Bibliography

[A4W 13] A4WP, http://www.a4wp.org/, 2013.

[ADA 81] ADACHI S., SUZUKI O., ABE S., “Receiving efficiency of an infinite phased array antenna above a reflecting plane”, IEICE Transactions B, vol. J64-B, no. 6, pp.566–567, 1981. [In Japanese]

[ADL 46] ADLER R., “A study of locking phenomena in oscillators”, Proceedings of the IRE, vol. 34, pp. 351–357, June 1946.

[AHN 11] AHN S., KIM J., “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle”, Proceedings of the EuCAP2011, pp. 4148–4151, 2011.

[AKI 93] AKIBA R., MIURA K., HINADA M., et al., ISY-METS rocket experiment, The Institute of Space and Astronautical Science Report, no. 652, September 1993.

[AKK 05] AKKERMANS J.A.G., VAN BEURDEN M.C., DOODEMAN G.J.N., et al., “Analytical models for low-power rectenna design”, IEEE Antenna and Wireless Propagation Letters, vol. 4, pp. 187–190, 2005.

[AOL 13] AOL TECH, http://techcrunch.com/2013/09/09/cota-by-ossia-wireless-power/, 2013.

[BAS 08a] BASIC PLAN FOR SPACE POLICY, http://www.kantei.go.jp/jp/singi/utyuu/basic_plan.pdf, 2008.

[BAS 08b] BASIC PLAN FOR SPACE POLICY Pamphlet, http://www.kantei.go.jp/jp/smgi/utyuu/keikaku/pamph_en.pdf, 2008.

[BAS 09a] BASIC PLAN FOR Space POLICY, http://www.kantei.go.jp/jp/singi/utyuu/basic_plan.pdf, 2009.

[BAS 09b] BASIC PLAN FOR SPACE POLICY, http://www.kantei.go.jp/jp/singi/utyuu/keikaku/pamph_en.pdf, 2009.

[BAS 12] BASIC PLAN ON SPACE POLICY, http://www8.cao.go.jp/space/plan/plan-eng.pdf, 2012.

[BOL 78] BOLGER J.G., KIRSTEN F.A., NG L.S., “Inductive power coupling for an electric highway system”, Proceedings of the IEEE 28th Vehicular Technology Conference, vol. 28, pp. 137–144, March 1978.

[BRO 64] BROWN W.C., “Rectification of microwave power”, IEEE Spectrum, vol. 1, no. 10, pp. 92–100, October 1964.

[BRO 73a] BROWN W.C., “Adapting microwave techniques to help solve future energy problems”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-21, no. 12, pp.753–763, 1973.

[BRO 73b] BROWN W.C., “Adapting microwave techniques to help solve future energy problems”, 1973 G-MTT International Microwave Symposium Digest of Technical Papers, vol. 73, no. 1, pp. 189–191, 1973.

[BRO 76] BROWN W.C., “Optimization of the efficiency and other properties of the rectenna element”, MTT-S International Microwave Symposium, pp. 142–144, 1976.

[BRO 78] BROWN W.C., “The design of large scale terrestrial rectennas for low-cost production and erection”, Proceedings of the IEEE GMIT International Microwave Symposium, pp. 349–351, 1978.

[BRO 80] BROWN W.C., “The history of the development of the rectenna”, Proceedings of the SPS Microwave Systems Workshop at JSC-NASA, pp. 271–280, 1980.

[BRO 81] BROWN W.C., “Status of the microwave power transmission components for solar power satellite”, IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 12, pp. 1319–1327, 1981.

[BRO 82] BROWN W.C., TRINER J.F., “Experimental thin-film, etched-circuit rectenna”, MTT-S International Microwave Symposium Digest, vol. 82, no. 1, pp. 185–187, 1982.

[BRO 84] BROWN W.C., “The history of power transmission by radio waves”, IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230–1242, 1984.

[BRO 88] BROWN W.C., “The SPS transmitter designed around the magnetron directional amplifier”, Space Power, vol. 7, no. 1, pp. 37–49, 1988.

[BRO 89] BROWN W.C., “The Sophisticated properties of the microwave oven magnetron”, IEEE MTTS Digest, pp. 871–874, 1989.

[BRO 06] BROOKNER E., “Phased arrays and radars – past, present and future”, Proc. of RADAR2002, pp. 104-113, October 2002.

[BWF 13] BWF, http://bwf-yrp.net/english/, 2013.

[CEL 97] CELESTE A., LUK J.-D.L.S., CHABRIAT J.P., et al., “The Grand-Bassin case study: technical aspects”, Proceedings of the SPS ’97, pp. 255–258, 1997.

[CEL 04] CELESTE A., JEANTY P., PIGNOLET G., “Case study in Reunion island”, Acta Astronautica, vol. 54, no. 2, pp. 253–258, 2004.

[COL 99] COLANTONIO P., GIANNINI F., LEUZZI G., et al., “On the class-F power amplifier design”, International Journal of RF and Microwave Computer-Aided Engineering, vol. 9, no. 2, pp. 129–149, March 1999.

[COL 13] COLLADO A., GEORGIADIS A., “24 GHz substrate integrated waveguide (SIW) rectenna for energy harvesting and wireless power transmission”, Proceedings of the International Microwave Symposium (IMS), WE4G-3, 2013.

[COV 12] COVIC G., “Recent advances in wireless power transfer for transportation applications”, Proceedings of the 2012 Energy Transfer for Electric Vehicle (ETEV), 2012.

[DEN 13] DENGYO CORPORATION, http://www.den-gyo.com/solution/solution10_b.html, 2013. [In Japanese].

[DIA 68] DIAMOND B.L., “A generalized approach to the analysis of infinite planar array antennas”, Proceedings of the IEEE, vol. 56, pp.1837–1851, 1968.

[DID 98] DIDOMENICO L.D., REBEIZ G.M., “Mobile digital communications using phase conjugating Arrays”, Proceedings of the IEEE Military Communications Conference (MILCOM ’98), Paper 9.4, 1998.

[DOE 78] DOE AND NASA, Satellite power system; concept development and evaluation program, Reference System Report, October 1978.

