Interpreting probabilities

While probability theory is a mature and well-established branch of mathematics, there is more than one interpretation of probability. From a Bayesian perspective, a probability is a measure that quantifies the uncertainty level of a statement. Under this definition of probability, it is totally valid and natural to ask about the probability of life on Mars, the probability of the mass of the electron being 9.1 x 10-31 kg, or the probability of the 9th of July of 1816 being a sunny day in Buenos Aires. Notice, for example, that life on Mars exists or does not exist; the outcome is binary, a yes-no question. But given that we are not sure about that fact, a sensible course of action is trying to find out how likely life on Mars is. Since this definition of probability is related to our epistemic state of mind, people often call it the subjective definition of probability. But notice that any scientific-minded person will not use their personal beliefs, or the information provided by an angel to answer such a question, instead they will use all the relevant geophysical data about Mars, and all the relevant biochemical knowledge about necessary conditions for life, and so on. Therefore, Bayesian probabilities, and by extension Bayesian statistics, is as subjective (or objective) as any other well-established scientific method we have.

If we do not have information about a problem, it is reasonable to state that every possible event is equally likely, formally this is equivalent to assigning the same probability to every possible event. In the absence of information, our uncertainty is maximum. If we know instead that some events are more likely, then this can be formally represented by assigning higher probability to those events and less to the others. Notice than when we talk about events in stats-speak, we are not restricting ourselves to things that can happen, such as an asteroid crashing into Earth or my auntie's 60th birthday party; an event is just any of the possible values (or subset of values) a variable can take, such as the event that you are older than 30, or the price of a Sachertorte, or the number of bikes sold last year around the world.

The concept of probability it is also related to the subject of logic. Under Aristotelian or classical logic, we can only have statements that take the values of true or false. Under the Bayesian definition of probability, certainty is just a special case: a true statement has a probability of 1, a false statement has probability of 0. We would assign a probability of 1 to the statement, There is Martian life, only after having conclusive data indicating something is growing, and reproducing, and doing other activities we associate with living organisms. Notice, however, that assigning a probability of 0 is harder because we can always think that there is some Martian spot that is unexplored, or that we have made mistakes with some experiment, or several other reasons that could lead us to falsely believe life is absent on Mars even when it is not. Related to this point is Cromwell's rule, stating that we should reserve the use of the prior probabilities of 0 or 1 to logically true or false statements. Interestingly enough, Richard Cox mathematically proved that if we want to extend logic to include uncertainty, we must use probabilities and probability theory. Bayes' theorem is just a logical consequence of the rules of probability, as we will see soon. Hence, another way of thinking about Bayesian statistics is as an extension of logic when dealing with uncertainty, something that clearly has nothing to do with subjective reasoning in the pejorative sense—people often used the term subjective.

To summarize, using probability to model uncertainty is not necessarily related to the debate about whether nature is deterministic or random at is most fundamental level, nor is related to subjective personal beliefs. Instead, it is a purely methodological approach to model uncertainty. We recognize most phenomena are difficult to grasp because we generally have to deal with incomplete and/or noisy data, we are intrinsically limited by our evolution-sculpted primate brain, or any other sound reason you could add. As a consequence, we use a modeling approach that explicitly takes uncertainty into account.

From a practical point of view, the most relevant piece of information from this section is that Bayesian's use probabilities as a tool to quantify uncertainty.

Now that we've discussed the Bayesian interpretation of probability, let's learn about a few of the mathematical properties of probabilities.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.78.252