Bibliography

[AKH 74] AKHTARZAD S., JOHNS P.B., “Solution of 6-component electromagnetic fields in three space dimensions and time by the TLM method”, Electronic Letters, no. 10, pp. 535–537, December 1974.

[AKH 75] AKHTARZAD S., JOHNS P.B., “Solution of Maxwell’s equations in three space dimensions and time by the TLM method of analysis”, Proc. Inst. Elec. Eng., vol. 122, pp. 1344–1348, 1975.

[ALA 94] AL-ASSADI M., BENSON T.M., CHRISTOPOULOS C., “Interfacing field problems modelled by TLM to lumped circuits”, Electronics Letters, vol. 30, no. 4, pp. 290–291, February 1994.

[ALM 81] Al-MUKHTAR D.A., SITCH J.E. “Transmission-line matrix method with irregularly graded space”, Proc. Inst. Elec. Eng., vol. 128, part H, no. 6, pp. 299–305, December 1981.

[BAD 96] BADER B., RUSSER P., “Modelling of coplanar discontinuities using the alterning transmission line matrix (ATLM) method”, ACES Conference Proceedings, pp. 319–316, Monterey, CA, USA, 1996.

[BÉR 94] BÉRENGER J.P, “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comp. Phys., vol. 114, no. 2, pp. 110–117, October 1994.

[BÉR 00] BÉRENGER J.P., “A multiwire formalism for the FDTD method”, IEEE Trans. on Electromagnetic Compatibility, vol. 42, no. 3, pp. 257–264, 2000.

[BER 94] BERRINI P., WU K., “A pair of hybrid symmetrical condensed TLM nodes”, IEEE Microwave Guided Wave Lett., vol. 4, pp. 224–246, 1994.

[BER 95] BERRINI P.,WU K., “A comprehensive study of numerical anisotropy and dispersion in 3-D TLM Meshes”, IEEE Trans. MIT, vol. 43, no. 5, pp. 1173–1181, May 1995.

[BIS 99] BISCOVEANU C., Développement de la méthode TLM en vue de son application à la compatibilité électromagnétique, PhD Thesis, INPG, Grenoble, 1999.

[CAS 97] CASCIO L., TARDIOLLI G., HOEFER W.J.R., “Characterisation of nonlinear active and passive devices in stub-loaded SCN -TLM”, Second International Workshop on Transmission-Line Matrix Modelling Theory and Applications, Munich, October 1997.

[CHE 93] CHEN Z., NEY M., HOEFER W.J.R, “Absorbing and connecting boundary conditions for the TLM method”, IEEE Trans. MIT, vol. 41, no. 11, pp. 2016–2024, November 1993.

[CHO 01] CHOONG Y.K., SEWELL P., CHRISTOPOULOS C., “Accurate wire representation in numerical models for high-frequency simulation”, Electronic Letters, vol. 37, no. 5, pp. 280–282, 2001.

[CHO 03] CHOONG Y.K., Advanced modal expansion techniques for the transmission line modelling method, Thesis, University of Nottingham, October 2003.

[CHR 95] CHRISTOPOULOS C., The Transmission-line Modelling (TLM) Method, Series on Electromagnetics Wave Theory, IEEE Press, New York and Oxford, 1995.

[CHU 04] CHU H.S., Couplage Algorithmes génétiques et TLM pour la conception des antennes imprimées miniatures, PhD Thesis, Nice-Sophia Antipolis University, France, 2004.

[DUB 92] DUBARD J.-L., Caractérisation d’antennes imprimées par la méthode de la matrice des lignes de transmission (TLM) associée à une technique moderne de traitement numérique du signal, PhD Thesis, Nice-Sophia Antipolis University, France, 1992.

[DUB 00] DUBARD J.-L., POMPEI D., “Optimization of the PML efficiency in 3-D TLM method”, IEEE Trans. on MTT, vol. 48, no. 7, part 1, pp. 1081–1088, July 2000.

[EDE 03] EDELVIK F., “A new technique for accurate and stable modeling of arbitrarily oriented thin wires in the FDTD method”, IEEE Trans. on Electr. Comp., vol. 45, no. 2, May 2003.

[FAN 96] FANG J., WU Z., “Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media”, IEEE Trans. MTT., vol. 44, no. 12, pp. 2216–2222, December 1996.