[EHC 13] EHC, http://www.keieiken.co.jp/ehc/, 2013. [In Japanese]

[ENE 06] ENERGY HARVESTER, “Method and apparatus for a wireless power supply”, Patent No. US7027311, 2006.

[EPP 00] EPP L.W., KHAN A.R., SMITH H.K., et al., “A compact dual polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 111–119, 2000.

[ESA 05] ESA, “Earth & Space-Based Power Generation Systems – a comparison study: a study for ESA Advanced Concept Team”, Contact No. 17682/03/NL/EC To ESTEC, January 2005.

[FEI 03] FEINGOLD H., CARRINGTON C., “Evaluation and comparison of space solar power concepts”, Acta Astronautica, vol. 53, nos. 4–10, pp. 547–559, 2003.

[FOR 59] FORRER M.P., Study of multipactor discharge characteristics, RADC Report, No. TN-59-307, Kane Engineering Laboratories, Palo Alto, CA, June 25 1959.

[FOR 73] FORRESTER J.W., World Dynamics, 2nd ed., Wright-Allen Press, Inc., Cambridge, 1973.

[FUR 10] FURUKAWA M., SHIRATO T., Efficiency improvement of rectenna for microwave power transmission, IEICE Technical Report, WPT2010-18, pp. 27–30, 2010. [In Japanese]

[FUR 13] FURUKAWA M., MINEGISHI T., OGAWA T., et al., Wireless power transmission to 10kW output 2.4 GHz-band rectenna array for electric trucks application, IEICE Technical Report, WPT2012-47, pp. 36–39, 2013. [In Japanese]

[FUS 11] FUSE Y., SAITO T., MIHARA S., et al., “Outline and progress of the Japanese microwave energy transmission program for SSPS”, Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2011), pp. 47–50, 2011.

[GAO 13] GAO H., MATTERS-KAMMERER M.K., MILOSEVIC D., et al., “A 62 GHz inductor-peaked rectifier with 7% efficiency”, Proceedings of the 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC2013), RMO3B-5, 2013.

[GLA 68] GLASER P.E., “Power from the Sun”, Science, vol. 162, pp. 857–886, 1968.

[GLA 93] GLASER P.E., DAVIDSON F.P., CSIGI K.I. (ed.), Solar Power Satellite; The Emerging Energy Option, Ellis Horwood, 1993.

[GOU 61] GOUBAU G., SCHWERING F., “On the guided propagation of electromagnetic wave beams”, IRE Transactions on Antennas and Propagation, vol. AP-9, pp. 248–256, May 1961.

[GRA 99] GRANATSTEIN V.L., PARKER P.K., ARMSTRONG C.M., “Scanning the technology: vacuum electronics at the dawn of the twenty-first century”, Proceedings of the IEEE, vol. 87, pp. 702–716, 1999.

[GUO 13] GUO J., ZHU X., “Class F rectifier RF-DC conversion efficiency analysis”, Proceedings of International Microwave Symposium (IMS), WE4G-1, 2013.

[GUT 79] GUTMANN R.J., BORREGO J.M., “Power combining in an array of microwave power rectifiers”, IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 958–968, 1979.

[HAG 04] HAGERTY J.A., HELMBRECHT F.B., MC CALPIN W.H., et al., “Recycling ambient microwave energy with broad-band rectenna arrays”, IEEE Transactions on MTT, vol. 52, no. 3, pp. 1014–1024, 2004.

[HAN 11] HANAZAWA M., OHIRA T., “Power transfer for a running automobile”, Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2011), pp. 77–80, 2011.

[HAR 11] HARAKAWA K., KAGEYAMA K., TSURUTA T., et al., Electrically coupled resonant type wireless power transmission technologies – parallel resonant power transmission circuit, IEICE Technical Report, WPT2011-24, 2011. [In Japanese]

[HAS 11] HASHIMOTO K., ISHIKAWA T., MITANI T., et al., “Improvement of a ubiquitous power source”, Proceedings of the International Union of Radio Science (URSI) General Assembly 2011, CD-ROM CHGBDJK-1.pdf, 2011. Available at http://www.ursi.org/en/home.asp.

[HAT 98] HATFIELD M.C., HAWKINS J.G., BROWN W.C., “Use of a magnetron as a high-gain, phase-locked amplifier in an electrically-steerable phased array for wireless power transmission”, Proceedings of the 1998 MTT-S International Microwave Symposium, pp. 1157–1160, 1998.

[HAT 99] HATFIELD M.C., HAWKINS J.G., “Design of an electronically-steerable phased array for wireless power transmission using a magnetron directional amplifier”, Proceedings of the 1999 MTT-S International Microwave Symposium, pp. 341–344, 1999.

[HAT 12] HATANO K., SHINOHARA N., MITANI T., et al., “Development of improved 24GHz-band class-F load rectennas”, Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2012), pp. 163–166, 2012.

[HAT 13] HATANO K., SHINOHARA N., SEKI T., et al., “Development of MMIC Rectenna at 24GHz”, Proceedings of the 2013 IEEE Radio & Wireless Symposium (RWS), pp. 199–201, 2013.

[HEI 97] HEIDER S., “The commercial space TWTA market review and trends”, Proceedings of the 1997 ESA Workshop, pp. 63–68, 1997.

[HIN 13] HINO MOTORS, http://hino.dga.jp/i-viewer_s/?p_no=7&m_p=20&p_id=1983&file_name=http%3A%2F%2Fwww.hino-global.com%2Fpdf%2Fhinorep2007_e.pdf&t=HINO+Report&kw=IPT+hybrid, 2013.

[HIR 97] HIRAYAMA K., SHINOHARA N., HASHIMOTO K., et al, “Fundamental study of microwave power transmission to a robot moving in gas pipes”, Proceedings of IEICE Comm., p. 116, March 1997. Available at http://www.ieice.org/eng/index.html. [In Japanese]

[HIR 99] HIRAYAMA K., SHINOHARA N., MATSUMOTO H., et al., “Study of microwave power transmission to a robot moving in gas pipes”, Proceedings of IEICE Comm., p. 25, March 1999. Available at http://www.ieice.org/eng/index.html. [In Japanese]

[HOM 11] HOMMA Y., SASAKI T., NAMURA K., et al., “New phased array and rectenna array systems for microwave power transmission research”, Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2011), pp. 59–62, 2011.

