Index

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

A

Abraxane, 174
Acellular dermal matrix (ADM) topography, 81–82, 82
Alternating magnetic fields (AMFs), 161, 161
5-Aminolevulinic acid (5-ALA), 154, 155
Angiogenesis, 46, 49, 49–50
Animal models, in cancer nanotechnology, 45
Antisense oligonucleotides (AONs), 161, 163
Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL), 161–163
AQP4, 178
AQYLNPS, 147
Arginine–glycine–aspartic acid (RGD) peptide, 50, 160
Atomic force microscopy
curcumin-loaded SF nanoparticles, characterization of, 24

B

BALB/cBYJNarl mice, in cancer nanotechnology, 49
O6-Benzylguanine (BG), 149–150, 150f
β-cyclodextrin (β-CD), 124
Bioavailability, 165–166
Biodistribution of nanoparticles, 46–47, 47
Biomimetics, 81
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU), 147, 148f, 150f, 173–174
Blood–brain barrier (BBB), 173, 175–178
molecular transport across, 142–145, 175f
Bombyx mori silk fibroin (SF)-based scaffolds, 87
materials and methods, 89–90
conformation analysis using FTIR, 90
mechanical properties measurement using uniaxial tensile testing, 90
porosity measurement, 89–90
scaffold preparation, 89
SF solution particle size measurement using DLS, 89
statistical analysis, 90
3D architecture characterization using SEM, 89
results, 90–97
changes in scaffold structure, FTIR peak analysis of, 97, 98f, 99t
filter size effect on scaffold properties, 93–94, 93t, 94f
PBS concentration effect on scaffold properties, 94–97, 96t, 97f
pH effect on scaffold properties, 94, 95f, 95t
SF concentration effect on particle size in solution, 90, 91t
SF concentration effect on scaffold properties, 90–93, 92f, 92f
Brain cancer-initiating cells (BCICs), 146–147, 146f, 147, 163–164
Brain gliomas, 171–175
Brain tumors, 140–141, 140f, 141f
therapy
challenges to, 141–142
nanotechnologies for, 171
Breast-derived fibroblasts (BDFs), 81
BSD 500, 3–4
BSD 2000 3D/MR, 3–4

C

Cadmium selenide (CdSe), 50
Cancer hyperthermia, noninvasive radiofrequency
AuNPs for, 1, 5f, 6f
biological RF activity of AuNPs in vitro/in vivo, 13–15, 14f, 15f
RF-induced AuNPs heating, theoretical frameworks for, 11–12, 11, 11–13, 12–13
RF interactions with AuNPs, 7–10, 8f, 9f
Canine, 51, 63
Capsular contraction, 72, 73t
Carbon nanotubes (CNTs), 4–5, 7, 7, 7, 12, 152–153, 165
multi-walled, 163
Carboplatin-Fe@C-loaded chitosan nanoparticles, 61, 61
Carrier-mediated transport (CMT), 176–177
Cationic albumin-conjugated polyethylene glycol (PEG)-coated nanoparticles (CBSA-NP-ACL), 144–145
Cellular ingrowth, surface texturing and, 79–80
Celsius421 GmbH, 4
Cetuximab, for hyperthermia, 2, 13, 14, 14f, 15f
Chemotherapy, 142–150
blood–brain barrier, crossing, 142–145
controlled drug release, 147–148, 148f
multidrug resistance, overcoming, 148–150
selectively targeting cancer cells, 145–147
Chitosan surface-modified poly(lactide-co-glycolides) (PLGA/CS) nanoparticles, 149–150
Chlorotoxin (CTX), 112, 123
Cisplatin, 45–46
Classical electromagnetic theory, 11–12
Computed tomography (CT), 48
Confocal laser scanning microscope, 49–50
Controlled drug release, 147–148, 148f
Cowpea mosaic virus (CPMV), 63
Cremophor, 58
Curcumin, 20
-activated apoptotic pathways, protein array analysis of, 29–38, 30f, 31f, 31t, 32f, 33f, 34f, 35f, 36f, 37f, 38f, 39f, 40f, 41f
chemical structure of, 20f
-loaded SF nanoparticles
biological evaluation of, 25–26, 25, 25–27, 26t, 29–38, 30f, 31f, 31t, 32f, 33f, 34f, 35f, 36f, 37f, 38f, 39f, 40f, 41f
characterization of, 23–24, 23–24, 24, 24, 24, 24, 27, 27, 27f, 28, 28f
preparation of, 22–23, 23f
release profile from SF nanoparticles, 24
solution, preparation of, 22

