Index

A

AC-DC converter, WEH, 4247

Acikgoz, N., 139, 140

Acquaviva, A., 7

ADC; See Analog-to-digital converter

Aerodynamic theory, piezoelectric WEH, 6568

Bernoulli’s equation, 65, 67

fluid qualities, 67

horizontal wind flow, 68

static pressure, 68

Ahson, S., 181

Ailawadhi, V., 5, 7

Akyildiz, I.F., 5, 6

Al-Hashimi, B.M., 7

Alippi, C., 140

Amatucci, G.G., 25, 26, 27, 89

AmbiMax, 25, 142

Amirtharajah, R., 137, 159, 161

Amirtharajan, A.P., 28

Ammer, M.J., 11

Ampere’s law, 194

Analog-to-digital converter (ADC), 56

Anastasi, G., 140

Antaki, J.F., 111

Anton, S.R., 109

Audebert, P., 137, 159, 161

B

Baker, J., 109

Barrado, A., 47, 140, 141

Bass, R.M., 97

Batra, A., 122

Beaufort scale, 40

Beeby, S.P., 28, 109, 111, 137

Benini, L., 25, 56, 141, 146

Bernoulli’s equation, piezoelectric WEH, 65, 67

Bertacchini, A., 25, 56, 146

Bertocci, G.E., 111

Bhargava, V.K., 19

Bhatia, D., 158, 161

Bimorph piezoelectric generator, 75

Biot-Savart’s law, 199

Blaabjerg, F., 29, 37, 38

Blomgren, G.E., 17

Bogliolo, A., 7

Book contribution, 3133

Book organization, 3334

Boost converter

composite solar and thermal energy sources, 176

DC-DC, 52

WEH, 52

Boys, J.T., 183

Braunwald, E., 29

Brown, W., 181

Brunelli, D., 25, 56, 141, 146

Bryant, R.G., 125

Buck converter, 97, 103

Buffard, K.R., 29

C

Callaway, Edgar H., 7, 13

Cantilever beam theory, piezoelectric WEH, 6874

aerodynamic force, tip deflection and, 71

bending analysis, 69

Bernoulli’s aerodynamic theory, 73

cantilever beam, 70, 73

geometric moment of inertia, 70, 74

measurement ruler, 72

objective, 68

Young’s modulus of beam, 70

Carleton, E., 109

Carmo, J., 89, 140

Casanova, J., 182

CCM; See Continuous conduction mode

Celik, A.N., 139, 140

Central processing unit (CPU), 18

Chandrakasan, A., 7

Chandrakasan, R., 28

Chang, L., 39

Chapman, P.L., 89, 140, 141, 146

Chen, A., 137, 159, 161

Chen, C.T., 29, 30, 64

Chen, Z., 29, 37, 38, 39

Cheng, H., 182

Cher, J.T., 132

Chinga, R., 182

Chinga, R.A., 182

Chong, C., 7, 9

Chou, P.H., 24, 25, 29, 37, 54, 102, 137, 138, 142, 159, 170, 174

Chow, W.J., 200

Clark, W., 29, 125

Clock cycle waveform, 134

Complementary metal-oxide semiconductor (CMOS), 101, 174

Condemine, C., 137, 159, 161

Conti, A., 11

Continuous conduction mode (CCM), 50

Cook, D.J., 1

Cooney, T.K., 74, 140

Copper winding, 185

Correia, H., 89, 140

Cottone, F., 27, 29

Covic, G.A., 183

CPU; See Central processing unit

Cross, L.E., 74, 140

Culberson, A., 196

Culler, D.E., 9, 11, 13, 23, 24

D

Dalke, S.I., 74, 140

Dalola, S., 93

Danak, A.D., 126

Dardari, D., 11

Das, S.K., 1

da Silva, J.L., Jr., 11

Dausch, D., 124

DC-DC buck converter, 33, 157

DCM; See Discontinuous conduction mode

Dereux, R., 26, 27

Dewan, S.B., 116

Di Francesco, M., 140

Digital RFID, 82

Direct-coupling method, 49

Discontinuous conduction mode (DCM), 96

Divan, D., 183

Dondi, D., 25, 56, 146

Du, X., 74, 140

Duan, S., 89, 146

Dudek, D., 142

E

Eddies, 67

Edmison, J., 28

Electrical power transfer with “no wires,” 181211

inductively coupled power transfer from power lines, 182194

Ampere’s law, 194

characterization process, 185

copper winding, 185

digital-encoded data, 193

experimental results, 190193

Faraday’s law of induction, 183, 194

far-field WPT, drawback, 181

ferrite core windings, 184

Lenz’s law, 185

magnetic energy harvester, 183187

magnetic field lines, 184

MOSFETs, 189

performance of magnetic energy harvester, 186187

