APPENDIX 2

Answers to
Odd-Numbered Problems

image

Problem Set 1.1, page 8

  • 1. image
  • 3. y = cex
  • 5. y = 2ex(sin x − cos x + c
  • 7. image
  • 9. y = 1.65e−2x + 0.35
  • 11. image
  • 13. y = 1/(1 + 3ex)
  • 15. y = 0 and y = 1 because y′ = 0 for these y
  • 17. expimage, t = 1011(1n 2)/1.4 [sec]
  • 19. Integrate yg twice, y′(t) = gt + v0, y′(0) = v0 = 0 (start from rest), then image, where y(0) = y0 = 0

Problem Set 1.2, page 11

  • 11. Straight lines parallel to the x-axis
  • 13. y = x
  • 15. mv′ = mgbv2, v′ = 9.8 − v2, v(0) = 10, v′ = 0 gives the limit/9.8 = 3.1 [meter/sec]
  • 17. Errors of steps 1, 5, 10: 0.0052, 0.0382, 0.1245, approximately
  • 19. x5 = 0.0286(error 0.0093), x10 = 0.2196(error 0.0189)

Problem Set 1.3, page 18

  • 1. If you add a constant later, you may not get a solution. Example: y′ = y, In |y| = x + c, image but not ex + c (with c ≠ 0)
  • 3. cos2y dy = dx, image
  • 5. y2 + 36x2 = c, ellipses
  • 7. y = x arctan (x2 + c)
  • 9. y = x/(c − x)
  • 11. y = 24/x, hyperbola
  • 13. dy/sin2y = dx/cosh2x, −cot y = tanh x + c, c = 0, y = −arccot (tanh x)
  • 15. y2 + 4x2 = c = 25
  • 17. y = x arctan (x3 − 1)
  • 19. y0ekt = 2y0, ek = 2 (1 week), e2k = 22(2 weeks), e4k = 24
  • 21. 69.6% of y0
  • 23. pV = c = const
  • 25. T = 22 − 17e−0.5306t = 21.9 [°C] when t = 9.68 min
  • 27. image, ekt0 − 0.01, image
  • 29. No. Use Newton's law of cooling.
  • 31. y = ax, y′ = g(y/x) = a = const, independent of the point (x,y)
  • 33. ΔS = 0.5SΔφ, ds/ = 0.15S, S = S0e0.15φ = 1000S0, φ = (1/0.15) In 1000 = 7.3 · 2π. Eight times.

Problem Set 1.4, page 26

  • 1. Exact, 2x = 2x, x2y = c,y = c/x2
  • 3. Exact, y = arccos (c/cos x)
  • 5. Not exact, image
  • 7. image
  • 9. Exact, u = e2x cos y + k(y), uy = −e2x sin y + k′, k′ = 0. Ans. e2x cos y = 1
  • 11. F = sinh x, sinh2 x cos y = c
  • 13. u = ex + k(y), uy = k′ = −1 + ey, k = −y + ey. Ans. exy + ey = c
  • 15. b = k, ax2 + 2kxy + ly2 = c

