Table of Contents

,

 

 

 

Introduction

 

Chapter 1. Synchronous motor controls, Problems and Modeling

1.1. Introduction

1.2. Problems on the synchronous motor control

1.3. Descriptions and physical modeling of the synchronous motor

1.4. Modeling in dynamic regime of the synchronous motor in the natural three-phase a-b-c reference frame

1.5. Vector transformations and dynamic models in the α-β and d-q reference frames (sinusoidal field distribution machines with non-salient and salient poles)

1.6. Can we extend the Park transformation to synchronous motors with non-sinusoidal field distributions?

1.7. Conclusion

1.8. Appendices

1.9. Bibliography

 

Chapter 2. Optimal Supply and Synchronous Motors Torque Control: Designs in the a-b-c Reference Frame

2.1. Introduction: problems of the controls in a-b-c

2.2. Model in the a-b-c reference frame: extension of the steady state
approach in transient regime

2.3. Structures of torque controls designed in the a-b-c reference frame

2.4. Performances and criticisms of the control approach in the a-b-c reference frame

2.5. Generalization: extension of the supplies to the case of non-sinusoidal distribution machines

2.6. Use of Fourier expansion to obtain optimal currents

2.7. Conclusion

2.8. Appendices

2.9. Bibliography

 

Chapter 3. Optimal Supplies and Synchronous Motors Torque Controls. Design in the d-q Reference Frame

3.1. Introduction: on the controls designed in the Park d-q reference frame

3.2. Dynamic model (case of the salient pole machine and constant excitation)

3.3. First approach to determine of optimal current references (d-q reference frame)

3.4. Determination of the current controls designed in the d-q reference frame

3.5. New control by model inversion: example of an IP controller with compensations

3.6. Optimal supply of the salient poles synchronous motors; geometrical approach of the isotorque curves

3.7. Conclusion

3.8. Appendices

3.9. Bibliography

 

Chapter 4. Drive Controls with Synchronous Motors

4.1. Introduction

4.2. Principles adopted for speed controls: case of IP controllers

4.3. Speed controls designed in the a-b-c reference frame (application to a non-salient pole machine)

4.4. Determination of the speed controls designed in the d-q reference frame (application to a salient pole machine)

4.5. Note on position regulations

4.6. Conclusion

4.7. Appendices

4.8. Bibliography

 

Chapter 5. Digital Implementation of Vector Control of Synchronous Motors

5.1. Introduction

5.2. Classical, analog and ideal torque control of a synchronous motor

5.3. Digital implementation problem of the synchronous motor vector control

5.4. Discretization of the control system

5.5. Study of the delays introduced by the digital implementation of the vector control of the synchronous motor

5.6. Quantization problems

5.7. Delays in the reverse Park transformation

5.8. Conclusion

5.9. Bibliography

 

Chapter 6. Direct Control of a Permanent Magnet Synchronous Machine

6.1. Introduction

6.2. Model of the permanent magnet synchronous machine in the d-q reference frame

6.3. Conventional DTC with free switching frequency

6.4. DTC at a fixed switching frequency

6.5. Predictive direct control

6.6. Conclusion

6.7. Bibliography

 

Chapter 7. Synchronous Machine and Inverter Fault Tolerant Predictive Controls

7.1. Introduction

7.2. Topologies of three-phase fault tolerant machines

7.3. Topologies of fault tolerant converters

7.4. Fault tolerant controls

7.5. Conclusion

7.6. Bibliography

 

Chapter 8. Characterization of Control without a Mechanical Sensor in Permanent Magnet Synchronous Machines

8.1. Introduction

8.2. Sensorless control of PMSM, thanks to an extended Kalman filter

8.3. Comparison with the MRAS (model reference adaptive system) method

8.4. Experimental results comparison

8.5. Control without sensor of the PMSM with load torque observation

8.6. Starting the PMSM without a mechanical sensor

8.7. Conclusion

8.8. Bibliography

 

Chapter 9. Sensorless Control of Permanent Magnet Synchronous Machines: Deterministic Methods, Convergence and Robustness

9.1. Introduction

9.2. Modeling PMSMs for mechanical sensorless control

9.3. Convergence analysis of mechanical sensorless control laws

9.4. Estimation of the back-EMF vector

9.5. Robustness of sensorless control of PMSM with respect to parameter uncertainties

9.6. Sensorless control of PMSMs in the presence of uncertainties on the resistance

9.7. Conclusion

9.8. Appendix 1

9.9. Appendix 2

9.10. Bibliography

 

List of Authors

 

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.106.150