power management circuit, 187190

RFID tags, 181, 182

RF transmitter load, 191, 192

Singapore context, operating frequency in, 188

stray magnetic energy harvester, 192

summary, 194

wireless power transfer via strongly coupled magnetic resonances, 194211

Biot-Savart’s law, 199

characteristics of WPT system, 203205

counter-emf effect, 205

experimental efficiency versus distance, 204205

experimental efficiency versus frequency, 204

experimental efficiency versus load, 205

resonant frequency, 204

source coil, 207

concept principles with magnetic resonance, 196200

coupling-to-loss ratio, 199

energy conversion process, 197

evanescent waves, 196

experimental results, 206211

multiple devices, powering, 207

network of WPT resonator coils, 209211

WPT system powering electrical load(s), 206209

midrange power transfer, 196

resistor-inductor-capacitor (RLC) circuit, 197

self-resonant coils, 211

simulation results, 200203

optimum efficiency band, 203

simulation of efficiency versus coil radius, 201202

simulation of efficiency versus distance, 202203

simulation of efficiency versus frequency, 200

simulation of efficiency versus number of turns, 202

strongly coupled regime of operation, 196

summary, 211

wireless and batteryless electronic products, 194

Elliott, G.A.J., 183

Elvin, A.A., 70, 140

Elvin, N.G., 70, 140

Emery, K., 23

Engel, T.G., 111, 123

EnOcean, 111

Equivalent series resistance (ESR), 16

Erdal, C., 5, 6

Erickson, R.W., 39, 48, 89, 95, 96, 97

ESR; See Equivalent series resistance

Esram, T., 89, 140, 141, 146

Estrin, D., 9, 13

F

Face, B.R., 123

Faraday’s law of induction, 183, 194

Faranda, R., 140, 141

Far-field WPT, 181; See also Electrical power transfer with “no wires”

Farrar, C., 137

Feldmeier, M., 29, 111, 114

Femia, N., 89, 140, 146

Ferrari, M., 93

Ferrari, V., 93

Ferrite core windings, 184

FFD; See Full-function device

Filho, E.R., 139

Fiorini, P., 26, 27, 110, 111, 123

Fischer, S., 142

Fisher, P., 183, 195, 196, 198, 199

Flipsen, S.F.J., 16

Flynn, E., 137

Friedman, J., 23

Full-function device (FFD), 8

Fulton Innovation’s eCoupled, 194

Future works, 214215

Fye, D., 30, 64

G

Ganeriwal, S., 19

Gao, J., 5, 7

Gazoli, J.R., 139

Geometric moment of inertia, 70, 74

Gershenfeld, N., 82, 111, 140

Glatz, W., 89, 140

Glynne-Jones, P., 28, 109, 137

Golubovic, L.R., 137

Goncalves, L., 89, 140

Gonzalez, J.L., 110, 112, 114, 140

Green, C., 125

Green, E.C., 111

Green, M.A., 23

Green, T.C., 28, 109

Greuel, M.F., 97

Griffith, B.P., 111

Guerrero, J.M., 29, 37, 38

Guilar, N.J., 137, 159, 161

Guizzetti, M., 93

Gungor, V.C., 140

H

Haas, C., 142

Habetler, T.G., 183

Hamalainen, T.D., 7

Hancke, G.P., 140

Hande, A., 158, 161

Hannikainen, M., 7

Hardware prototype, 33, 132, 214

Harley, R.G., 183

Harris, N.R., 7

He, Y.T., 137

HEH system; See Hybrid energy harvesting system

Hehn, T., 38

Heiden, M., 111

Heier, S., 29, 37

Hierold, C., 89, 140

Hill, J.L., 11

Hisikawa, Y., 23

Hoe, K.Y., 117

Hofmann, H.F., 122

Holmes, A.S., 28, 29, 109

Hong, G., 29

Hoshino, T., 141

Hossain, E., 19

Hsu, J., 18, 23

Hudak, N.S., 25, 26, 27, 89

Hughes, E., 125

Hussein, K.H., 141

Hybrid energy harvesting (HEH) system, 32, 137180, 214

composite solar and thermal energy sources, 158180

air conditioners, 160

ambient energy sources, 158

applications, 158

artificial energy sources, 159

boost converter efficiency, 176

characteristics of a solar panel and thermal energy harvester connected in parallel, 166

