Common materials
On the following pages are some of the most commonly used materials.
Ceramics
From simple sunbaked bricks to Wedgwood’s Industrial Revolution and a future of innovative material matrixes being developed in laboratories, ceramics offer designers a multitude of creative possibilities. Traditional ceramics applications include tiles, white ware such as toilets and sinks, and pottery. Technical ceramic applications that take advantage of the high thermal conductivity of ceramics include heat sinks for electronic circuitry.
Stoneware
This high-fired clay is usually gray to brown in color due to the presence of iron and other impurities in the clay. It differs from earthenware in that it has very little moisture absorbency once fired. Stoneware is commonly used for tableware when glazed.
Earthenware
This is a low-temperature fired clay, usually of a red or orange color. The porous ceramic is similar to terracotta commonly used to make pots industrially, as well as large sculptures and architectural forms.
Porcelain
This wondrous white translucent ceramic is fired at a high temperature to fuse the glaze and clay body together to produce a highly refined material.
Digi Clock, designed by Maxim Velcovsky for Qubus Design, 2001. This is a wonderful example of how designers can take a traditional form and material and subvert it through technology to create a contemporary design.
Sponge Vase, designed by Marcel Wanders for Moooi, 1997. This was developed using a technique whereby a natural sponge was dipped in a fluid porcelain clay slip, which penetrated the sponge. When dry, it was fired in a kiln, burning the sponge away to leave a perfect porcelain replica.
Composites
Composites is the term used to describe engineered materials made from two or more components. Polymer composites that embed long-strand fibers in a thermosetting resin matrix are highly stiff and strong materials and were one of the great material developments of the twentieth century. The fibers carry the mechanical load, while the matrix provides toughness and protection for the fibers. Composite production is a labor-intensive process, and securing fastenings within, or joining or cutting holes in laminates, dramatically reduces a composite’s strength. The resins used in composites are irritants and their vapors potentially toxic.
Honeycomb
These composites consist of a core hexagonal structure named after its visual resemblance to a bee’s honeycomb, skinned either side by a sheet. Produced most commonly as sheet material in aluminum and glassfiber, they offer the advantage of stiffness combined with low weight and are often used for architectural panels and lightweight structures.
Glass Reinforced Plastic (GRP)
This consists of a thermoset plastic, most commonly polyester resin, reinforced by fine strands of glass. When introduced in the post-war period, the possibilities afforded by the low-cost, moldable material enabled designers such as Charles and Ray Eames and Eero Saarinen to transform the aesthetic, structure, and function of furniture design.
The Bugatti Veyron Pur Sand edition, 2004. An example of how designers fetishize certain materials such as exposed carbon fiber and polished aluminum panels, and high-cost, high-tech manufacturing techniques.
Carbon fiber
This consists of woven carbon-fiber yarn, combined with resin to produce a moldable sheet material. The material has an exceptionally high strength-toweight ratio and is often used in high-performance specifications. Carbon fiber is a highly energy-intensive and expensive material to produce. Recently its popularity has resulted in its distinct surface weave being copied and applied as a graphic to add fake “technical” visual gravitas to a product, such as in “hot hatch” (hatchback) cars.
Laminates
This group of materials is defined by its layering of materials together using adhesives. Plywood is a common example of a laminate made up of layers of the same material. The process of lamination enables such materials to be surfaced with colored polymer sheets such as formica or metal finishes.
Elastomers
An elastomer is a polymer—a large molecule composed of repeating structural units—with the property of elasticity, and comes in both natural and synthetic forms.
Natural rubber
This flexible material is formed from the sap of a tapped rubber tree. Once purified and processed, it is used on an industrial scale as an elastomer to produce everything from rubber bands and rubber gloves to mats, dampeners, and hoses.
Silicones
These typically non-stick, rubberlike polymer-based materials are used to seal or lubricate products. Silicones are energy-intensive to produce and cannot be recycled.
Ethylene Propylene Diene M-class rubber (EPDM)
This black rubberlike thermoplastic elastomer is commonly used for oil seals, gaskets and o-rings dueto its resistance to chemicals, weathering, and ultraviolet light.
Glass
Glass remains a fantastic, intoxicating, magical medium, as exciting in the twenty-first century as it was in the ancient world. The exploration of the unique properties of glass and how we engage with its extraordinary potential has been the obsession of alchemists, chemists, and designers for centuries.
Transparent and invisible, glass can color space and refract, filter, and shape light, offering product designers a range of opportunities uniquely afforded by a material made from mixed sands treated to achieve a state of rigid liquidity.
Soda lime is the most common type of glass and is used for producing bottles, light bulbs, and windows. Borosilicate glass has a higher melting point, and its high resistance to thermal shock means it is used for headlights, laboratory glass, and Pyrex® ovenware.
