Notation

a   Parameter in Davis equation (N)
aB   Ballast acceleration (m/s2)
aT   Train deceleration (m/s2)
A   Reference area of train (m2)
AB   Ballast area (m2)
Aeq   Equivalent leakage area (m2)
ATU   Tunnel area (m2)
b   Parameter in Davis equation (Nsm1)
b1   Parameter in Davis equation (Nsm1)
b2   Parameter in Davis equation (Nsm1)
B   Train cross-sectional area to tunnel cross-sectional blockage ratio
c   Parameter in Davis equation (Ns2m2)
ca   Speed of sound in air (ms1)
CD   Drag coefficient
CDB   Ballast drag coefficient
CDBO   Drag coefficient of bogies
CDNT   Drag coefficient of train nose and tail
CDW   Contact wire drag coefficient
CD(ψ)   Drag coefficient at yaw angle ψ
CDf(ψ)   Drag coefficient increment at yaw angle ψ due to increased wheel/rail friction
CD(0)   Drag coefficient at ψ = 0
Cf   Friction coefficient
CFi   Force coefficient in direction i
CLB   Ballast lift force coefficient
CLW   Overhead wire lift coefficient
CMi   Moment coefficient about axis i
CMxL   Crosswind lee rail rolling moment coefficient
Cp   Pressure coefficient ppr0.5ϱv2image
Cp1   Pressure coefficient on vertical surface
Cp2   Pressure coefficient on horizontal surface
CS   Smagorinsky coefficient
Csp   Specific heat at constant pressure (Jkg1K1)
Csv   Specific heat at constant volume (Jkg1K1)
Cui   Air velocity coefficient ui/v
CuiB   Ballast velocity coefficient uiB/v
Cuh   Horizontal air velocity coefficient uh/v
Cuh 95   95th percentile of horizontal gust velocity coefficient uh95/v
Cux0   Coefficient of velocity close to ballast bed ux0/v
Cux2   Square of air velocity coefficient (ux/v)2
Cμ   Constant in kε model
d   Dispersion of extreme value distribution (m/s)
dB   Ballast size (m)
dW   Contact wire diameter (m)
E   Internal energy (J)
fa   Admittance factor
fc   Curvature factor
fr   Track roughness factor
fs1   Suspension factor – body roll
fs2   Suspension factor – suspended mass movement
fs3   Suspension factor – other effects
F(u¯)image   Cumulative distribution function of mean speed
F(uˆ)image   Cumulative distribution function of wind gust speed
FCWP   Total contact force between a pantograph and the contact wire (N)
FHAB   Horizontal aerodynamic force on ballast (N)
FHMB   Horizontal mechanical force on ballast (N)
Fi   Crosswind aerodynamic force in direction i (i = x,y,z) (N)
FR   Total train resistance (N)
FRC   Train resistance due to track curvature (N)
FRG   Train resistance due to gravity (N)
FVAB   Vertical aerodynamic force on ballast (N)
FVMB   Vertical mechanical force on ballast (N)
FVAWP   Vertical aerodynamic force between pantograph and contact wire (N)
FVIWP   Dynamic inertial force between pantograph and contact wire (N)
FVSWP   Static vertical force between pantograph and contact wire (N)
FW   Contact wire drag or lift force (N)
g   Acceleration due to gravity (m/s2)
gi   Body force per unit mass in Navier–Stokes equations (m/s2)
G   Gust factor
G(x,r)image   Large eddy simulation filter function
h   Reference height (m)
hFi   Weighting function for crosswind force component i(i = x,y,z)
hu   Under body gap height (m)
H   Boundary layer form parameter
HFy   Longitudinal point of action of side force
HFz   Longitudinal point of action of lift force (m)
i   Track gradient
Ii   ith component of turbulence intensity σui/ux¯image (i = x,y,z)
IR   Turbulence intensity relative to the train
k   Turbulent kinetic energy
ki   Factor in resistance equations
kloss   Pressure loss coefficient
knose   Coefficient showing the effect of the train nose
kR   Factor on mass for rotating masses
ksim   Factor used to correct Δpsim
ks1   Sand grain roughness of track (m)
ks2   Sand grain roughness of train under body (m)
kVK   Von Kármán constant
ki   Factors used in drag coefficient equations in Chapter 7 (k = 1–7)
K   Constant in Eq. (2.13)
KB   Bulk modulus of air (Pa)
K1   Factor in Eq. (7.14)
K2   Factor in Eq. (7.14)
KW1   Factor in Eq. (7.8)
KW2   Factor in Eq. (7.8)
li   Integral turbulence length scale (m)
lK   Kolmogorov dissipation length scale (m)
lmix   Mixing length (m)
lS   Smagorinsky length scale
L   Train length (m)
L’   Adjusted train length (m)
Lc   Length of container (m)
Lg   Length of gaps between containers (m)
Li   Length of intercar gap (m)
LW   Overhead wire length (m)
Lui   Integral length scale of velocity fluctuations (i = x,y,z) (m)
Luximage   Integral length scale relative to train (m)