CMOS, 174

design and implementation of ultralow-power management circuit, 172175

duty cycle, 160

experimental results, 175179

functional block diagram of HEH system, 173

HEH from solar and thermal energy sources, 166175

indoor SEH subsystem, 161163

load resistance, 179

lux illuminations, solar panel P-V and P-R curves, 161, 162

micropower sources, 177

micropower supply solution, 159

near MPPT technique, 159

overview of indoor energy sources, 159161

performance of designed HEH system for indoor wireless sensor node, 178179

performance of energy harvesters under indoor conditions, 160

performance of parallel HEH configuration, 175176

power conversion efficiency of HEH system, 176178

power curve, 165

Schottky diodes, 167

Seebeck’s effect, 164

solar irradiance, 167

standard testing condition, 160

summary, 180

switched-mode voltage regulator, 174

thermal energy harvesting subsystem, 163165

thermoelectric generator, 163

ultralow-power control circuit, 171

composite solar and wind energy sources, 142158

boost converter with constant-voltage-based maximum power point tracking, 146149

Canada, 143

characterization of solar panel, 144146

closed-loop MPP tracker, 147

constant voltage approach, 147

DC-DC boost converter, 146

DC-DC buck converter, 157

experimental results, 152157

hybrid solar and wind energy harvesting system, 150152

IncCond method, 146

lithium ion battery, 142

optimal duty cycle of boost converter, 147

performance of HEH system, 152156

performance of SEH subsystem, 149150

P&O method, 146

power conversion efficiency of HEH system, 156157

proportional integral controller, 147

pulse width modulation, 147

resistor emulation technique, 150

Schottky diode, 151

SEH subsystem, 144150

simultaneous charging, 150

solar irradiance, 146

summary, 158

supercapacitor, 142

total power consumed, 151

wind energy harvesting subsystem, 143144

wireless sensor network, 157

solar energy harvesting system, 139141

Hyeoungwoo, K., 30

I

I’Anson, S.J., 69, 70, 140

IC; See Integrated circuit

ICPT; See Inductively coupled power transfer

IEEE New Standards Committee, 7

Ilyas, M., 181

Impedance matching, 48

Inductive coupling, 34, 215

Inductively coupled power transfer (ICPT), 182194

Ampere’s law, 194

characterization process, 185

copper winding, 185

digital-encoded data, 193

experimental results, 190193

Faraday’s law of induction, 183,

far-field WPT, drawback, 181

ferrite core windings, 184

Lenz’s law, 185

magnetic energy harvester, 183187

magnetic field lines, 184

MOSFETs, 189

performance of magnetic energy harvester, 186187

power management circuit, 187190

RFID tags, 181, 182

RF transmitter load, 191, 192

Singapore context, operating frequency in, 188

stray magnetic energy harvester, 192

summary, 194

Inman, D.J., 26, 27

Integrated circuit (IC), 64

Internet of Things (IOT), 1, 2, 4

Islam, R.A., 29

J

Jacot, J., 23, 158, 161

Jiang, B., 182

Jiang, X.F., 23, 24

JK flip-flop, 133

Joannopoulos, J.D., 183, 195, 196, 198, 199

Jones, M., 28

Jorgensen, L., 196

K

Kaiser, W.J., 6

Kalaitzakis, K., 39

Kanesaka, T., 27

Kang, Y., 89, 146

Kansal, A., 18, 23

Kapton foils, 91

Karalis, A., 183, 195, 196, 198, 199

Keawboonchuay, C., 111, 123

Kellogg, J.C., 20

Kendall, C., 82, 111, 140

Kendir, G.A., 183

Khaligh, A., 137, 159, 161

Khouzam, K., 39, 49, 89, 95

Khouzam, L., 39, 49, 89, 95

Ki, W.H., 38, 43

Kim, H.W., 122

Kim, R.-Y., 89, 94

Kimball, J.W., 89, 146

Kleeburg, T.J., 137, 159, 161

Koran, A., 89, 94