Mistic, vase/candleholder, designed by Arik Levy for Gaia & Gino, 2004.
Bobbin Lace Lamp, designed by Nils van Eijk of Studio Van Eijk & Van der Lubbe, 2002. This fibre-optic chandelier provides stunning light without the use of light bulbs.
Metal
The discovery, manipulation, and use of metal have defined epochs in humankind’s history and continue to shape our environment today. From base metals such as copper, which corrode easily, to noble and precious metals that resist corrosion, such as gold and platinum, metals provide a rich resource for designers.
Ferrous alloys (containing iron)
Carbon steel: Carbon steels are alloys containing iron. There are numerous grades, from low-cost cast iron—a hard, brittle metal that rusts easily and is used almost universally from the construction industry to oil rigs—through to high-carbon steels whose hardness lend themselves to making tools. Carbon steels are easy to recycle and are comparatively cheap, with no other material offering the same blend of strength, toughness, and easy manufacture.
Stainless steel: A hard, strong, highly rust-resistant and fully recyclable metal with low ductility (the mechanical property used to describe the extent to which materials can be deformed without fracturing). The substantially higher costs of stainless steel require designers to specify it responsibly, such as for outdoor applications or where a high-quality finish is required aesthetically.
Ad Hoc, designed by Jean-Marie Massaud for Viccarbe, 2009. The chair is fabricated from brass rods, which give the chair its distinctive netlike form.
PlantLock, by Front Yard Company, 2010. This simple solution for green living offers secure on-street parking for bicycles while also creating an attractive environment for the community.
Non-ferrous metals and alloys
Aluminum: An extensively used metal that is strong, light, and ductile. Aluminum is is the second most commonly used metal after steel, and has begun to replace steel in a number of applications, such as car bodies and aerospace. It requires a great deal of energy to extract, but is easily recycled at low energy cost.
Copper: A malleable (deforms under compression), ductile, heat-conductive, and electrically conductive metal commonly used in electrical wiring and plumbing. It is easy to recycle and also easy to fabricate and join.
Lead: This poisonous ductile and highly malleable metal is very dense. It can be used as ballast to weigh down objects such as cantilevered lights.
Magnesium: Strong yet light, this metal is often used in alloys for high-performance applications such as high-performance bike frames. A magnesium computer case is 30% lighter than one made from aluminum. Extracting magnesium is energy-intensive, but it is very easy and cost-effective to recycle.
Nickel: This hard, malleable, ductile metal is magnetic and, due to being inert to oxidation, can be used to electroplate other metals. Some people are sensitive to nickel, causing allergic reactions to the small amount of nickel in stainless-steel applications such as watch casings.
Precious metals: From gold to silver and platinum, these materials add value to a consumer product. Gold is the only chemically stable metal, which is why it has historically been seen as the most valuable.
Tin: This malleable, ductile, and corrosion-resistant metal is often used as a metallic coating, such as on tin cans.
Titanium: This corrosion-resistant metal has a very high strength-to-weight ratio and is used in high-performance applications such as racing cars. It is very expensive to extract from ore, making it ten times more expensive than aluminum.
Zinc: This is commonly used as a protective coating through a process known as galvanizing. It is a hygienic, easy-to-form metal, resistant to alkalis and acids, which lends itself to applications such as bar countertops.
Hanabi, designed by Nendo, 2006. The heat of the bulb makes this shape-memory alloy lamp “bloom” whenever the light is turned on.
Plastics
Often dismissed as a cheap material due to its ubiquity in contemporary life, and the fact that after its discovery in 1862 it was used to duplicate materials at lower cost, plastics today are more cutting edge. A recent innovation is the introduction of bioplastics, made from plant starch or polylactic acid. It may even be possible to make polymers from household waste in the near future. At the same time they are increasingly used for high-quality products. There are two types of plastic polymer: thermoplastics, which soften and melt upon heating, and thermosets, which harden when heated.
Thermoplastics
Acrylanitrile Butadiene Styrene (ABS): This polymer has the highest impact-resistance of all polymers and is used in consumer products where the designer needs to specify a durable material with high impact and mechanical strength. It is easily moldable and, although normally opaque, some grades are now transparent. Some grades are also recyclable.
Acrylic: This transparent material, also known as polymethylmethacrylate (PMMA), is used as an alternative to glass and seen in applications such as lighting, aircraft windows, and spectacle lenses, where its rigidity and hardness are necessary. It is recyclable and non-toxic.
Ethylene tetrafluorethane (ETFE): This abrasion-resistant material is most commonly seen in food packaging due to its excellent chemical and thermal properties. It can be made in translucent or opaque forms.