[HON 11] HONJO K., “High power amplifier for MPT”, in SHINOHARA N. (ed.), Solar Power Satellite, Ohm Publishing, pp. 50–62, 2011. [In Japanese]

[HUT 94] HUTIN M., LE-BLANC M., Transformer system for electric Railways, US Patent Number 527,875, 1894.

[ICH 12] ICHIHARA T., MITANI T., SHINOHARA N., “Study on intermittent microwave power transmission to a ZigBee device”, Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2012), pp.209–212, 2012.

[ICN 13] ICNIRP, http://www.icnirp.de/, 2013.

[IKE 02] IKEMATSU H., MIZUNO T., SATOH H., et al., “SPS concept with high efficiency phase control technology”, Proceedings of the Asia-Pacific Microwave Conference 2002, WS-9-2, 2002.

[IMU 09] IMURA T., UCHIDA T., HORI Y., “Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings”, Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 936–940, 2009.

[IMU 10] IMURA T., UCHIDA T., HORI Y., “Flexibility of contactless power transfer using magnetic resonance coupling to air gap and misalignment for EV”, World Electric Vehicle Association Journal, vol. 3, pp. 1–10, 2010.

[ITO 84] ITOH K., OHGANE T., OGAWA Y., “Absorption efficiency of rectenna composed of magnetic current antennas”, Technical Report of IEICE, AP84-69, pp. 9–14, 1984.

[ITO 86] ITOH K., OHGANE T., OGAWA Y., “Rectenna composed of a circular microstrip antenna”, Space Power, vol. 6, pp. 193–198, 1986.

[ITO 93] ITOH T., FUJINO Y., FUJITA M., “Fundamental experiment of a rectenna array for microwave power reception”, IEICE Transactions on Communications, vol. E76-B, no. 12, pp. 1508–1513, 1993.

[ITU 00] ITU Radiocommunication Study Group, “Applications and characteristics of wireless power transmission”, Document No. 1A/18-E, Task Group ITU-R WP1A, Reference Question 210/1, 9 October 2000.

[JAX 05] JAXA, “SSPS research report”, March 2005. [In Japanese]

[KAM 05] KAMO Y., et al., “C-band 140 W AlGaN/GaN HEMT with Cat-CVD technique”, Proceedings of the 2005 IEEE MTT-S International Microwave Symposium, WE1E-4, June 2005.

[KAM 11] KAMIYAMA M., ISHIKAWA R., HONJO K., “C-band high efficiency AlGaN/GaN HEMT power amplifier by controlling phase angle of harmonics”, Proceedings of the IEICE, CS-3-1, September 2011. [In Japanese]

[KAW 13] KAWAHARA Y., WEI W., NARUSUE Y., et al., “Virtualizing power cords by wireless power transmission and energy harvesting”, Proceedings of the 2013 IEEE Radio & Wireless Symposium (RWS), pp. 37–39, 2013.

[KAY 86] KAYA N., MATSUMOTO H., MIYATAKE S., et al., “Nonlinear interaction of strong microwave beam with the ionosphere: MINIX rocket experiment”, Space Solar Power Review, vol. 6, pp. 181–186, 1986.

[KAY 93] KAYA N., MATSUMOTO H., AKIBA R., “Rocket experiment METS microwave energy transmission in space”, Space Power, vol. 11, nos. 1–2, pp. 267–274, 1993.

[KAY 96] KAYA N., IDA S., FUJINO Y., et al., “Transmitting antenna system for airship demonstration (ETHER)”, Space Energy and Transportation, vol. 1, no.4, pp. 237–245, 1996.

[KAY 06] KAYA N., IWASHITA M., TANAKA K., et al., “Rocket experiment on microwave power transmission with Furoshiki deployment”, Proceedings of the International Astronautical Congress (IAC) 2006, IAC-06-C3.3.03.pdf, 2006.

[KIM 02] KIM S., SHINOHARA N., MATSUMOTO H., “Development of a stable RF-DC conversion efficiency of rectenna on various loads”, Proceedings of the 5th SPS Symposium, pp. 83–88, 2002. [In Japanese]

[KIM 03] KIM S., SHINOHARA N., MATSUMOTO H., “Development of high conversion efficiency method of rectenna system with reflection”, Proceedings of the IEICE in Spring, p.C-2–97, 2003. [In Japanese]

[KIM 04] KIMURA T., YAMAMOTO K., NAKADA T., USEF SSPS STUDY TEAM, “Development of highly efficient active integrated antenna”, Proceedings of the 4th International Conference on Solar Power from Space (SPS ’04), pp. 125–130, 2004.

[KIT 06] KITAYOSHI H., SAWAYA K., “A study on rectenna for passive RFID-tag”, Proceedings of the IEICE in Spring, CBS1-5, 2006. [In Japanese]

[KIT 13] KITAZAWA S., HANAZAWA M., ANO S., et al., “Field test results of RF energy harvesting from cellular base station”, Proceedings of the 6th Global Symposium on Millimeter-Waves (GSMM) 2013, T6-6, 2013. Available at http://www.katolab.riec.tohoku.ac.jp/gsmm2013/.

[KOB 93] KOBAYASHI Y., SEKI H., ITOH M., “Improvement of a rectifier circuit of rectenna element for the stratosphere stationary radio relay system”, Proceedings of the IEICE in Spring, pp. 2–37, 1993. [In Japanese]

[KUR 07] KURS A., KARALIS A., MOFFATT R., et al., “Wireless power transfer via strongly coupled magnetic resonances”, Science, vol. 317, pp. 83–86, 2007.

[KWP 13] KWPF, http://www.kwpf.org/eng/html/main.html, 2013.

[LAD 13] LADAN S., WU K., “High efficiency low-power microwave rectifier for wireless energy harvesting”, Proceedings of the International Microwave Symposium (IMS), WE4G-2, 2013.