Kormos, R.L., 111

Kosanovic, M.R., 137

Koutroulis, E., 39

Krein, P.T., 89, 97, 146

Krger, D., 142

Kumar, S.P., 7, 9

Kuntz, A., 142

Kuorilehto, M., 7

Kurata, N., 10

Kurs, A., 183, 195, 196, 198, 199

Kymissis, J., 82, 111, 140

L

Lai, E., 109

Lai, J.-S., 89, 94

Lam, Y.H., 38, 43

Larcher, L., 25, 56, 146

Lattanzi, E., 7

Lawrence, E.E., 27

Lazaro, A., 47, 140, 141

Leland, E.S., 109

Lenz’s law, 185

Leonov, V., 26, 27, 93

Leva, S., 140, 141

Lhermet, H., 137, 159, 161

Li, Y.Q., 137

LightningSwitch design, 124, 127

Lin, J.S., 182

Lin, Tsung-Hsien, 6

Lithium ion battery, 142

Liu, B., 89, 146

Liu, F., 89, 146

Liu, K., 182

Liu, L.H., 137

Liu, W.T., 183

Logical link control (LLC), 8

Low, Z.N., 182

Low Rate-Wireless Personal Network Area, 7

M

Ma, R., 182

MAC; See Media access control

Madria, S., 7, 13

Magnetic energy harvesting, 183, 215

experimental setup, 189

hardware prototypes, 214

harvested power from, 215

schematic drawing of prototype, 190

Magnetic resonances, wireless power transfer via strongly coupled, 194211

Biot-Savart’s law, 199

characteristics of WPT system, 203205

counter-emf effect, 205

experimental efficiency versus distance, 204205

experimental efficiency versus frequency, 204

experimental efficiency versus load, 205

resonant frequency, 204

source coil, 207

concept principles with magnetic resonance, 196200

coupling-to-loss ratio, 199

energy conversion process, 197

evanescent waves, 196

experimental results, 206211

multiple devices, powering, 207

network of WPT resonator coils, 209211

WPT system powering electrical load(s), 206209

magnetic resonance concept, 196197

midrange power transfer, 196

resistor-inductor-capacitor (RLC) circuit, 197

self-resonant coils, 211

simulation results, 200203

optimum efficiency band, 203

simulation of efficiency versus coil radius, 201202

simulation of efficiency versus distance, 202203

simulation of efficiency versus frequency, 200

simulation of efficiency versus number of turns, 202

strongly coupled regime of operation, 196

summary, 211

wireless and batteryless electronic products, 194

Maksimovic, D., 39, 48, 89, 95, 96, 97

Mamishev, A.V., 181, 182

Mandic, G., 158, 161

Mankins, J., 181

Manoli, Y., 38

Marincic, A.S., 181

Marioli, D., 93

Markley, D., 122

Martin, T., 28

Martinez-Catala, R.V., 21, 25

Mascarenas, D., 137

Massachusetts Institute of Technology (MIT), 4, 82, 111

Mathna, C., 21, 25

Maurath, D., 38

Maximum power point (MPP), 24, 25, 39

TEH, 90

tracking (MPPT), 39, 47, 146149

WEH, 50

Mazzini, G., 11

McSpadden, J., 181

Media access control (MAC), 8

Meninger, S., 28

Merrett, G.V., 7

Metal-oxide-semiconductor field-effect transistors (MOSFETs), 31, 38

TEH, 99

VEH, 131

WPT, 189

Meyer, T., 182

Miao, P, 109

Microsoft Excel, 128

Midya, P., 89, 146

Miller, N., 137

MIT; See Massachusetts Institute of Technology

Mitchell, D.M., 97

Mitchell, M., 67, 140

Mitcheson, P.D., 28, 109

Moffatt, R., 183, 195, 196, 198, 199

Moll, F., 110, 112, 114, 140

Morikawa, H., 10

Moro, E., 137

Moser, C., 27, 141

MOSFETs; See Metal-oxide-semiconductor field-effect transistors

Mossi, K., 125

MPP; See Maximum power point

MPPT; See Maximum power point tracking

Muntwyler, S., 89, 140

Murphy, D., 195

Muta, I., 141

Myers, R., 30

N

Nadeem, A., 111

Nakad, Z., 28

Nakamura, K., 111, 123

Nasiri, A., 158, 161

National Renewable Energy Laboratory (NREL), 29

Newnham, R.E., 122

Niyato, D., 19

”No wires”; See Electrical power transfer with “no wires”