m   Mode of extreme value distribution (ms1)
mW   Mass per unit length of catenary wire (kgm1)
M   Train mass (kg)
MB   Ballast stone mass (kg)
Mi   Crosswind aerodynamic moments about axis i (i = x,y,z) (Nm)
Mp   Primary suspended mass (kg)
Ms   Secondary suspended mass (kg)
MxL   Crosswind rolling moment about leeward rail (Nm)
Ma   Mach number
n   Frequency (Hz)
nf   Reynolds number friction exponent
ng   Characteristic gust frequency in Eq. (11.7) (Hz)
nW   Natural frequency of catenary wire (Hz)
n1   Crosswind force coefficient parameterisation constant
n2   Crosswind force coefficient parameterisation constant
NB   Number of bogies
NP   Number of power cars
Np   Number of pantographs
NT   Number of trailing cars
P   Pressure (Pa)
pext   Train external pressure (Pa)
pint   Train internal pressure (Pa)
ploss   Stagnation pressure loss (Pa)
pmax   Maximum pressure (Pa)
pmin   Minimum pressure (Pa)
pMPW   Peak value of the micropressure wave at a distance rMPW from the tunnel portal (Pa)
po   Reference pressure outside tunnel portal (Pa)
pr   Reference pressure (Pa)
p1   Pressure on vertical structure (Pa)
p2   Pressure on horizontal structure (Pa)
P(u¯)image   Extreme value probability of mean wind speed
q   Centre of gravity height (m)
Q   Heat transfer per unit length of tunnel (Js1m1)
Qij   Residual stresses
r   Radial coordinate (m)
rMPW   Distance between exit portal and point where micropressure wave is measured (m)
rTR   Track curve radius (m)
Rg   Gas constant (J mole1K1)
RB   Ballast vertical reaction force (N)
RS   Velocity shear relative to the train
RT   Track radius of curvature (m)
RTU   Hydraulic radius of tunnel (m)
Rui(τ)   Autocorrelation function of velocity component i
RMxL   Ratio of rolling moment coefficients at 90 and 30°yaw
Re   Reynolds number
Reli   Reynolds number based on integral length scale
s   Streamline coordinate
S   Suspension coefficient
Sc   Scruton number
Sij¯image   Mean strain rate tensor
SFi(n)   Spectral density for force component i (N2s) (i = x,y,z)
Sui(n)   Spectral density of air velocity in i direction (m2s1)
SV(n)   Spectral density for V (m2s1)
Sm   Shields parameter for ballast roll
Sx   Shields parameter for ballast slide
Sximage   Shields parameter using friction velocity
Sz   Shields parameter for ballast lift
SSE   Sum of the squared approximation errors (Eq. 4.25)
SSR   Sum of the squared approximation variation from mean (Eq. 4.27)
SST   Sum of the squared true response variation from mean (Eq. 4.26)
t   Time (s)
Ta   Tachikawa number
Tabs   Absolute temperature (K)
Tui   Integral timescale of velocity component I (s)
TW   Wire tension (N)
u(x,t)   Wind velocity at point x and time t (ms1)
u(z,t)   Wind velocity at height z and time t (ms1)
u(h)   Wind velocity at height h above ground (ms1)
uˆimage   Wind gust velocity (ms1)
uc   Characteristic wind speed (ms1)
ui   ith component of air velocity (i = x,y,z) (ms1)
uiB   ith component of ballast velocity (i = x,y,z) (ms1)
uh   Horizontal component of velocity (ms1)
uh 95   95% confidence limit of ensemble of one-second gust values of uh (ms1)
uh average   Average value of ensemble of one-second gust values of uh (ms1)
uh gust   One-second gust value of uh (ms1)
uh sd   Standard deviation of ensemble of one-second gust values of uh (ms1)
ur   Velocity in radial direction (ms1)
ux0   Velocity close to ballast bed (ms1)
uxr   Representative air speed inside tunnel portal (ms1)
ux, z=δ   Velocity at edge of boundary layer (ms1)
uθ   Velocity in angular direction (ms1)
uτ   Shear velocity τw/ρimage (ms1)
u+   ux/uτ
u1   Lower velocity limit in cumulative probability distribution for human stability (ms1)
u2   Upper velocity limit in cumulative probability distribution for human stability (ms1)
uˆ50image   Once in 50-year gust speed (ms1)
u(ε)   Wind speed at an incident angle ε to contact wire (ms1)
u(90)   Wind speed at 90°to contact wire (ms1)
v   Train speed (ms1)
vb   Balancing train speed (ms1)
V   Wind velocity relative to train (ms1)
V(t)   Wind velocity relative to train at time t (ms1)
V(x,t)   Wind velocity relative to train at point x and time t (ms1)
V(h)   Wind velocity relative to train at height h above ground (ms1)
VN   Velocity normal to train surface in panel method calculation (ms1)
V   Free stream velocity relative to train in panel method calculation (ms1)
VFY   Vertical point of action of side force (m)