[LEI 03] LEIPOLD M., EIDEN M., GARNER C.E., et al., “Solar sail technology development and demonstration”, Acta Astronautica, vol. 52, nos. 2–6, pp. 317–326, 2003.

[LIP 87] LIPSKY S.E., Microwave Passive Direction Finding, Wiley-Interscience, 1987.

[MAE 05] MAEKAWA A., et al., “A 100W high-efficiency GaN HEMT amplifier for S-band wireless system”, Proceedings of the 2005 European Microwave Conference, pp. 497–500, October 2005.

[MAE 06] MAEKAWA A., et al., “A 500W push-pull AlGaN/GaN HEMT amplifier for L-band high power application”, Proceedings of the 2006 IEEE MTT-S International Microwave Symposium, pp. 722–725, June 2006.

[MAE 13] MAEHARA D., AKAI R., TRAN G.K., et al., “Experiment on battery-less sensor activation via multi-point wireless energy transmission”, Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 2346–2350, 2013.

[MAI 94] MAILLOUX R.J., Phased Array Antenna Handbook, Artech House, 1994.

[MAN 97] MANKINS J.C., “A fresh look at space solar power: new architectures, concepts and technologies”, Acta Astronautica, vol. 41, nos. 4–10, pp. 347–359, 1997.

[MAN 09] MANKINS J.C., “New detections for space solar power”, Acta Astronautica, vol. 65, nos. 1–2, pp. 146–156, 2009.

[MAT 86] MATSUMOTO H., KIMURA T., “Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results”, Space Solar Power Review, vol. 6, pp. 187–191, 1986.

[MAT 93] MATSUMOTO H., KAYA N., FUJITA m., et al., “MILAX Airplane experiment and model airplane”, Proceedings of the 11th ISAS Space Energy Symposium, pp. 47–52, 1993. [In Japanese]

[MAT 95a] MATSUMOTO H., “Microwave power transmission from space and related nonlinear plasma effects”, The Radio Science Bulletin, vol. 273, pp. 11–35, 1995.

[MAT 95b] MATSUMOTO H., HIRATA H., HASHINO Y., et al., “Theoretical analysis of nonlinear interaction of intense electromagnetic wave and plasma waves in the Ionosphere”, Electronics and Communications in Japan, Part 3, vol. 78, no. 11, pp. 104–11, 1995.

[MAT 95c] MATSUMOTO H., HASHINO Y., YASHIRO H., SHINOHARA N., OMURA Y., “Computer simulation on nonlinear interaction of intense microwave with space plasmas”, Electronics and Communications in Japan, Part 3, vol. 78, no. 11, pp. 89–103, 1995.

[MAT 02a] MATSUMOTO H., “Research on solar power satellite and microwave power transmission in Japan: review and perspectives”, IEEE Microwave Magazine, vol. 3, no. 4, pp. 36–45, December 2002.

[MAT 02b] MATSUMOTO H., SHINOHARA N., HASHIMOTO K., Activities of study of solar power satellite/station (SPS) in RASC of Kyoto University, Technical Report of IEICE, SPS2002-07 (2002-11), pp. 9–14, 2002. [In Japanese]

[MCS 96] MC SPADDEN J.O., CHANG K., PATTON A.D., “Microwave power transmission research at Texas A&M University”, Space Energy and Transportation, vol. 1, no. 4, pp. 368–393, 1996.

[MCS 98] MC SPADDEN J.O., FAN L., CHANG K., “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna”, IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2053–2060, 1998.

[MCS 02] MCSPADDEN J.O., MANKINS J.C., “Space solar power programs and microwave wireless power transmission technology”, IEEE Microwave Magazine, vol. 3, no. 4, pp. 46–57, December 2002.

[MEA 72] MEADOWS D.H., MEADOWS D.L., RANDERS J., et al., The Limits to Growth, Universe Books, New York, 1972.

[MEI 12] MEINS I.J., “Basic applications of inductive power transfer”, Proceedings of the 2012 Energy Transfer for Electric Vehicle (ETEV), 2012. Available at http://edpc.eu/etev/etev.html.

[MIK 04] MIKAMI I., MIZUNO T., IKEMATSU H., et al., “Some proposals for the SSPS actualization from innovative component technology standpoint”, Proceedings of the 2004 URSI EMT-S, pp. 317–319, 2004.

[MIT 94] MITSUBISHI RESEARCH INSTITUTE, INC ., Final report of SPS research trusted from NEDO, 1994. [In Japanese]

[MIT 03] MITANI T., SHINOHARA N., MATSUMOTO H., et al., “Experimental study on oscillation characteristics of magnetron after turning off filament current”, Electronics and Communications in Japan, Part II: Electronics, vol. E86, no. 5, pp. 1–9, 2003.

[MIT 10] MITANI T., YAMAKAWA H., SHINOHARA N., et al., “Demonstration experiment of microwave power and information transmission from an Airship”, Proceedings of the 2nd International Symposium on Radio System and Space Plasma, pp. 157–160, 2010.

[MIU 01] MIURA T., SHINOHARA N., MATSUMOTO H., “Experimental study of rectenna connection for microwave power transmission”, Electronics and Communications in Japan, Part 2, vol. 84, no. 2, pp. 27–36, 2001.

[MIY 01] MIYAMOTO R.Y., QIAN Y., ITOH T., “An active integrated retrodirective transponder for remote information retrieval-on-demand”, IEEE Transactions on MTT, vol. 49, no. 9, pp. 1658–1662, 2001.

[MIY 02] MIYAMOTO R.Y., ITOH T., “Retrodirective arrays for wireless communications”, IEEE Microwave Magazine, vol. 3, no. 1, pp. 71–79, March 2002

[MIY 12] MIYASHIRO K., INOUE F., MAKI K., et al., Sequentially rotated array antenna for wireless power transmission to an MAV, IEICE Technical Report, WPT2012-30, pp. 59–61, 2012. [In Japanese]

[MIY 13] MIYASAKA J., OHDOI K., WATANABE M., et al., “Control for microwave-driven agricultural vehicle – tracking system of parabolic transmitting antenna and vehicle rectenna panel”, Engineering in Agriculture, Environment and Food (EAEF), vol. 6, no. 3, pp. 135–140, 2013.

