(2): e43. page 147
  685. Thompson, D. W. (1917). On Growth and Form. Cambridge University Press, Cambridge. page xxiii, 2, 32, 33, 270, 271, 282
  686. Thompson, S. and Rosenfeld, A. (1994). Discrete stochastic growth for two-dimensional shapes. In: NATO Conference on Shape in Pictures (eds O. Ying-Lie, A. Toet, D. Foster, H. J. A. M. Heijmans, and P. Meer), pp. 443–452. Springer-Verlag, Berlin. page 333
  687. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58(1): 267–288. page 214
  688. Tjelmeland, H. and Eidsvik, J. (2004). On the use of local optimizations within Metropolis–Hastings updates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2): 411–427. page 347
  689. Tjelmeland, H. and Hegstad, B. K. (2001). Mode jumping proposals in MCMC. Scandinavian Journal of Statistics, 28(1): 205–223. page 347
  690. Tramontano, A. (2006). Protein Structure Prediction. John Wiley & Sons, Ltd, Chichester. page 209
  691. Trevor, J. C. T. (1950). Anthropometry, pp. 458–462. Chambers Encyclopedia. George Newnes, London. page 31
  692. Truslove, G. M. (1976). The effect of selection for body weight on the skeletal variation of the mouse. Genetical Research Cambridge, 28: 1–10. page 8
  693. Turaga, P., Veeraraghavan, A., Srivastava, A., and Chellappa, R. (2011). Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11): 2273–2286. page 396
  694. Turaga, P. K. and Srivastava, A. (eds) (2015). Riemannian Computing in Computer Vision. Springer, New York. page 390
  695. Turner, K., Mukherjee, S., and Boyer, D. M. (2014). Persistent homology transform for modeling shapes and surfaces. Information and Inference, 3(4): 310–344. page 393
  696. Tversky, A. (1977). Features of similarity. Psychological Review, 84: 327–352. page 395
  697. Twining, C. J., Marsland, S., and Taylor, C. J. (2011). Metrics, connections, and correspondence: The setting for groupwise shape analysis. In: Proceedings of Energy Minimazation Methods in Computer Vision and Pattern Recognition – 8th International Conference, EMMCVPR 2011 (eds Y. Boykov, F. Kahl, V. S. Lempitsky, and F. R. Schmidt), Vol., 6819 of Lecture Notes in Computer Science, pp. 399–412. Springer, New York. page 349
  698. van der Vaart, A. W. (1998). Asymptotic Statistics, Vol. 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. page 372, 389
  699. Vaswani, N., Roy-Chowdhury, A., and Chellapa, R. (2005). Shape activity: a continuous-state HMM for moving/deforming shapes with application to abnormal activity detection. IEEE Transactions on Image Processing, 14: 1603–1616. page 325
  700. Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S, 4th edn. Springer, New York. page 7
  701. Verboon, P. and Heiser, W. J. (1992). Resistant orthogonal Procrustes analysis. Journal of Classification, 9: 237–256. page 337
  702. Vercauteren, T., Pennec, X., Perchant, A., and Ayache, N. (2009). Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 45(1, Suppl. 1): S61–S72. page 315
  703. Villalon, J., Joshi, A. A., Lepore, N., Brun, C. C., Toga, A. W., and Thompson, P. M. (2011). Comparison of volumetric registration algorithms for tensor-based morphometry. In: ISBI (eds S. Wright, X. Pan and M. Liebling), pp. 1536–1541. IEEE, Piscataway, NJ. page 315, 390
  704. Wagener, M., Sadowski, J., and Gasteiger, J. (1995). Autocorrelation of molecular surface properties for modeling Corticosteroid Binding Globulin and Cytosolic Ah receptor activity by neural networks. Journal of the American Chemical Society, 117: 7769–7775. page 13
  705. Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. page 280, 287
  706. Walker, G. (1999). Robust, non-parametric and automatic methods for matching spatial point patterns. PhD thesis, University of Leeds. page 348
  707. Wang, H. and Marron, J. S. (2007). Object oriented data analysis: sets of trees. Annals of Statistics, 35(5): 1849–1873. page 391, 392
  708. Warner, F. W. (1971). Foundations of Differentaible Manifolds and Lie Groups. Scott, Foresman and Co., Glenview, IL. page 61
  709. Watson, G. N. (1944). Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge. page 262
  710. Watson, G. S. (1965). Equatorial distributions on a sphere. Biometrika, 52: 193–201. page 227
  711. Watson, G. S. (1983). Statistics on spheres. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 6. John Wiley & Sons, Inc., New York. page 227, 396
  712. Watson, G. S. (1986). The shape of a random sequence of triangles. Advances in Applied Probability, 18: 156–169. page 57, 351
  713. Weber, G. W. and Bookstein, F. L. (2011). Virtual Anthropology: A guide to a New Interdisciplinary Field. Springer-Verlag, Vienna. page 396