[GER 90] GERMAN F.J., GOTHARD G.K., RIGGS L.S., “Modelling of materials with electric and magnetic losses with the symmetrical condensed TLM method”, Electronics Letters, vol. 26, no. l6, pp. 1307–1308, August 1990.

[GER 96] GERMAN F.J., SVIGELJ J.A., MITTRA R., “A numerical comparison of dispersion in irregularly graded TLM and FDTD meshes”, ACES Conference Proceedings, Monterey, CA, USA, pp. 270–278, 1996.

[HEI 93] HEIN S., “Consistent finite difference modelling of Maxwell’s equations with lossy symmetrical condensed TLM node”, International Journal for Numerical Modelling. Electronic Networks, Devices and Fields, vol. 6, pp. 207–220, 1993.

[HEI 94] HEIN S., “Finite difference time domain approximation of Maxwell’s equation with non-orthogonal condensed TLM mesh”, International Journal for Numerical Modelling. Electronic Networks, Devices and Fields, vol. 7, pp. 765–781, 1994.

[HEI 97] HEIN S., “Synthesis of TLM algorithms in the propagators integral framework”, Second International Workshop on Transmission Line Matrix Modeling Theory and Applications, Munich, October, 1997.

[HOE 85] HOEFER W.J.R., “The transmission line matrix method – theory and applications”, IEEE Tram. MTT, vol 33, no. 10, pp. 882–893, October 1985.

[HOE 89] HOEFER W.J.R., “The transmission line matrix (TLM) method”, in Itoh T. (ed.), Numerical Techniques for Microwave and Millimeter-wave Passive Structures, John Wiley & Sons, New York, 1989.

[HOE 91] HOEFER W.J.R., SO P.P.M., The Electromagnetic Wave Simulator, John Wiley & Sons, New York, 1991.

[HOE 92] HOEFER W.J.R., “Time domain electromagnetic simulation for microwave CAD applications”, IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1517–152, July 1992.

[HOL 81] HOLLAND R., SIMPSON L., “Finite-difference analysis of EMP coupling to thin struts and wires”, IEEE Trans. on Electr. Comp., vol. 23, no. 2, pp. 88–97, May 1981.

[ISE 92] ISELE B., RUSSER P., “Modelling of nonlinear dispersive active elements in TLM”, 1992 IEEE MTT-S International Microwave Symposium Digest, Albuquerque, New Mexico, pp. 1217–1220, 1992.

[JIN 94] JIN H., VAHLDIECK R., “Direct derivation of TLM symmetrical condensed node and hybrid symmetrical condensed Node from Maxwell’s equations using centered differencing and averaging”, IEEE Transaction on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2554–2561, December 1994.

[JOH 71] JOHNS P. B., BEURLE R.L., “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix”, Proc. IEE, vol. 118, no. 9, pp. l203–1208, September 1971.

[JOH 80] JOHNS P.B., O’BRIEN M., “Use of the transmission line modelling (TLM) method to solve nonlinear lumped networks”, Radio Electronic Engineering, vol. 50, pp. 59–70, January-February 1980.

[JOH 81] JOHNS P.B., AKHTARZAD K., “The use of time domain diakoptics in time discrete models of fields”, Int. Journal of Numerical Modelling, vol. 17, pp. 1–14, 1981.

[JOH 86a] JOHNS P.B., “New symmetrical condensed node for three dimensional solution of electromagnetic wave problems by TLM”, Electronic Letters, vol. 22, pp. 162, January 1986.

[JOH 86b] JOHNS P.B., “Use of condensed and symmetrical nodes in computer aided electromagnetic design”, IEEE Proc., vol. 133, part H, no. 5, pp. 368, October 1986.

[JOH 87] JOHNS P.B., “A symmetrical condensed node for the TLM method”, IEEE, Trans. MTT, vol. 35, no. 4, pp. 370–377, May 1987.

[KOS 89] KOSMOPOULOS S.A., HOEFER W.J.R., GAGNON A., “Nonlinear TLM modelling of high-frequency varactor multipliers and halvers”, International Journal of Infrared and Millimeter Waves, pp. 343–352, 1989.

[KRO 63] KRON G., Diakoptics, MacDonald, London, 1963.

[KRU 93] KRUMPHOLZ M., RUSSER P., “The Hilbert space formulation of the TLM method”, International journal of numerical modelling: electronic networks, devices and fields, vol. 6, no. 1, pp. 29–45, February 1993.