NREL; See National Renewable Energy Laboratory

O

Oakley, S., 125

O’Donnell, T., 21, 25, 137

O’Flynn, B., 21, 25

Ohm’s law, 96

Olias, E., 47, 140, 141

Open System Interconnection (OSI) model, 8

Ortmanns, M., 38

Osakada, M., 141

OSRAM 300W Ultra Vitalux lightbulb, 144

Otis, B., 109

Ounaies, Z., 125

P

Paing, T.S., 30, 37, 39, 48, 49, 54, 56, 64, 89, 95, 96, 101

Panda, S.K., 188

Paradiso, J.A., 20, 27, 29, 82, 111, 125, 140

Park, C., 24, 25, 29, 37, 137, 138, 142, 159, 170

Park, G., 137

Patel, D., 11

Personal operating space (POS), 8

Pervasive computing, 1

Peters, C., 38

Petrone, G., 89, 140, 146

Pfisterer, D., 142

Philipose, M., 182

Photovoltaic (PV) cell, 22

PI controller; See Proportional integral controller

Piezoelectric material (PZT), 33

Piezoelectric theory, WEH, 7476

expression of electrical charge, 74

open circuit electric voltage, 75

series-connected bimorph bender, 74

Young’s modulus, 75

Piezoelectric windmill, 64

Plissonnier, M., 137, 159, 161

Polastre, J., 23, 24

Polk, T., 158, 161

Polyvinylidene fluoride (PVDF), 111

Popovic, Z., 39, 48, 49, 54, 56, 89, 95, 96, 101

POS; See Personal operating space

Pottie, G.J., 5, 6, 7

Powercast, 194

Power coefficient, 41

Powermat, 194

Power processing unit (PPU), 80, 112, 116118

Powledge, P., 181

Priya, S., 29, 30, 64, 122, 137, 159, 161

Proportional integral (PI) controller, 147

Pullen, K.R., 29

Pulse width modulation (PWM), 47, 147

PV cell; See Photovoltaic cell

PVDF; See Polyvinylidene fluoride

PWM; See Pulse width modulation

PZT; See Piezoelectric material

Q

Qidwai, M.A., 20

Quality-of-service (QoS) provisions, 7

R

Rabaey, J.M., 11, 27, 39, 43, 109

Radio-frequency identification (RFID), 27, 82, 181

Raghunathan, V., 19, 23

Ramsay, M., 29, 125

Randall, J.F., 23, 158, 161

Rashid, M.M., 19

Reduced-function device (RFD), 8

Regini, E., 7

Reilly, E., 109

Renaud, M., 110, 111, 123

Resistor emulation (RE), 48, 150

Resistor-inductor-capacitor (RLC) circuit, 197

RFD; See Reduced-function device

RFID; See Radio-frequency identification

Rida, A., 112

Rintoul, T., 111

RLC circuit; See Resistor-inductor-capacitor circuit

Rodriguez, P., 139

Rohan, J., 21, 25

Rosset, M., 137, 159, 161

Rothenpieler, P., 142

Roundy, S.J., 11, 27, 28, 109

Roveri, M., 140

Rowe, D.M., 89, 140

Roy, S., 137, 182

Rubio, A., 110, 112, 114, 140

S

Salas, V., 47, 140, 141

Salot, R., 137, 159, 161

Sample, A., 181, 182

Sample, P., 182

Sanders, S.R., 38, 43

Saruwatari, S., 10

Schmidt, F., 111

Schottky diode, 151, 167

SECE; See Synchronized electric charge extraction

Seebeck’s effect

composite solar and thermal energy sources, 164

TEH, 25, 98

Seeman, M.D., 38, 43

SEH system; See Solar energy harvesting system

Self-resonant coils, 211

Sera, D., 139

Service-specific convergence sublayer (SSCS), 8

Shenck, N.S., 27, 109, 125, 129

Shin, J., 39, 48, 49, 54, 56, 89, 95, 96, 101

Sifuentes, W., 137

Simjee, F.I., 24, 54, 102, 174

Simmers, G.E., 26, 27

Sinha, A., 7

Sivaprakasam, M., 183

Slemon, G.R., 116

Smith, J., 181, 182

Smith, J.R., 182

Smith, R., 182

Smits, J.G., 74, 140

Snyder, G.J., 27

Sodano, H.A., 26, 27, 109

Sohrabi, K., 5, 7

Solar energy harvesting (SEH) system, 2325, 139141

maximum power point, 24, 25

prototypes, 23

technique drawback, 24

Solar and thermal (S+T) energy sources, composite, 158180

air conditioners, 160

ambient energy sources, 158

applications, 158

artificial energy sources, 159

boost converter efficiency, 176

characteristics of a solar panel and thermal energy harvester connected in parallel, 166