Nylon: One of the first commercially exploited polymers, nylon, also known as polyamide (PA), is a strong yet elastic opaque plastic that is chemical- and water-resistant. Nylon can be drawn into very fine strands, and it is often used as a man-made alternative to silk.
Polycarbonate (PC): A strong, durable, and rigid material that can be produced in an opaque or transparent form. It is a high-cost polymer, but its high impact-resistance lends itself to high-performance applications such as mechanical gears, car bumpers, and transparent riot shields.
Polyethylene (PE): This flexible material is most commonly used for container lids, being inert, highly water-resistant, and cheap to produce. It is also used as medical applications to be placed in the human body. It is easily recyclable, although if contaminated it can only be incinerated to produce energy.
Polypropylene (PP): This waxy material is rigid and chemically resistant, and is often used in packaging and rotationally molded products. It is a low-cost, easily recyclable polymer, light and ductile, but it lacks strength in comparison with more expensive “technical” polymers.
Ghost Chair, designed by Ralph Nauta and Lonneke Gordjin of the Dutch design studio Drift, 2008. The ethereal chair is made from laser-engraved Plexiglas®.
Polystyrene (PS): This is one of the most commonly used plastics. In solid form it is used in a diverse range of applications such as disposable cutlery, CD cases, and electronic housings. When foamed, expanded polystyrene (EPS) is used for insulation, packaging, and foam drinking cups. EPS is not recycled due to its low density, and is a major pollutant.
Polyvinyl chloride (PVC): Most commonly associated with vinyl upholstery when a plasticizer is added. UPVC (unmodified PVC) is a hard and brittle opaque material. It is a particularly unpleasant polymer that releases a variety of toxic compounds when it degrades, which has led environmentalists to campaign for an end to its production.
Jar Tops, designed by Jorre van Ast for Royal VKB, 2008. This series of readily available lids turn generic jars into reusable storage vessels, and includes a cocoa shaker cap and an oil and vinegar cap.
Mermaid, designed by Tokujin Yoshioka for Driade, 2008. The chair is manufactured using rotationally molded polyethylene.
Thermosets
Epoxy: This clear, durable, and rigid material is used in adhesives—araldite, surface coatings—or as a resin to impregnate composite fibres such as fiberglass and carbon fiber. It cannot be recycled, but can be broken down and used as a filler to pack out material.
Polyester (PET): Displaying good mechanical properties, polyester is heat-resistant and impervious to water. It is used in a diverse range of applications such as films, textiles, and bottles. Plastic PET bottles are lighter and require less energy to produce than equivalent glass bottles. They can be recycled to produce fibers and fleece materials for clothing and carpets.
Polyurethane (PU): This material is an excellent insulator, and can be foamed to produce flexible or rigid cushions and pads. Different grades offer everything from soft and stretchy fabrics such as spandex, to cast applications such as wheels and tires.
Wood
Wood comes in an enormous range of species, all with hugely different aesthetics, density, and suitability for particular processes. From furniture to flooring, we rely on wood for modern living. Natural and renewable, it has distinct advantages over less green alternatives than metals and plastics. Innovative uses of wood abound, such as the recent development of bamboo-based products that take structural advantage of the fast-growing plant’s tensile strength, which is higher than that of steel. Unfortunately, because our demands for wood are growing and we waste so much, our forests are in crisis, and as such designers are increasingly using wood in a more value-added manner.
Engineered wood: Wood manufacturing experienced a revolution in the 1960s with the development of composition boards, in which wood was ground down and recomposed into more homogenous and isotropic materials such as particleboard and medium-density fiberboard (MDF).
Tree wall coat hanger, designed by Michael Young and Katrin Olina Petursdottir for Swedese, 2003. It has a cartoonlike profile that is cut out of oakveneered MDF.
Magno Wooden Radio, designed by Singgih S. Kartono, 2009. Handcrafted in an Indonesian farming village, the radio has an appealing mix of retro and modern styling. Each one is made using an environmentaly sustainable production process, which covers fair social standards for workers.
Cinderella, designed by Jeroen Verhoeven of Demakersvan, 2005. The table is produced through an elaborate process of CNC (computer numerical control) production. The cutting process results in perfect curves and undercuts, pushing the boundaries of the technology and the forms able to be manufactured out of wood.
Wishbone Chair, designed by Hans J. Wegner for Carl Hansen & Søn, 1949. Inspired by classical Ming chairs, Wegner created a series of chairs that helped establish Denmark as an international leader of modern design. Considered to be Wegner’s most successful design, it has been produced in large volumes for more than 50 years.
18.119.160.42