[MIZ 04] MIZUNO T., NISHIDA K., OKEGAWA H., et al., “Development of a PLL-heterodyne hardware retro directive antenna”, Proceedings of the 48th Aerospace Science and Technology Conference, 1B06, 2004. [In Japanese]

[MOR 04] MORI M., NAGAYAMA H., SAITO Y., et al., “Summary of studies on space solar power systems of the national space development agency of Japan”, Acta Astronautica, vol. 54, no. 5, pp. 337–345, 2004.

[MOR 06] MORI K., KATAYAMA A., TSUTUSMI K., et al., “UHF band RF circuits for RFID tag with battery supply”, Proceedings of The Institute of Electronics, Information and Communication Engineers (IEICE) in Spring, CBS1–6, 2006. Available at http://www.ieice.org/eng/index.html. [In Japanese]

[NAG 86] NAGATOMO M., KAYA N., MATSUMOTO H., “Engineering aspect of the microwave-ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket”, Acta Astronautica, vol. 13, pp. 23–29, 1986.

[NAG 91] NAGATOMO M., ITOH K., “An evolutionary satellite power system for international demonstration in developing nations”, Proceedings of SPS ’91-Power from Space, 1991.

[NAG 94] NAGATOMO M., SASAKI S., NARUO Y., “Conceptual study of a solar power satellite, SPS 2000”, Proceedings of the 19th International Symposium on Space Technology and Science (ISTS1994), pp. 469–476, May 1994.

[NAG 11] NAGAHAMA A., MITANI T., SHINOHARA N., et al., “Study on a microwave power transmitting system for mars observation airplane”, Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Technologies, Systems, and Applications (IMWSIWPT2011), pp. 63–66, 2011.

[NAG 12] NAGAHAMA A., MITANI T., SHINOHARA N., et al., “Auto tracking and power control experiments of a magnetron-based phased array power transmitting system for a mars observation airplane”, Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2012), pp. 29–32, 2012.

[NAK 05] NAKASUKA S., FUNANE T., NAKAMURA Y., et al., “Sounding rocket flight experiment for demonstrating ‘FUROSHIKI SATELLITE’ for large phased array antenna”, Proceedings of the International Astronautical Congress (IAC) 2005, IAC-05-C3.3.01.pdf, 2005.

[NAK 06] NAKASUKA S., FUNANE T., NAKAMURA Y., et al., “Sounding rocket flight experiment for demonstrating ‘FUROSHIKI SATELLITE’ for large phased array antenna”, Acta Astronautica, vol. 59, no. 1–5, pp.200–205, 2006. Available at http://www.sciencedirect.com/science/article/pii/S0094576506001056.

[NOD 11] NODA A., SHINODA H., “Selective wireless power transmission through high-Q flat waveguide-ring resonator on 2-D waveguide sheet”, IEEE Transactions on MTT, vol. 59, no. 8, pp. 2158–2167, 2011.

[NOD 12a] NODA A., SHINODA H., “Compact class-F RF-DC converter with antisymmetric dual-diode configuration”, Proceedings of the International Microwave Symposium (IMS), TH1A-5, 2012.

[NOD 12b] NODA A., SHINODA H., “Waveguide-ring resonator coupler with class-F rectifier for 2-D waveguide power transmission”, Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2012), pp. 259–262, 2012.

[NOD 13] NODA A., SHINODA H., “A phased array feeding system for 2-D waveguide power transmission”, Proceedings of IEICE, BSC-1-8, March 2013. [In Japanese]

[ODA 04] ODA M., “Realization of the solar power satellite using the formation flying solar reflector”, Proceedings of NASA Formation Flying Symposium, September 2004.

[OHI 13] OHIRA T., “Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations”, IEICE Electronics Express, vol. 10, no. 11, pp. 1–9, 2013.

[OID 07] OIDA A., NAKASHIMA H., MIYASAKA J., et al., “Development of a new type of electric off-road vehicle powered by microwaves transmitted through air”, Journal of Terramechanics, vol. 44, no. 5, pp. 579–587, 2007

[OKA 06] OKAMOTO Y., et al., “100W C-band single-chip GaN FET power amplifier”, Electronics Letters, vol. 42, no. 5, pp. 283–285, March 2006.

[OTS 90] OTSUKA M., OMURO N., KAKIZAKI K., et al., “Relation between spacing and receiving efficiency of finite rectenna array”, IEICE Transactions B-II, vol. J74-B-II, no. 3, pp. 133–139, 1990. [In Japanese]

[OTT 74] OTTO D., New Zealand Patent No. 167,422, 1974.

[PAL 01] PALMOUR J.W., et al., “Wide bandgap semiconductor devices and MMICs for RF power applications”, Proceedings of the 2001 International Electron Device Meeting, pp. 17.4.1–17.4.4, December 2001.

[PHA 13] PHAM B.L., PHAM A.-V., “Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz”, Proceedings of the International Microwave Symposium (IMS), WE3G-5, 2013.

[PLU 13] PLUGLESS POWER, http://www.pluglesspower.com/, 2013.

[PMA 13] PMA, http://www.powermatters.org/, 2013.

[POW 13a] POWERCAST, http://www.powercastco.com/products/powerharvester-receivers/, 2013.

[POW 13b] POWERCAST CORPORATION, http://www.powercastco.com/, 2013.

[QIA 98] QIAN Y., ITOH T., “Progress in active integrated antennas and their applications”, IEEE Transactions on MTT, vol. 46, no. 11, pp. 1891–1990, 1998.

[QUB 02] QUB, http://www.ee.qub.ac.uk/hfe/st173.htm.

[ROB 12] ROBERG M., FALKENSTEIN E., POPOVIC Z., “High-efficiency harmonically-terminated rectifier for wireless powering applications”, Proceedings of the International Microwave Symposium (IMS), IEEE, TH1A-4, 2012.

[RUI 12] RUIZ M.N., MARANTE R., GARCÍA J.A., “A class E synchronous rectifier based on an E-pHEMT device for wireless powering applications”, Proceedings of the International Microwave Symposium (IMS), TH1A-3, 2012.