[KRU 94] KRUMPHOLZ M., RUSSER P., “On the dispersion in TLM and FDTD”, IEEE Trans. Microwave Theory Tech., vol. 42, no. 7, pp. 1275–1279, July 1994.

[KRU 96] KRUMPHOLZ M., RUSSER P., “On the advantages of A TLM over conventional TLM”, ACES Conference Proceedings, pp. 238–245, Monterrey, CA, 1996.

[LAR 06] LARBI B., Modélisation de structures antennaires VLF/LF, PhD Thesis, Nice-Sophia Antipolis University, France, 2006.

[LEM98] LE MAGUER S., “Développements de nouvelles procédures numériques pour la modélisation TLM: Application à la caractérisation de circuits plaques et de structures à symétrie de révolution en bande millimétrique, PhD Thesis, University of Western Brittany, November 1998.

[LEM01a] LE MAGUER S., NEY M.M., “Extended PML-TLM node: an efficient approach for full-wave analysis of open structures”, International Journal of Numerical Modelling, vol. 14, pp. 129–144, 2001.

[LEM 01b] LE MAGUER S., “New TLM nodes with PML absorbing boundary conditions for the characterisation of axially symmetric antennas”, International Journal of Numerical Modelling, vol. 14, pp. 185–203, March-April 2001.

[LEM 04] LE MAGUER S., PEDEN A., BOURREAU D., NEY M.M., “Split-step TLM (SS-TLM): a new scheme for accelerating electromagnetic field simulation”, IEEE Transaction on MTT, vol. 52, no. 4, pp. 1182–1190, April 2004.

[LI 05] LI Z., Contributions aux techniques de maillages irréguliers dans la méthode TLM, Applications au calcul électromagnétique structure à détails fins et interface non cartésienne, PhD Thesis, University of Western Brittany, June 2005.

[LOU 04] LOUAZANI H., Modélisation des milieux dispersifs par la méthode TLM, Application: étude du guide coplanaire à ferrite, PhD Thesis, INPG, Grenoble, 2004.

[MAK 02] MAKINEN R.M., JUNTUNEN J.S., KIVIKOSKI M.A., “An improved thin-wire model for FDTD”, IEEE Trans. On MTT, vol. 50, pp. 1245–1255, May 2002.

[MEL 88] MELIANI H., DE COGAN D., JOHNS P.B., “The use of orthogonal curvilinear meshes in TLM models”, International Journal for Numerical Modelling. Electronic Networks, Devices and Fields, vol. l, pp. 221–238, 1988.

[MOU 06] MOUZAHEM Z., La technique de la transformée en z dans la méthode TLM applications aux plasmas et aux matériaux partiellement magnétisés, PhD Thesis, INPG, Grenoble, 2006.

[NAM 99] NAMIKI T., “A new FDTD algorithm based on alternating-direction implicit method”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003–2007, October 1999.

[NAY 90a] NAYLOR P., DESAI R.A., “New three dimensional symmetrical condensed lossy node for solution of electromagnetic wave problems by TLM”, Electronics Letters, vol. 26, no. 7, pp. 492–493, March 1990.

[NAY 90b] NAYLOR P., CHRISTOPOULOS C., “A new wire node for modeling thin wires in electromagnetic field problems solved by transmission line modeling”, IEEE Trans. on MTT, vol. 38, no. 3, pp. 328–330, 1990.

[PAU 99a] PAUL J., CHRISTOPOULOS C., THOMAS D.W.P., “Generalized material models in TLM I. Materials with frequency-dependent properties”, IEEE Transactions on Antennas and Propagation, vol. 47, no. 10, pp. 1528–1534, October 1999.

[PAU 99b] PAUL J., CHRISTOPOULOS C., THOMAS D.W.P., “Generalized material models in TLM II. Materials with anisotropic properties”, IEEE Transactions on Antennas and Propagation, vol. 47, no. 10, pp. 1535–1542, October 1999.

[PEN 97] PENA N., NEY M.M., “Absorbing boundary conditions using perfectly matched layer (PML) technique for three-dimensional TLM simulations”, IEEE Trans. MTT., vol. 45, no. 10, October 1997.

