Nomenclature

gsz1.gif diagonal element of the modal damping matrix
gsz2.gif terms in the expansion of approximate complex modes
α1, α2 proportional damping constants
αj coefficients in Caughey series, j = 0, 1, 2, ···
0j a vector of j zeros
A state-space system matrix
aj a coefficient vector for the expansion of jth complex mode
α a vector containing the constants in Caughey series
gsz3.gif frequency response function of an SDOF system
B state-space system matrix
bj a vector for the expansion of jth complex mode
gsz4.gif forcing vector in the Laplace domain
gsz5.gif modal forcing function in the Laplace domain
gsz6.gif effective forcing vector in the Laplace domain
gsz7.gif response vector in the Laplace domain
gsz8.gif Laplace transform of the state-vector of the first-order system
gsz9.gif modal coordinates in the Laplace domain
gsz10.gif Laplace transform of the internal variable yk(t)
gsz11.gif positive real line
C viscous damping matrix
C modal damping matrix
C0 viscous damping matrix (with a non-viscous model)
Ck coefficient matrices in the exponential model for k = 0, …, n, where n is the number of kernels
gsz12.gif non-viscous damping function matrix in the time domain
ΔK error in the stiffness matrix
ΔM error in the mass matrix
β non-viscous damping factor
βc critical value of β for oscillatory motion, gsz13.gif
βi(•) proportional damping functions (of a matrix)
βk(s) coefficients in the state-space modal expansion
βmU the value of β above which the frequency response function always has a maximum
F linear matrix pencil with time step in state-space, F = Bgsz14.gifA
F1, F2 linear matrix pencils with time step in the configuration space
Fj regular linear matrix pencil for the jth mode
f′(t) forcing function in the modal coordinates
f(t) forcing function
G(s) non-viscous damping function matrix in the Laplace domain
G0 the matrix G(s) at s → 0
G the matrix G(s) at s → ∞
H(s) frequency response function matrix
gsz15.gif real part of gsz16.gif
gsz17.gif imaginary part of gsz16.gif
gsz16.gif jth measured complex mode
I identity matrix
K stiffness matrix
M mass matrix
Oij a null matrix of dimension i × j
Ω diagonal matrix containing the natural frequencies
p parameter vector (in Chapter 1 )
Pj a diagonal matrix for the expansion of jth complex mode
ϕj eigenvectors in the state-space
ψj left eigenvectors in the state-space
q(t) displacement response in the time domain
q0 vector of initial displacements
Qj an off-diagonal matrix for the expansion of jth complex mode
r(t) forcing function in the state-space
Rk rectangular transformation matrices (in Chapter 4, [ADH 14] )
Rk residue matrix associated with pole sk
S a diagonal matrix containing eigenvalues sj
T a temporary matrix, gsz18.gif (Chapter 2)
Tk Moore-Penrose generalized inverse of Rk
Tk a transformation matrix for the optimal normalization of the kth complex mode
Θ normalization matrix
u(t) the state-vector of the first-order system
u0 vector of initial conditions in the state-space
uj displacement at the time step j
v(t) velocity vector gsz19.gif
vj a vector of the j-modal derivative in Nelson’s methods (in Chapter 1)
vj velocity at the time step j
εj error vector associated with jth complex mode
φk(s) eigenvectors of the dynamic stiffness matrix
W coefficient matrix associated with the constants in Caughey series
X matrix containing the undamped normal modes xj
xj undamped eigenvectors, j = 1, 2, ···, N
y(t) modal coordinate vector (in Chapter 2, [ADH 14])
yk(t) vector of internal variables, k = 1, 2, ···, n
yk,j internal variable yk at the time step j
Z matrix containing the complex eigenvectors zj
zj complex eigenvectors in the configuration space
ζ diagonal matrix containing the modal damping factors
ζv a vector containing the modal damping factors
χ merit function of a complex mode for optimal normalization
χR, χI merit functions for real and imaginary parts of a complex mode
Δ perturbation in the real eigenvalues
δ perturbation in complex conjugate eigenvalues
gsz20.gif initial velocity (SDOF systems)
gsz21.gif small error
η ratio between the real and imaginary parts of a complex mode
gsz22.gif dissipation function
γ non-dimensional characteristic time constant
γj complex mode normalization constant
γR, γI weights for the normalization of the real and imaginary parts of a complex mode
gsz23.gif frequency-dependent estimated characteristic time constant
gsz24.gif estimated characteristic time constant for jth mode
gsz25.gif an arbitrary independent time variable
κj real part of the complex optimal normalization constant for the jth mode
λ complex eigenvalue corresponding to the oscillating mode (in Chapter 3, [ADH 14])
λj complex frequencies MDOF systems
gsz26.gif moment of the damping function
gsz27.gif dissipation energy
gsz28.gif non-viscous damping kernel function in an SDOF system
gsz29.gif kinetic energy
gsz30.gif potential energy
μ relaxation parameter
μk relaxation parameters associated with coefficient matrix Ck in the exponential non-viscous damping model
v real eigenvalue corresponding to the overdamped mode
vk(s) eigenvalues of the dynamic stiffness matrix
ω driving frequency
ωd damped natural frequency of SDOF systems