[SAE 11] SAEN T., ITOH K., BETSUDAN S., et al., “Fundamentals of the bridge RF rectifier with an impedance transformer”, Proceedings of the 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS-IWPT2011), pp. 255–258, 2011.

[SAK 97] SAKA T., FUJINO Y., FUJITA M., et al., “An experiment of a C band rectenna”, Proceedings of SPS ’97, pp. 251–253, 1997.

[SAK 10] SAKAGUCHI K., WICAKSONO R.P., MIZUTANI K., et al., Wireless grid to realize ubiquitous networks with wireless energy supply, IEICE Technical Report, vol. 109, no. 442, SR2009-113, pp. 149–154, 2010. [In Japanese]

[SAM 09] SAMPLE A.P., SMITH J.R., “Experimental results with two wireless power transfer systems”, Proceedings of the 2009 IEEE Radio & Wireless Symposium (RWS), pp. 16–18, 2009.

[SAN 00] SANG L.C.K., CELESTE A., LUK J.-D.L.S., “A point-to-point terrestrial wireless power transportation using an injection-locked magnetron array”, Proceedings of the Millennium Conference on Antennas & Propagation, p. 387, 2000.

[SAS 04] SASAKI S., TANAKA K., KAWASAKI S., et al., USEF SPS STUDY TEAM, “Conceptual study of SPS demonstration experiment”, The Radio Science Bulletin, no. 310, pp. 9–14, 2004.

[SCH 88] SCHLESAK J.J., ALDEN A., OHNO T., “A microwave powered high altitude platform”, IEEE MTT-S International Symposium Digest, pp. 283–286, 1988.

[SEB 01] SEBOLDT W., KLIMKE M., LEIPOLD M., et al., “European sail tower SPS concept”, Acta Astronautica, vol. 48, nos. 5ron, pp. 785.ona, 2001.

[SEB 04] SEBOLDT W., “Space- and earth-based solar power for the growing energy needs of future generations”, Acta Astronautica, vol. 55, nos. 3 Astro 389 Astronaut.

[SHA 88] SHARP, http://friendsofcrc.ca/SHARP/sharp.html, 1988.

[SHI 97] SHIBATA T., AOKI Y., OTSUKA M., et al., “Microwave energy transmission system for microrobot”, IEICE Transactions on Electronics, vol. E80-C, no. 2, pp. 303–308, 1997.

[SHI 98a] SHINOHARA N., MATSUMOTO H., “Dependence of DC output of a rectenna array on the method of interconnection of its array element”, Electrical Engineering in Japan, vol. 125, no. 1, pp. 9–17, 1998.

[SHI 98b] SHINOHARA N., MATSUMOTO H., “Experimental study of large rectenna array for microwave energy transmission”, IEEE Transactions on MTT, vol. 46, no. 3, pp. 261–268, 1998.

[SHI 00] SHINOHARA N., FUJIWARA J., MATSUMOTO H., “Development of active phased array with phase-controlled magnetrons”, Proceedings of ISAP 2000, vol. 2, pp. 713–716, 2000.

[SHI 01] SHINOHARA N., MITANI T., MATSUMOTO H., “Development of phase-controlled magnetron”, IEICE Transactions C, vol. J84-C, no. 3, pp. 199–206, 2001. [In Japanese]

[SHI 03] SHINOHARA N., MATSUMOTO H., HASHIMOTO K., “Solar power station/satellite (SPS) with phase controlled magnetrons”, IEICE Transactions on Electronics, vol. E86-C, no. 8, pp. 1550–1555, 2003.

[SHI 04a] SHINOHARA N., MATSUMOTO H., YAMAMOTO A., et al., Development of high efficiency rectenna at mW input, IEICE Technical Report, SPS2004-08, pp. 15–20, 2004. [In Japanese]

[SHI 04b] SHINOHARA N., MATSUMOTO H., HASHIMOTO K., “Phase-controlled magnetron development for SPORTS: space power radio transmission system”, The Radio Science Bulletin, no. 310, pp. 29–35, 2004.

[SHI 04c] SHINOHARA N., MATSUMOTO H., “Wireless charging system by microwave power transmission for electric motor vehicles”, IEICE Trans. C, vol. J87-C, no. 5, pp. 433–443, 2004. [In Japanese]

[SHI 04d] SHINOHARA N., MATSUMOTO H., MITANI T., et al., Experimental study on ‘wireless power space’, IEICE Technical Report, SPS2003-18, pp. 47–53, 2004. [In Japanese]

[SHI 05] SHINOHARA N., MITANI T., MATSUMOTO H., “Study on ubiquitous power source with microwave power transmission”, Proceedings of the International Union of Radio Science (URSI) General Assembly 2005, CD-ROM C07.5(01145).pdf, 2005.

[SHI 07a] SHINODA H., MAKINO Y., YAMAHIRA N., et al., “Surface sensor network using inductive signal transmission layer”, Proceedings of the International Conference on Networked Sensing Systems (INSS) 2007, pp. 201–206, 2007.

[SHI 07b] SHINOHARA N., NAGANO K., ISHII T., et al., “Experiment of microwave power transmission to the moving rover”, Proceeding of International Symposium on Antennas and Propagation (ISAP2007), IEICE, 3B1-1, 2007.

[SHI 08] SHINOHARA N., MIYATA Y., MITANI T., et al., “New application of microwave power transmission for wireless power distribution system in buildings”, Proceedings of Asia-Pacific Microwave Conference 2008, IEICE, CD-ROM H2-08.pdf, 2008.

[SHI 11a] SHINOHARA N., “Beam efficiency of wireless power transmission via radio waves from short range to long range”, Journal of the Korean Institute of Electromagnetic Engineering and Science, vol. 10, no. 4, pp. 224–230, 2011.

[SHI 11b] SHINOHARA N., “Wireless charging system of electric vehicle with GaN Schottky diodes”, Proceedings of the International Microwave Symposium (IMS) Workshops, WFA: Wireless Power Transmission, Baltimore, 2011.

[SHI 12a] SHINOHARA N., “Recent wireless power transmission via microwave and millimeter-wave in Japan”, 42nd European Microwave Conference, pp. 1347–1350, 2012.