[POR 92] PORTI J.A., MORENTE J.A., KHALLADI M., CALLEGO A., “A comparison of thin wire models for TLM method”, Electron. Lett., vol. 28, no. 20, pp. 1910–1911, 1992.

[PRO 03] PROKOPIDIS K.P., KANTARTZIS N.V., TSIBOUKIS T.D., “Performance optimization of the PML absorber in lossy media via closed-form expressions of the reflection coefficient”, IEEE Transactions on Magnetics, vol. 39, no. 3, May 2003.

[RUS 91] RUSSER P., HOEFER W.J.R., SO P.P.M., “Modelling of nonlinear active regions in TLM”, IEEE Microwave and Guided Letters, vol. 1, no. 1, pp. 10–13, January 1991.

[RUS 95a] RUSSER P., “On the field theoretical foundation of the transmission line matrix method”, First International Workshop on TLM: Theory and Applications, University of Victoria, pp. 3–12, August 1995.

[RUS 95b] RUSSER P., BADER B., “The alterning transmission line matrix scheme”, IEEE MTT Symp., Orlando, pp. 19–22, May 1995.

[SAG 80] SAGUET P., PIC E., “An improvement for the TLM method”, Electron. Lett., vol. 16., pp. 247–248, September 1980.

[SAG 82] SAGUET P., PIC E., “Utilisation d’un nouveau type de nœud dans la méthode TLM en 3 dimensions”, Electronic Letters, vol. 18, no. 11, pp. 478–480, May 1982.

[SAG 85] SAGUET P., Analyse des milieux guidés – la méthode MTLM, PhD Thesis, INPG, Grenoble, 1985.

[SCA 90] SCARAMUZZA R.A., LOWERY A.J., “A hybrid symmetrical condensed node for the TLM method”, Electron. Lett., vol. 26, pp. 1947–1949, 1990.

[SEW 03] SEWELL P., CHOONG Y. K., CHRISTOPOULOS C., “An accurate thinwire model for 3-D TLM simulations”, IEEE Trans. On Electr. Comp., vol 45, no. 2, May 2003.

[SIM 95] SIMONS N.R.S., LOVETRI J., “Derivation of two-dimensional TLM algorithms on arbitrary grids using finite element concepts”, First International Workshop on Transmission Line Matrix (TLM) Modelling, Victoria, August 1–3, pp. 47–53, 1995.

[TRE 94] TRENKIC V., CHRISTOPOULOS C., BENSON T.M., “New symmetrical super-condensed node for the TLM method”, Electron. Lett., vol. 30, pp. 329–330, 1994.

[TRE 95a] TRENKIC V., CHRISTOPOULOS C., BENSON T.M., “Theory of the symmetrical super-condensed node for the TLM method”, IEEE Trans. MTT, vol. 43, pp. 1342–1348, June 1995.

[TRE 95b] TRENKIC V., The development and characterization of advanced nodes for the TLM method, Thesis, University of Nottingham, November 1995.

[TRE 95c] TRENKIC V., CHRISTOPOULOS C., BENSON T.M, “‘DET(I-TPS) = 0’ – a package for visualizing TLM dispersion relations”, First International Workshop on TLM -Theory and Applications, University of Victoria, pp. 37–40, August 1995.

[UMA 87] UMASHANKER K.R., TAFLOVE A., BEKER B., “Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity”, IEEE Trans. on Ant. Prop., vol. 35, no. 11, pp. 1248–1257, 1987.

[VOE 90] VOELKER R.H., LOMAX R.J., “A finite-difference transmission line matrix method incorporating a nonlinear device model”, IEEE Tran. on Microwave Theory and Techniques, vol. 38, no. 3, March 1990.

[WLO 92] WLODARCZYK A.J., JOHNS D.P., “New wire interface for graded 3D TLM”, Electron. Lett., vol. 28, no. 8, pp. 728–729, 1992.

[YEE 66] YEE K.S., “Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media”, IEEE, Trans. On Antennas Propag., vol. 14, no. 3, pp. 302–307, May 1966.

[YOU 08] YOUSSEF H., La contribution au développement de la méthode TLM en coordonnées curvilignes: applications aux circuits radiofréquences, PhD Thesis, INPG, Grenoble 2008.

[ZHE 00] ZHENG F., CHEN Z., ZHANG J., “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method”, IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1550–1558, September 2000.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
13.59.243.194