CMOS, 174

design and implementation of ultralow-power management circuit, 172175

duty cycle, 160

experimental results, 175179

functional block diagram of HEH system, 173

HEH from solar and thermal energy sources, 166175

indoor SEH subsystem, 161163

load resistance, 179

lux illuminations, solar panel P-V and P-R curves, 161, 162

micropower sources, 177

micropower supply solution, 159

near MPPT technique, 159

overview of indoor energy sources, 159161

performance of designed HEH system for indoor wireless sensor node, 178179

performance of energy harvesters under indoor conditions, 160

performance of parallel HEH configuration, 175176

power conversion efficiency of HEH system, 176178

power curve, 165

Schottky diodes, 167

Seebeck’s effect, 164

solar irradiance, 167

standard testing condition, 160

summary, 180

switched-mode voltage regulator, 174

thermal energy harvesting subsystem, 163165

thermoelectric generator, 163

ultralow-power control circuit, 171

Solar and wind (S+W) energy sources, composite, 142158

boost converter with constant-voltage-based maximum power point tracking, 146149

Canada, 143

characterization of solar panel, 144146

closed-loop MPP tracker, 147

constant voltage approach, 147

DC-DC boost converter, 146

DC-DC buck converter, 157

experimental results, 152157

hybrid solar and wind energy harvesting system, 150152

resistor emulation technique, 150

Schottky diode, 151

simultaneous charging, 150

total power consumed, 151

IncCond method, 146

lithium ion battery, 142

optimal duty cycle of boost converter, 147

performance of HEH system, 152156

performance of SEH subsystem, 149150

P&O method, 146

power conversion efficiency of HEH system, 156157

proportional integral controller, 147

pulse width modulation, 147

SEH subsystem, 144150

solar irradiance, 146

summary, 158

supercapacitor, 142

wind energy harvesting subsystem, 143144

wireless sensor network, 157

Soljacic, M., 183, 195, 196, 198, 199

Somasundaram, P., 199

Spagnuolo, G., 89, 140, 146

Spooner, E., 39

Srivastava, M.B., 9, 13, 18, 19, 23,

SSCS; See Service-specific convergence sublayer

SSH; See Switch harvesting on inductor

Standard testing condition (STC), 160

Stark, B.H., 109

Stark, I., 91

Starner, T., 20, 111

STC; See Standard testing condition

Stevens, J.W., 27

Stojcev, M.K., 137

Straughen, A., 116

Su, W.L., 5, 6

Sun, J., 97

Sundara-Rajan, K., 182

Sundararajan, V., 109

Supercapacitor

S+W, 142, 147

TEH, 104

WEH, 41, 54

Switch harvesting on inductor (SSHI), 215

Synchronized electric charge extraction (SECE), 215

T

Tadesse, Y., 137, 159, 161

Tan, Y.K., 188

Taroni, A., 93

Taylor, S., 137

TEG; See Thermoelectric generator

TEH system; See Thermal energy harvesting system

Tentzeris, M., 112

Teodorescu, R., 139

Tester, J.W., 17

Texas Instruments, 56

Thermal energy harvesting (TEH) system, 2527, 89107

efficiency, 25

experimental results, 104107

buck converter efficiencies, 105

power losses, 105, 106

supercapacitor voltage, 104

heat exchangers, 25

implementation of optimal thermal energy harvesting wireless sensor node, 101104

buck converter with resistor emulation-based maximum power point tracking, 101102