[SHI 12b] SHINOHARA N. (ed.), Solar Power Satellite/Station, Ohmsha Publishing, 2012. [In Japanese]

[SHI 13a] SHINOHARA N., “Wireless power transmission progress for electric vehicle in Japan”, Proceedings of the 2013 IEEE Radio & Wireless Symposium (RWS), pp. 109–111, 2013.

[SHI 13b] SHINOHARA N., “Wireless power transmission in URSI”, Proceedings of the 2nd International Conference on Telecommunications and Remote Sensing (ICTRS2013), pp. 49–53, 2013.

[SHI 13c] SHINOHARA N., “Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan”, Proceedings of IEEE, vol. 101, no. 6, pp. 1448–1463, 2013.

[SHI 13d] SHINOHARA N., YUTA KUBO, “Suppression of unexpected radiation from microwave power transmission system toward electric vehicle”, Proceedings of the 2013 Asia-Pacific Radio Science Conference (AP-RASC), E3-4 (No. 290450), 2013.

[SHI 13e] SHINOHARA N., KUBO Y., TONOMURA H., “Mid-distance wireless power transmission for electric truck via microwaves”, Proceedings of the 2013 International Symposium on Electromagnetic Theory (EMT-S2013), URSI, pp. 841–843, 2013.

[SHO 13] SHOWA AIRCRAFT, http://www.showa-aircraft.co.jp/products/EV/kyuuden.html, 2013. [In Japanese]

[SIV 94] SIVAN L., Microwave Tube Transmitters – Microwave Technology Series 9, Chapman & Hall, 1994.

[SKO 90] SKOLNIK M.I., Radar Handbook, 2nd ed., McGraw-Hill, 1990.

[SMI 10] SMITH J.R., “Mapping the space of wirelessly powered systems”, Proceedings of the International Microwave Symposium (IMS) Workshops, IEEE, WFB-3, 2010.

[SPS 93] SPS 2000 TASK TEAM, “SPS 2000 Project Concept – a strawman SPS system”, S2-T1-X, Preliminary, July 1993. [In Japanese, English summary is available]

[STA 74] STARK L., “Microwave theory of phased array antenna – a review”, Proceedings of IEEE, vol. 62, pp. 1661–1701, 1974.

[STE 87] STEPHAN K.D., MORGAN W.A., “Analysis of interinjection-locked oscillators for integrated phased arrays”, IEEE Transactions on AP, vol. AP-35, pp. 771–781, 1987.

[SUH 02] SUH Y.H., CHANG K., “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission”, IEEE Transactions on MTT, vol. 50, no. 7, pp. 1784–1789, 2002.

[SUM 03] SUMMERER L., ONGARO F., VASILE M., et al., “Prospects for space solar power work in Europe”, Acta Astronautica, vol. 53, nos. 4–10, pp. 571–575, 2003.

[SUN 03] SUNG S.S., ROQUE J.D., MURAKAMI B.T., et al., “Retrodirective antenna technology for CubeSat networks”, Proceedings of the IEEE Topical Conference on Wireless Communication Technology 2003, pp. 220–221, 2003.

[SYS 94] SYSTEMS CONTROL TECHNOLOGY, INC., Roadway powered electric vehicle project rack construction and testing program phase 3D, California PATH Research Paper UCB-ITS-PRR-94-07, ISSN 10551425, March 1994.

[TAH 05] TAHIR I., DEXTER A., CARTER R., “Phase locked magnetrons by use of their pushing characteristics”, Proceedings of the 6th International Vacuum Electronics Conference (IVEC2005), pp. 65–68, 2005.

[TAH 06] TAHIR I, DEXTER A., CARTER R., “Frequency and phase modulation performance of an injection-locked CW magnetron”, IEEE Transactions on ED, vol. 53, no. 7, pp. 1721–1729, 2006.

[TAK 05] TAKADA Y., et al., “C-band AlGaN/GaN HEMTs with 170W output power”, Proceedings of the 2005 International Conference on Solid State Devices and Materials, Extended Abstracts, pp. 486–487, September 2005.

[TAK 06] TAKAGI K., et al., “X-band AlGaN/GaN HEMT with over 80W output power”, Proceedings of the 28th IEEE Compound Semiconductor IC Symposium, N.5, November 2006.

[TAK 09] TAKAHASHI K., AO J.-P., IKAWA Y., et al., “GaN Schottky diodes for microwave power rectification”, Japanese Journal of Applied Physics, vol. 48, no. 4, pp. 04C095-1-04C095-4, 2009.

[TAK 13] TAKACS A., AUBERT H., DESPOISSE L., FREDON S., “K-band energy harvesting for satellite application”, Proceedings of the International Microwave Symposium (IMS), WE3G-1, 2013.

[TES 04a] TESLA N., “The transmission of electric energy without wires”, The 13th Anniversary Number of the Electrical World and Engineer, 5 March 1904.

[TES 04b] TESLA N., Experiments with Alternate Current of High Potential and High Frequency, McGraw Publishing Company, New York, 1904.

[TRE 02] TREW R.J., “SiC and GaN transistors – is there one winner for microwave power applications?”, Proceedings of IEEE, vol. 90, no. 6, pp. 1032–1047, 2002.

[TYL 58] TYLER V.J., “A new high-efficiency high power amplifier”, Marconi Review, vol. 21, no. 130, pp. 96–109, Fall 1958.

[UED 04] UEDA Y., FUJIMORI K., NOGI S., et al., “Efficient conversions of rectification circuit for low power rectennas”, Proceedings of IEICE, SBC-1-9, 2004. [In Japanese]

[URS 07] URSI INTER-COMMISSION WORKING GROUP ON SPS, URSI white paper on solar power satellite (SPS) systems and report of the URSI inter-commission working group on SPS, June 2007.

[VAN 59] VAN ATTA, L.G., “Electromagnetic reflector”, U.S. Patent No. 2,908,002, 6 October 1959.

[VAN 82] VANKE V.A., LOPUKHIN V.M., ROSNOVSKY V.K., et al., “Ground-based receiving/converting system for space solar power systems”, Radiotechnique & Electronics, vol. 27, no. 5, p. 1014, 1982.