D

1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 124
DNA, 161
Doxil, 174
Doxorubicin (DOX), 45–46, 54, 55, 58, 58, 59, 111–112, 112, 124, 174
DOX-SPIO nanoparticles, 49
Drug delivery, magnetic, 106–107, 108–114, 110f, 111f, 113t
Drug loading efficiency, 24, 28
DSC-MRI, 158–159
Dynamic light scattering (DLS), 10
curcumin-loaded SF nanoparticles, characterization of, 24
SF solution particle size measurement using, 89

E

Electric field, 1, 1–2, 3
Electrophoretic model, 12–13
Endocytosis, 177
adsorptive, 177
clathrin-dependent, 177
receptor-mediated, 177, 177
Enhanced permeability and retention (EPR) effect, 49–50, 109, 145, 180
Epidermal growth factor receptor (EGFR), 46, 46–47, 50, 62–63
Ethyl amine, 121

F

Feridex, 120
Ferumoxtran (Combidex), 120
5-Fluorouracil (5-FU), 57, 61–62
Folate receptor protein, 122–123
Folate receptor-targeted liposomal oridonin (F-L-ORI), 55
Fourier transform infrared (FTIR) spectroscopy, conformation analysis using, 90

G

Galectin-1, 123
GastoMARK (Lumirem), 120
Gemcitabine, 56
for hyperthermia, 2
Gene-based therapies, 161–164, 164f
GILM2 metastatic breast cancer cells, curcumin efficacy against, 25, 29, 29f
Glioblastoma multiforme (GBM), 141, 155, 155, 171, 173, 173–174
Gliomas, 171–175
biology of, 172, 172–173
types of, 173, 173
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 55
Gold nanoparticles (AUNPs), 183
applications in photothermal therapy, 60
for noninvasive radiofrequency cancer hyperthermia, 1, 5f, 6f
biological RF activity of AuNPs in vitro/in vivo, 13–15, 14f, 15f
RF-induced AuNPs heating, theoretical frameworks for, 11–12, 11, 11–13, 12–13
RF interactions with AuNPs, 7–10, 8f, 9f
Graphene oxide-superparamagnetic iron oxide hybrid nanocomposite (GO-IONP-PEG), 112–114
Graphene quantum dots (GQDs), 53
Gum Arabic–stabilized gold nanocrystals (GA-AuNPs), 52–53

H

High-intensity focused ultrasound (HIFU), 61
Hydrophilic carbon clusters (HCCs), 58
1-Hydroxyethylidene-1,1-bisphosphonic acid–coated SPIO nanoparticles, 152
Hyperthermia, magnetic, 114–119, 117t, 182–183

I

IL-13, 181–182
ILK signaling pathway
curcumin-activated, protein array analysis of, 34, 37f
Image-guided radiotherapy, 51
Implant surface texturing, 76t
and cellular ingrowth, 79–80
cellular response to, 74–75
history and development of, 75–76
utility of nanotechnology, 80–81
Insulin receptor signaling pathway
curcumin-activated, protein array analysis of, 32, 36f
Integrin antagonist (IA), 62, 62
Intraoperative delineation of tumors, 154–155
Iron oxide, 185

J

Joule model, 11

K

Karnofsky performance status (KPS), 172
KB tumors, nude mice with, 52
KRAS (Kirsten rat sarcoma) allele, 59, 60

L

Laser-activated nano-thermolysis as a cell-elimination technology (LANTCET), 60, 60–61
Lipopolysaccharide (LPS), 63
Liposomal belotecan, 45–46
Liposomal delivery systems, 54
Liposome-gold nanoparticle (LiposAU NP), 60
Liposomes, 181
Lomustine, 173–174
Lonidamine, 46
Lymphoscintigraphy, 48

M

Magnetic drug delivery, 106–107, 108–114, 110f, 111f, 113t
Magnetic drug targeting (MDT), 106–107, 108–114, 110f, 111f, 113t
Magnetic fluid hyperthermia, 182–183
Magnetic nanoparticles (MNPs), 105, 106f, 158–159, 161, 161, 162f
Magnetic resonance imaging (MRI), 48, 48, 119–125, 122f
Magnetite (Fe3O4), 106–107, 116
Magnetite, 122–123, 124
MCF-7, 112
MDA-MB-231 breast cancer tumor cells, 46
Mesenchymal stem cells (MSCs), 152, 152–153, 153f
Meso-2,3-dimercaptosuccinic acid (DMSA), 124
Metastatic breast cancer, 19
GILM2 cells, curcumin efficacy against, 25, 29, 29f
Methotrexate (MTX), 112
O6-Methylguanine methyltransferase (MGMT), 149–150
methylation, 172
MicroRNAs (mRNAs), 59
Mitoxantrone (MTO), 114
M109R-HiFR cells, 55
Monoclonal antibodies, 176
Multidrug resistance (MDR), 173–174
overcoming, 148–150
Multi-walled carbon nanotubes (MWCNTs), 163
Myofibroblasts, 74