CMOS, 101

collected data, 104

duty cycle, 101

energy storage, 102103

operation of wireless sensor node, 103

regulation of buck converter and wireless sensor node, 103104

wireless target board, 103

research, 27

resistor emulation-based maximum power point tracker, 95100

buck converter, 97

direct-coupling approach, 95

discontinuous conduction mode, 96

duty cycles, 99

low-power radiative radio-frequency sources, 95

MOSFET, 99

Ohm’s law, 96

open-loop resistance emulator, 95

schematic diagram, 100

Seebeck’s effect, 98

Seebeck effect, 25

summary, 107

thermal energy harvester, 9095

analysis, 9193

characterization, 9495

description of thermoelectric generator, 91

electrical analysis, 93

emulating load impedance to match source impedance, 94

impedance matching, 94

Kapton foils, 91

maximum power point, 90

open-circuit voltage, 93

power curve, 94

resistor emulation, 89, 94

thermal analysis, 9293

wristwatch, 25, 27

Thermoelectric generator (TEG), 22, 89, 91, 163

Thiele, L., 141

Thomas, J.P., 20

THUNDER lead-zirconate-titanate unimorph, 126130

Todd, M., 137

Torah, R., 137

Torfs, T., 26, 27

Tseng, R., 182

Tsui, C.Y., 38, 43

Tubaishat, M., 7, 13

Tudor, M.J., 28, 109, 111, 137

Twidell, J., 40

U

Ubiquitous computing, 1

Uchino, K., 122

Ueha, S., 111, 123

Umeda, M., 111, 123

V

Van Hoof, C., 26, 27, 110, 111, 123

Van Schaijk, R., 110

VEH system; See Vibration energy harvesting system

Verdone, R., 11

Very-low-power, low-frequency oscillator (VLO), 56

Vibration-based piezoelectric wind energy harvester, 6476

advantages, 65

aerodynamic theory, 6568

bending moment, 70, 71

Bernoulli’s equation, 65, 67

bimorph piezoelectric generator, 75

cantilever beam theory, 6874

difference in wind speeds, 65

geometric moment of inertia, 70, 74

horizontal wind flow, 68

net pressure, 65

piezoelectric theory, 7476

power conversion process, 65

Young’s modulus of beam, 70

Vibration energy harvesting (VEH) system, 2729, 109135, 214

behaviour of piezoelectricity, 109

blood pressure, 29

devices converting mechanical motion into electricity, 27

earliest example, 111

impact-based VEH using piezoelectric push-button igniter, 111122

AC voltage, 117

capacitor, 120

DC voltage, 117

design constraints, 116

diode bridge rectifier, 118

energy storage and power processing unit, 116118

experimental results, 118121

piezoelectric push button, 112115

power conversion efficiency, 117

power processing unit, 112

RF unit, energy consumption, 121

summary, 122

ultrasonic waves, 111

wireless remote controllers, 115

Zenith televisions, Space Commander for, 111

impact-based VEH using prestressed piezoelectric diaphragm material, 122135

ASCII file, 128

characteristics and performance of THUNDER lead-zirconate-titanate unimorph, 126130