[VAN 91] VANKE V.A., SAVVIN V.L., “Cyclotron wave converter for SPS energy transmission system”, Proceedings of SPS ’91, pp. 515–520, 1991.

[VAN 95] VANKE V.A., SAVVIN V.L., BOUDZINSKI I.A., et al., “Development of cyclotron wave converter”, Proceedings of WPT ’95, p. 3, 1995.

[VAN 98] VANKE V.A., MATSUMOTO H., SHINOHARA N., KITA A., “Cyclotron wave converter of microwave into DC”, IEICE Transactions on Electronics, vol. E81-C, no. 7, pp. 1136–1142, 1998.

[VAN 03] VANKE V.A., MATSUMOTO H., SHINOHARA N., “On a possibility to decrease magnetic intensity in microwave/DC cyclotron wave converter”, IEICE Transactions on Electronics, vol. E86-C, no.7, pp. 1390–1392, 2003.

[VYA 12] VYAS R.J., NISHIMOTO H., TENTZERIS M., et al., “A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts”, Proceedings of the International Microwave Symposium (IMS), IEEE, TU4F-2, 2012.

[WAK 00] WAKEJIMA A., et al., “370W output power GaN-FET amplifier for W-CDMA cellar base stations”, Electronics Letters, vol. 41, no. 25 pp. 1371–1372, December 2000.

[WAK 05] WAKEJIMA A., et al., “280W output power single-ended amplifier using single-die GaN-FET for WCDMA cellar base stations”, Electronics Letters, vol. 41, no. 18, pp. 1004–1005, September 2005.

[WAN 13] WANG X., MORTAZAWI A., “A self-sensing AM frequency electromagnetic energy scavenger”, Proceedings of the International Microwave Symposium (IMS), WE4G-4, 2013.

[WAT 66] WATSON D.C., TABBOT K.T., JONSON C.C., “A cyclotron wave microwave power converter”, Proceedings of IEEE, no. 11, p. 1797, 1966.

[WAT 68] WATSON D.C., GROW R.W., JONSON C.C., “A rectifier with transverse interaction”, in OKRESS E.C. (ed.), Microwave Power Engineering, vol. 1, Academic Press, New York/London, pp. 408–419, 1968.

[WAT 70] WATSON D.C., GROW R.W., JONSON C.C., “A cyclotron wave rectifier for S-band and X-band”, Journal of Microwave Power, vol. 5, no. 2, p. 72, 1970.

[WIP 13] WIPOT, http://www.wipot.jp/english/index.html, 2013.

[WPC 13] WPC, http://www.wirelesspowerconsortium.com/, 2013.

[WPM 13] WPMC, http://wpm-c.com/, 2013. [In Japanese]

[YAM 92] YAMAGIWA Y., NAGATOMO M., “An evaluation model of solar power satellite using world dynamics simulation”, Space Power, vol. 11, no. 2, pp. 121–131, 1992.

[YAM 05] YAMANAKA K., et al., “S and C band over 100W GaN HEMT 1chip high power amplifiers with cell division configuration,” Proceedings of the 2005 European Gallium Arsenide and Other Semiconductor Application Symposium, pp. 241–244, October 2005.

[YAM 07a] YAMAGATA S. TANAKA, SHOGEN K., “Broadcasting satellite system using onboard phased array antenna in 21-GHz band”, Proceedings of the 8th International Vacuum Electronics Conference (IVEC2007), pp. 209–210, 2007.

[YAM 07b] YAMANAKA K., et al., “C-band GaN HEMT power amplifier with 220W output power”, Proceedings of the International Microwave Symposium, 3TH1A-02, June 2007.

[YAM 10] YAMANAKA K., TUYAMA Y., OHTSUKA H., et al., “Internally-matched GaN HEMT high efficiency power amplifier for space solar power stations”, Proceedings of the Asia-Pacific Microwave Conference 2010, pp. 119–122, 2010.

[YAM 13] YAMASHITA T., HONDA K., OGAWA K., “High efficiency MW-Band rectenna using a coaxial dielectric resonator and distributed capacitors”, Proceedings of the 2013 International Symposium on Electromagnetic Theory (EMTS2013), pp. 823–826, 2013.

[YAN 13] YANG C.L., YANG Y.-L., YANG C.-W., “Adaptive pulse waveform modulation to enhance wireless power efficiency for biomedical applications”, Proceedings of the International Microwave Symposium (IMS), WE3G-3, 2013.

[YOO 92] YOO T.W., CHANG K., “Theoretical and experimental development of 10 and 35 GHz rectennas”, IEEE Transactions on MTT, vol. 40, no. 6, pp. 1259–1266, 1992.

[YOR 98] YORK R.A., ITOH T., “Injection- and phase-locking techniques for beam control”, IEEE Transactions on MTT, vol. 46, no. 11, pp. 1920–1929, 1998.

[YOS 09] YOSHIOKA K., MATSUOKA H., HAYAMI H., Essays on the Solar Power Satellite: An Interdisciplinary Study of Space Industry and the Future of Society, Keio University Publishing, 2009. [In Japanese]

[ZBI 06] ZBITOU J., LATRACH M., TOUTAIN S.,”Rectenna and monolithic integrated zero-bias microwave rectifier”, IEEE Transactions on MTT, vol. 54, no. 1, pp. 147–152, 2006.

[ZEL 82] ZELL C.E., BOLGER J.G., “Development of an engineering prototype of a roadway powered electric transit vehicle system,” Proceedings of the 32nd IEEE Vehicular Technology Conference, vol. 32, pp. 435–438, May 1982.

[ZHE 07] ZHENG C., YOSHIDA T., ISHIKAWA R., et al., “GaN HEMT class-F amplifier operating at 1.9GHz”, Proceedings of IEICE, C-2-27, March 2007. [In Japanese]

[ZHU 11] ZHU N., ZIOLKOWSKI R.W., XIN H., “Electrically small GPS L1 rectennas”, IEEE Antennas Wireless Propagation Letters, vol. 10, pp. 935–938, 2011.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.16.15.149