N

Nanoablation, 48, 49
Nanocyan, 154–155
Nanoelectromechanical systems (NEMSs), 155–158, 156f
Nanoliposomal C6-ceramide, 55, 55–56, 56, 56, 56
Nanoliposomal irinotecan (nal-IRI), 54, 54, 54–55
Nanoliposomal topotecan (nLs-TPT), 57–58
Nanoliposomes, 51–52
Nanolithography, 82
Nanoparticles (NPs), 142, 151, 179–184
biodistribution of, 46–47, 47
as diagnostic imaging tools, 48–52
magnetic, 105, 106f, 158–159, 161, 161, 162f
neurotoxicity of, 164–165
peculiarities of, 180
properties of, 179f
structural and functional properties, 143t
as theranostic tool, 52–53
as treatment tool, 53–63
use in pharmacokinetics, 45–48
Nanorod, 48, 52
Nanoscale ceramide liposomes, 55
Nanotechnology
ascent of, 142
for brain tumor therapy, 171
in neurosurgical oncology, 139
utility in implant surface texturing, 80–81
NanoTherm therapy, 182–183
Near-infrared fluorescent (NIRF) imaging, 50
Neural stem cells (NSCs), 146f, 147, 152, 152
Neuroimaging, 158–159
Neurooncology, 141, 164–165
Neurosurgery, 174
Neurosurgical oncology, nanotechnology in, 139
brain tumors, 140–141
therapy, challenges to, 141–142
challenges to, 164–166
bioavailability, 165–166
neurotoxicity of nanoparticles, 164–165
chemotherapy, 142–150
blood–brain barrier, crossing, 142–145
controlled drug release, 147–148, 148f
multidrug resistance, overcoming, 148–150
selectively targeting cancer cells, 145–147
future directions of, 166
novel therapies, 159–164
gene-based therapies, 161–164, 164f
photodynamic therapy, 159–160
thermotherapy, 161, 162f
radiotherapy, 150–153
radiation damage to tumors, targeting, 150–152
radiation-induced brain damage, repair of, 152–153
surgery, 154–159
intraoperative delineation of tumors, 154–155
nanoelectromechanical systems, 155–158, 156f
neuroimaging, 158–159
Neurotoxicity of nanoparticles, 164–165
Noninvasive radiofrequency cancer hyperthermia, AuNPs for, 1, 5f, 6f
biological RF activity of AuNPs in vitro/in vivo, 13–15, 14f, 15f
RF-induced AuNPs heating, theoretical frameworks for, 11–13
classical and quantum electromagnetic theory, 11–12
electrophoretic model, 12–13
Joule model, 11
RF interactions with AuNPs, 7–10, 8f, 9f
Noninvasive radiofrequency hyperthermia systems, overview of, 3–4
Non-PEGylated nanoparticles, 45–46

O

Octopod magnetite nanoparticles, 121, 122f

P

p70S6K Signaling pathway
curcumin-activated, protein array analysis of, 34–37, 40f
Paclitaxel, 46, 55, 58, 58, 174
nanoparticles, albumin-bound, 20
resistance, overcoming, 148–149, 149f
PANC-1, 56, 60, 112
Panitumumab, 155
PEGylated hydrophilic carbon clusters (PEG-HCCs), 58
PEGylated nanoparticles, 45–46, 46, 52, 121, 151–152
Peptides, 176
P-glycoprotein, 177
Pharmacokinetics, nanoparticles’ use in, 45–48
Phase-shift nanoemulsions (PSNEs), 61
Photodynamic therapy (PDT), 159–160
Photolithography, 82
PI3K/AKT signaling pathway
curcumin-activated, protein array analysis of, 32, 35f, 37–38, 41f
Polyacrylic acid (PAA), 121
Poly(β-amino ester)s (PBAEs), 163–164
Polybutylcyanoacrylate (PBCA), 182
Polydimethylsiloxane (PDMS), 81–82, 82
Polyethylene glycol (PEG), 45–46, 58
Polyethylene imine (PEI), 124
Polyglycolide (PLGA), 181
Polyisohexlcyanoacrylate, 54
Poly lactic-co-glycolic acid (PLGA)-coated magnetic nanospheres, 61–62
Polylactide (PLA), 181
Polylactide-co-glycolide matrix (PLGA-MNPs), 112
Polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles, 58, 59
Porphyrin-based lipoproteins (PLPs), 52, 52
Porphysomes, 52, 52
Positron emission tomography (PET), 50
Protein array analysis, of curcumin-activated apoptotic pathways, 29–38, 30f, 31f, 31t, 32f, 33f, 34f, 35f, 36f, 37f, 38f, 39f, 40f, 41f
Protein expression analysis, using protein array, 25–26, 26t