  714. Wilks, S. S. (1962). Mathematical Statistics. John Wiley & Sons, Inc., New York. page 256
  715. Wilson, A. (1995). Statistical models for shape deformations. PhD thesis, Duke University, Durham, NC. page 390
  716. Wilson, A. and Johnson, V. (1995). Models for shape deformation. In: Bayesian Statistics (eds J. Berger, J. Bernardo, A. P. Dawid, and A. F. M. Smith), pp. 801–808. Oxford University Press, Oxford. page 390
  717. Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag, Berlin. page 377
  718. Witkin, A. (1983). Scale-space filtering. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence (ed. A. Bundy), pp. 1019–1022. Kaufman, Los Altos. page 390
  719. Ying-Lie, O., Toet, A., Foster, D., Heijmans, H. J. A. M., and Meer, P. (eds) (1994). Proceedings of the NATO Conference on Shape in Pictures. Springer-Verlag, Berlin. page 390, 397
  720. Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal of Applied Mathematics, 58(2): 565–586. page 371
  721. Younes, L. (2010). Shapes and Diffeomorphisms, Vol. 171 of Applied Mathematical Sciences. Springer-Verlag, Berlin. page xx, 314, 390, 397
  722. Younes, L., Michor, P. W., Shah, J., and Mumford, D. (2008a). A metric on shape space with explicit geodesics. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni, 19(1): 25–57. page 374
  723. Younes, L., Qiu, A., Winslow, R. L., and Miller, M. I. (2008b). Transport of relational structures in groups of diffeomorphisms. Journal of Mathematical Imaging and Vision, 32(1): 41–56. page 315
  724. Yu, Y.-Y., Fletcher, P. T., and Awate, S. P. (2014). Hierarchical Bayesian modeling, estimation, and sampling for multigroup shape analysis. In Golland, P., Hata, N., Barillot, C., Hornegger, J., and Howe, R., editors, Medical Image Computing and Computer-Assisted Intervention MICCAI 2014 (eds P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe), Vol. 8675 of Lecture Notes in Computer Science, pp. 9–16. Springer International Publishing, New York. page 349
  725. Yuan, Y., Zhu, H., Styner, M., Gilmore, J. H. and Marron, J. S. (2013). Varying coefficient model for modeling diffusion tensors along white matter tracts. The Annals of Applied Statistics, 7: 102–125. page 396
  726. Yuille, A. L. (1991). Deformable templates for face recognition. Journal of Cognitive Neuroscience, 3: 59–70. page 5
  727. Zacharias, J. and Knapp, E. W. (2013). Geometry motivated alternative view on local protein backbone structures. Protein Science, 22(11): 1669–1674. page 40
  728. Zahn, C. T. and Roskies, R. Z. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computing, C21: 269–281. page 364
  729. Zelditch, M. L., Swiderski, D. L., and Sheets, H. D. (2012). Geometric Morphometrics for Biologists: a Primer, 2nd edn. Academic Press, New York. page xx, 396
  730. Zhang, L., Wahba, G., and Yuan, M. (2016). Distance shrinkage and Euclidean embedding via regularized kernel estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology). DOI: 10.1111/rssb.12138. page 358
  731. Zhou, D., Dryden, I. L., Koloydenko, A. A., Audenaert, K. M. R., and Bai, L. (2016). Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics. Journal of Applied Statistics, 43: 943–978. page 150, 396
  732. Zhou, D., Dryden, I. L., Koloydenko, A. A., and Bai, L. (2013). Procrustes analysis for diffusion tensor image processing. International Journal of Computer Theory and Engineering, 5: 108–113. page 396
  733. Zhou, R. R., Serban, N., Gebraeel, N., and Müller, H.-G. (2014). A functional time warping approach to modeling and monitoring truncated degradation signals. Technometrics, 56(1): 67–77. page 325
  734. Zienkiewicz, O. C. (1971). The Finite Element Method in Engineering Science. McGraw-Hill, London. page 305
  735. Ziezold, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians, Vol. A, pp. 591–602. Academia: Czechoslovak Academy of Sciences, Prague. page 32, 33, 103, 113, 125, 318
  736. Ziezold, H. (1989). On expected figures in the plane. In: Proceedings of GEOBILD 89 (eds A. Hübler, W. Nagel, B. D. Ripley, and G. Werner), pp. pp. 105–110. Akademie-Verlag, Berlin. page 146, 318
  737. Ziezold, H. (1994). Mean figures and mean shapes applied to biological figure and shape distributions in the plane. Biometrical Journal, 36: 491–510. page 67, 101, 125, 146, 318, 323
  738. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2): 301–320. page 214
  739. Zusne, L. (1970). Visual Perception of Forms. Academic Press, New York. page 395
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.21.158.177