clock cycle waveform, 134

controller maintenance, 122

description of prestressed piezoelectric diaphragm material, 124126

experimental results, 132135

hardware prototype, 132

internal hammer, 122

JK flip-flop, 133

LightningSwitch design, 124, 127

mechanical nonresonance, 123

MOSFET, 131

oscilloscope readings, 28

power management circuit, 130132

prestressed piezoelectric diaphragm material, 124

self-powered wireless control switch, 123

source capacitor, 129

summary, 135

Zener diode, 132

parallel compression mode of igniter, 110

piezoelectric element, 29

RFID, 27

two-part design, 109

Vickers, M., 30

Villalva, M.G., 139

Vitelli, M., 89, 140, 146

VLO; See Very-low-power, low-frequency oscillator

Vorperian, V., 97

W

Walker, W., 158, 161

Wang, G.X., 183

Wang, L., 137

Wang, Q., 39

Wang, Q.-M., 74, 140

Warta, W., 23

Washington, G.N., 126

WEH system; See Wind energy harvesting system

Weimer, M.A., 30, 37, 64

Weir, A., 40

White, N.M., 7, 28, 109, 111

WildCharge, 194

Wind energy harvesting (WEH) system, 2931, 3787, 214

direct WEH approach using wind turbine generator, 3863

active AC-DC converter, 4247

analog-to-digital converter, 56

Beaufort scale, 40

boost converter with resistor emulation-based maximum power point tracking, 4754

continuous conduction mode, 50

DC-DC boost converter, 52

design of efficient power management circuit, 4157

diode-based full-bridge rectifier, 62

direct-coupling method, 49

emulated resistance of wind turbine, 49

energy storage, 5456

experimental results, 5763

generator efficiency, 41

impedance matching, 48

load impedance, 49

maximum power points, 50

maximum power point tracking, 39

metal-oxide-semiconductor field-effect transistors, 38, 44

passive rectifier, 44

performance of WEH system with MPPT scheme, 5761

power coefficient, 41

power conversion efficiency of WEH system, 6263

power distribution, 63

pulse width modulation, 47

resistor emulation, 48

self-powered WEH wireless sensor node, 57

sensor node, 60

summary, 63

supercapacitor, 41, 54

very-low-power, low-frequency oscillator, 56

wind turbine generators, 3941

wireless sensor nodes, 5657

wireless target board, 56

zero-crossing comparators, 43

zoomed waveforms, 43

indirect WEH approach using piezoelectric material, 6487

advantages, 65, 79

aerodynamic theory, 6568

applications, 87

bending moment, 70, 71

Bernoulli’s equation, 65, 67

bimorph piezoelectric generator, 75

cantilever beam theory, 6874

capacitor voltage, 85

characteristics and performances of piezoelectric wind energy harvester, 7687

DC output voltage, 79

decoded data sequence, 86

difference in wind speeds, 65

digital RFID, 82

eddies, 67

encoded digital information, 83

energy stored in capacitor, 84

experimental results, 8386

flight dynamics, 76

geometric moment of inertia, 70, 74

horizontal wind flow, 68

magnetic permeability, 79

net pressure, 65

off voltage threshold, 83

phenomenon, 77

piezoelectric theory, 7476

piezoelectric windmill, 64

power conversion process, 65

power processing units, 8083

pressure differences, 78

RF transmitter load, 81

summary, 8687

vibration-based piezoelectric wind energy harvester, 6476

voltage regulator, power loss in, 85

wind turbine generators, physical size of, 64

Young’s modulus of beam, 70

physical size, 31

windmill, 29, 30

wind turbine generators, 29

Wind turbine generators (WTGs), 29, 3941, 64, 214

Wireless personal network (WPAN), 8

Wireless power transfer (WPT), 32, 181, 215; See also Electrical power transfer with “no wires”

Wireless sensor networks (WSNs), 112

applications of WSNs, 910

architecture of WSNs, 48

comparison of IOT and, 4

composite solar and wind energy sources, 157

data acquisition circuit, 11

data link layer, 6

energy harvesting systems, 213

full-function device, 8

logical link control, 8

media access control, 8

Open System Interconnection model, 8

personal operating space, 8

PHY layer, 6

quality-of-service provisions, 7

radio communication block, 11

reduced-function device, 8

service-specific convergence sublayer, 8

wireless personal network, 8

wireless sensor nodes, 1, 1012

Wireless sensor nodes, energy harvesting solution for, 1831

deploy-and-forget nature, 18

energy harvesting opportunities and capabilities, 21

energy harvesting system, 2223

overview of energy harvesting, 1922

paradigm shift from conventional battery-operated WSN, 19

photovoltaic cell, 22

review of past works on energy harvesting systems, 2331

solar energy harvesting system, 2325

thermal energy harvesting system, 2527

vibration energy harvesting system, 2729

wind energy harvesting system, 2931

self-powered wireless sensor nodes, 20

thermoelectric generator, 22

Wireless sensor nodes, problems in powering, 1318

battery life estimation, 14

central processing unit, 18

energy storage density, 17, 18

equivalent series resistance, 16

high power consumption of sensor nodes, 1315

limitation of energy sources for sensor nodes, 1518

primary batteries, 16

secondary batteries, 16

sleep mode, 13

supercapacitor, 16

Wise, S., 124

WPAN; See Wireless personal network

WPT; See Wireless power transfer

Wright, P.K., 27, 109

WSNs; See Wireless sensor networks

WTGs; See Wind turbine generators

X

Xie, S.C., 190

Xu, B., 74, 140

Y

Yang, L., 12

Yang, Y., 183

Yankelevich, D.R., 137, 159, 161

Yeager, D., 181

Yeatman, E.M., 28, 109

Yogesh, S., 5, 6

Yoon, H.S., 126

York, B., 89, 94

Young’s modulus, piezoelectric theory, 70, 75

Yu, C., 182

Z

Zabalawi, S.A., 158, 161

Zahedi, S., 18

Zahnd, J., 30, 64

Zane, R., 39, 48, 49, 54, 56, 89, 95, 96, 101

Zane, R.A., 30, 37, 64

Zener diode, 132

Zeng, P., 137, 159, 161

Zenith televisions, Space Commander for, 111

Zero-crossing comparators, 43

Zhang, S., 137, 159, 161

Zheng, C., 137, 159, 161

Zhu, C., 182

Zitterbart, M., 142

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.133.137.17