ωj undamped natural frequencies of MDOF systems, j = 1, 2, ···, N
ωn undamped natural frequency of SDOF systems
ωmax frequency corresponding to the maximum amplitude of the response function
ωdj damped natural frequency of MDOF systems
ρ mass density
i unit imaginary number, gsz31.gif
τ dummy time variable
θj characteristic time constant for jth non-viscous model
gsz32.gif forcing function in the modal domain
gsz33.gif normalized frequency ω/ωn
ςj imaginary part of the complex optimal normalization constant for the jth mode
gsz34.gif phase angle of the response of SDOF systems
gsz35.gif phase angle of the modal response
ψ a trail complex eigenvector (in Chapter 2, [ADH 14])
gsz36.gif asymmetric state-space system matrix
gsz37.gif fitted damping matrix
gsz38.gif fitted generalized proportional damping function (in Chapter 2)
gsz39.gif state-space system matrix for rank-deficient systems
gsz40.gif state-space system matrix for rank-deficient systems
gsz41.gif integration of the forcing function in the state-space for rank-deficient systems
gsz41.gif integration of the forcing function in the state-space
gsz42.gif matrix containing the state-space eigenvectors for rank-deficient systems
gsz43.gif eigenvectors in the state-space for rank-deficient systems
gsz44.gif forcing function in the state-space for rank-deficient systems
gsz45.gif the state vector for rank-deficient systems
gsz46.gif vector of internal variables for rank-deficient systems, k = 1, 2, ···, n
gsz47.gif internal variable yk at the time step j for rank-deficient systems
gsz48.gif jth eigenvector corresponding to the kth the internal variable for rank-deficient systems
ξ a function of ζ defined in equation [3.132] (Chapter 3, [ADH 14])
ζ viscous damping factor
ζc critical value of ζ for oscillatory motion, gsz49.gif
ζj modal damping factors
ζL lower critical damping factor
ζn equivalent viscous damping factor
ζU upper critical damping factor
ζmL the value of ζ below which the frequency response function always has a maximum
ak, bk non-viscous damping parameters in the exponential model
B response amplitude of SDOF systems
Bj modal response amplitude
c viscous damping constant of an SDOF system
ck coefficients of exponential damping in an SDOF system
ccr critical damping factor
dj a constant of the j-modal derivative in Nelson’s methods
E Young’s modulus
f (t) forcing function (SDOF systems)
fd(t) non-viscous damping force
G(iω) non-dimensional frequency response function
G(s) non-viscous damping kernel function in the Laplace domain (SDOF systems)
g(i) scalar damping functions, i = 1, 2, ···
h constant time step
h(t) impulse response function of SDOF systems
h(t) impulse response function
Ik non-proportionally indices, k1 = 1, 2, 3, 4
k spring stiffness of an SDOF system
L length of the rod
le length of an element
m dimension of the state-space for non-viscously damped MDOF systems
m mass of an SDOF system
N number of degrees of freedom
n number of exponential kernels
nd number of divisions in the time axis
p any element in the parameter vector p (in Chapter 1)
q(t) displacement in the time domain
q0 initial displacement (SDOF systems)
Qnck non-conservative forces
R(x) Rayleigh quotient for a trail vector x
R1, R2, R3 three new Rayleigh quotients
rj normalized eigenvalues of non-viscously damped SDOF systems (in Chapter 3, [ADH 14])
rk rank of Ck matrices
s Laplace domain parameter
sj eigenvalues of dynamic systems
t time
Tn natural time period of an undamped SDOF system
Tmin minimum time period for the system
varrhoj complex optimal normalization constant for the jth mode
x normalized frequency-squared, gsz50.gif (in Chapter 3, [ADH 14])
yj modal coordinates (in Chapter 3, [ADH 14])
gsz51.gif forcing function in the Laplace domain
gsz52.gif displacement in the Laplace domain
gsz53.gif matrix containing gsz15.gif
gsz54.gif matrix containing gsz17.gif
Φ matrix containing the eigenvectors ϕj
gsz55.gif vector of initial velocities
gsz56.gif non-viscous proportional damping functions (of a matrix)
Y k a matrix of internal eigenvectors
ykj jth eigenvector corresponding to the kth the internal variable
PSD power spectral density
0 a vector of zeros
gsz57.gif Lagrangian (in Chapter 3, [ADH 14])
δ(t) Dirac-delta function
δjk Kroneker-delta function
Γ(•) gamma function
γ Lagrange multiplier (in Chapter 3, [ADH 14])
(•)* complex conjugate of (•)
(•)T matrix transpose
(•)–1 matrix inverse
(•)T matrix inverse transpose
(•)H Hermitian transpose of (•)
(•)e elastic modes
(•)nv non-viscous modes
gsz58.gif derivative with respect to time
gsz59.gif space of complex numbers
gsz60.gif space of real numbers
orthogonal to
gsz61.gif Laplace transform operator
gsz62.gif inverse Laplace transform operator
det(•) determinant of (•)
diag [•] a diagonal matrix
gsz63.gif for all
gsz64.gif imaginary part of (•)
belongs to
does not belong to
Kronecker product
gsz65.gif Laplace transform of (•)
gsz66.gif real part of (•)
vec vector operation of a matrix
O(•) in the order of
ADF anelastic displacement field model
adj(•) adjoint matrix of (•)
GHM Golla, Hughes and McTavish model
MDOF multiple-degree-of-freedom
SDOF single-degree-of-freedom
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.129.19.21