Q

Quantum dots (QDs), 47–48, 50, 50, 63, 159, 159
graphene, 53
linked to alpha-fetoprotein antibody (QDs-Anti-AFP), 50–51
Quantum electromagnetic theory, 11–12

R

Radiation damage to tumors, targeting, 150–152
Radiation-induced brain damage, repair of, 152–153
Radioactive nanoliposomes, 57
Radiochemotherapeutics, 51–52
Radiotherapeutics, 51–52
Recombinant proteins, 176
Reduced GO nanomeshes (rGONMs), 160
Reduced graphene oxide nanoplatelets (rGONPs), 160
Resovist, 120
Reticuloendothelial system (RES), 52, 54, 109
Rhenium (188Re)-labeled nanoliposomes, 57

S

Salt loss technique, 77, 78f
Scanning electron microscopy (SEM)
curcumin-loaded SF nanoparticles, characterization of, 23–24
3D architecture characterization using, 89
Sentinel lymph nodes, 48
Signal photon-emission computed tomography (SPECT), 51–52
Silicone shell, 76–77
Silitex implants, 78–79, 79
Silk fibroin (SF)
chemical structure of, 21f
nanoparticles, cancer therapy using, See Silk fibroin nanoparticles, cancer therapy using
Silk fibroin nanoparticles, cancer therapy using, 19
curcumin-loaded SF nanoparticles, biological evaluation of, 25–27
apoptotic pathways activated by curcumin, protein array analysis of, 29–38, 30f, 31f, 31t, 32f, 33f, 34f, 35f, 36f, 37f, 38f, 39f, 40f, 41f
GILM2 metastatic breast cancer cells, curcumin efficacy against, 25, 29, 29f
protein expression analysis using protein array, 25–26, 26t
statistics, 27
curcumin-loaded SF nanoparticles, characterization of, 23–24
atomic force microscopy, 24
curcumin release profile from SF nanoparticles, 24
drug loading efficiency, 24
drug loading efficiency and release kinetics, 28
dynamic light scattering, 24
morphology of, 27, 27f
particle size distribution, 27, 28f
scanning electron microscopy, 23–24
curcumin-loaded SF nanoparticles, preparation of, 22–23, 23f
methods
cell culture, 21
curcumin solution, preparation of, 22
materials, 21
SF nanoparticles, preparation of, 22–23
SF solution, preparation of, 22, 22f
SK-HEP-1 cells, 55–56
Small interfering RNA (siRNA), 59, 59, 59, 60, 161, 176
Specific absorption rate (SAR), 114–116, 117t
Specific loss power (SLP), 114–116, 117t
Sprague Dawley rats, in cancer nanotechnology, 49, 61
Stamping technique, 78–79, 79f
Stupp protocol, 171
Superparamagnetic iron oxide nanoparticles (SPIONs), 48, 49, 49, 152, 182–183, 185
ultrasmall, 158–159
Surface-enhanced Raman scattering (SERS), 155, 155
Surface nanoparticles, and infection prevention, 82–83
Surface plasmonic resonance (SPR), 5–6
Surface printing, three-dimensional, 81–82

T

Technetium-99, 48
Temozolomide (TMZ), 142–144, 144, 158, 171, 182
solid lipid nanoparticles (TMZ-SLNs), 144, 144f
tHA-LIP-DXR (doxorubicin-loaded targeted hyaluronan liposomes), 54
Theranostics, 151, 155
Thermotherapy, 161, 162f
Thermotron RF-8, 3, 4
Thomsen–Friedenreich (TF) antigen, 51
Three-dimensional surface printing, 81–82
D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), 56
Thyroid-stimulating hormone (TSH) nanoliposomes, 57
Transcytosis, 177
adsorptive, 177
cell-mediated, 178
Transforming growth factor-β (TGF-β), 163

U

Ultrasmall superparamagnetic iron oxide (USPIO), 49
Uniaxial tensile testing, 90
Upconversion nanoparticles (UCNPs), 160

V

Vascular endothelial growth factor (VEGF), 46
Vascular endothelial growth factor receptor (VEGFR), 46
VX2 carcinoma, 62

Y

YIGSR nanoparticles (YISR-NPs), 47
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.142.235.144