w   Contact wire weight/unit length (kg/m)
x   Distance in train direction of travel, measured from train nose (m)
xi   x coordinate of panel i
xr   x coordinate of end of train
XW   Longitudinal distance along contact wire span, measured from span centre (m)
XFi2image   Aerodynamic admittance for force component i
y   Lateral distance from the centre of the track (m)
yi   y coordinate of panel i
yp   Primary bump stop displacement distance (m)
ys   Secondary bump stop displacement distance (m)
yTR   Semitrack width (m)
Y   Lateral distance of vertical structure from the centre of the track (m)
YW   Maximum contact wire lateral displacement under wind loading (m)
z   Vertical distance from the top of the rail (m)
Z   Vertical distance of horizontal structure from the top of the rail (m)
ZW   Vertical distance of contact wire from support points (m)
zd   Velocity profile displacement height (m)
z1   z at the bottom of train (m)
z2   z at the top of train (m)
z0   Surface roughness length (m)
z01   Surface roughness of sleepers and ballast (m)
z02   Surface roughness of train under body (m)
z+   zuτ/ν
α   Parameter in definition of characteristic velocity
α0   Wheel unloading factor
β   Wind direction relative to track (degrees or radians)
βi   Angle of panel i to the flow direction (degrees or radians)
γ   Ratio of specific heats
δ   Boundary layer thickness (m)
δd   Boundary layer displacement thickness (m)
δm   Boundary layer momentum thickness (m)
Δ   Size of computation cell
ΔCp   Peak-to-peak pressure coefficient
ΔCpB   Pressure coefficient across ballast particle
Δp   Peak-to-peak pressure (Pa)
Δp95   95% confidence limit of Δp (Pa)
Δpaverage   Ensemble average of Δp (Pa)
Δpsd   Ensemble standard deviation of Δp (Pa)
Δpsim   Numerically simulated value of Δp (Pa)
Δpfr   Pressure change due to friction effects due to the entry of the main part of the train into the tunnel (Pa)
ΔpHP   Pressure change in a tunnel due to the passing of a train nose (Pa)
ΔpN   Pressure change due to the passing of the train nose, also initial pressure rise (Pa)
ΔpT   Pressure change due to the entry of the train tail (Pa)
Δt   Computational time step (s)
Δtp   Characteristic time interval for the initial pressure rise =2knoseRTUvimage
Δx   Distance between computational nodes (m)
ε   Turbulence dissipation rate or overhead wire incident angle
ζ   Train wetted perimeter (m)
η   Wheel/rail friction coefficient
θ   Angular coordinate
ϑ   Parameter in Eqs. (3.5) and (3.6)
κ   Weibull distribution shape factor
κ   Modified Weibull distribution shape factor
λ   Weibull distribution scale factor (ms1)
λ   Modified Weibull distribution scale factor (ms1)
μ   Dynamic viscosity of air (kgm1s1)
μ   Second viscosity of air (kgm1s1)
μB   Ballast friction coefficient
μt   Turbulent eddy dynamic viscosity (kgm1s1)
ν   Kinematic viscosity of air (m2s1)
νt   Turbulent eddy kinematic viscosity (m2s1)
ξW   Mechanical damping ratio of catenary wire
π1   Parameter in cumulative distribution function in Eq. (8.14)
π2   Parameter in cumulative distribution function in Eq. (8.14)
ϱ   Density of air (kgm3)
ϱB   Density of ballast (kgm3)
ϱ0   Reference density of air outside tunnel portal (kgm3)
σui   Component of turbulence in direction i (i = x,y,z) (m/s)
τ   Time (s)
τK   Kolmogorov time scale (s)
τdyn   Pressure tightness time (s)
τw   Boundary shear stress (Pa)
ϕ   Velocity potential (s1)
φ   Stream function (s1)
ψ   Yaw angle (degrees or radians)
ω   Vorticity (s1)
Ωr   Accident risk cumulative density function in Eq. (8.9)
Ωs   Pedestrian stability CDF in Eq. (8.12)
Ω   Solid angle associated with micropressure wave emission
Λ   Source volume flow rate per unit length from point source
Λ   Source volume flow rate per unit length from panel
eimage   Error in optimisation regression analysis
kiimage   Regression coefficients in optimisation regression analysis
2   Coefficient of determination in optimisation regression analysis
ad2image   Adjusted coefficient of determination in optimisation regression analysis
xiimage   Function variable in optimisation regression analysis
yiimage   Function variable in optimisation regression analysis
¯   Time average, mean or filtered value
   Fluctuating value
   Subgrid component
ˆ   Extreme or gust value
˜   Normalisation of velocities with characteristic wind speed
   Vector
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.222.200.143