Problem Set 1.5, page 34

  • 3. y = cex − 5.2
  • 5. y = (x + c)ekx
  • 7. y = x2(c + ex)
  • 9. y = (x − 2.5/e)ecos x
  • 11. y = 2 + c sin x
  • 13. Separate. y − 2.5 = c cosh4 1.5x
  • 15. (y1 + y2)′ + p(y1 + y2) = (y1′ + py2) = 0 + 0 = 0
  • 17. (y1 + y2)′ + p(y1 + y2) = (y1′ + py2) = r + 0 = r
  • 19. Solution of cy1′ + pcy1 + c(y1 + py1) = cr
  • 21. image image. Thus, y = uyh gives (4). We shall see that this method extends to higher-order ODEs (Secs. 2.10 and 3.3).
  • 23. image
  • 25. y = 1/u, u = ce−3.2x + 10/3.2
  • 27. dx/dy = 6ey − 2x, x = ce−2y + 2ey
  • 31. T = 240ekt + 60, T(10) = 200, k = −0.0539, t = 102 min
  • 33. y′ = Aky, y(0) = 0, y = A(1 − ekt)/k
  • 35. y′ = 175(0.0001 − y/450), y(0) = 450 · 0.0004 = 0.18, y = 0.135e0.3889t + 0.045 = 0.18/2, e0.3889t = (0.09 − 0.045)/0.135 = 1/3, t = (In 3)/0.3889 = 2.82. Ans. About 3 years
  • 37. y′ = yy2 − 0.2y, y = 1/(1.25 − 0.75e−0.8t), limit 0.8, limit 1
  • 39.. y′ = By(yA/B,A > 0,B > 0. Constant solutions y = 0, y = A/B, y′ > 0 if y > A/B (unlimited growth), y′ < 0 if 0 < y < A/B (extinction). y = A/(ceAt + B), y(0) > A/B if c < 0, y(0) < A/B if c > 0.

Problem Set 1.6, page 38

  • 1. x2/(c2 + 9) + Y2/c2 m 1 = 0
  • 3. y − cosh (x − c) − c = 0
  • 5. image, circles
  • 7. image
  • 9. image
  • 11. image
  • 13. y′ = −4x/9y. Trajectories image. Sketch or graph these curves.
  • 15. u = c, uxdx + uydy = 0, y′ = −ux/uy. Trajectories. image. Now image, y′ = −x/uy. This agrees with the trajectory ODE in u if ux = vy (equal denominators) and uy = −vx(equal numerators). But these are just the Cauchy–Riemann equations.

Problem Set 1.7, page 42

  • 1. y′ = f(x,y) = r(x) − ∂f/∂y = −p(x) is continuous and is thus bounded in the closed interval. |xx0| image a.
  • 3. In |xx0| < a; just take b in α = b/k large, namely, b = αk.
  • 5. R has sides 2a and 2b and center (1, 1) since y(1) = 1. = 1. In R, f = 2y2 image 2(b + 1)2 = K, α = b/K = b/(2(b + 1)22), dα/db = 0 gives b = 1, and image. Solution by dy/y22 = 2 dx, etc., y = 1/(3 − 2x).
  • 7. |1 + y2| image K = 1 + b2, α = b/K, dα/db = 0, b = 1, image.
  • 9. No. At a common point (x1,y1) they would both satisfy the “initial condition” y(x1) = y1, violating uniqueness.

Chapter 1 Review Questions and Problems, page 43

  • 11. y = cey−2x
  • 13. y = 1/(cey−4x + 4)
  • 15. y = cex + 0.01 cos 10x + 0.1 sin 10x
  • 17. y = ce−2.5x + 0.640x − 0.256
  • 19. 25y2 − 4x2 = c
  • 21. F = x,x3ey + x2y = c
  • 23. image
  • 25. image
  • 27. ek = 1.25, (In 2)/In 1.25 = 3.1, (In 3)/In 1.25 = 4.9 [days]
  • 29. ek = 0.9, 6.6 days. 43.7 days from ekt = 0.5,ekt = 0.01

Problem Set 2.1, page 53

  • 1. F(x,z,z′) = 0
  • 3. y = c1e2x + c2
  • 5. y = (c1x + c2)−1/2
  • 7. image
  • 9. y2 = x3 In x
  • 11. image
  • 13. image
  • 15. y = 3 cos 2.5x − sin 2.5x
  • 17. y = −0.75x3/2 − 2.25x−1/2
  • 19. y = 15ex − sin x

Problem Set 2.2, page 59

  • 1. image
  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. y″ + 4y′ + 5y = 0
  • 21. y = 4.6 cos 5x − 0.24 sin 5x
  • 23. y = 6e2x + 4e−3x
  • 25. y = 2e−x
  • 27. y = (4.5 − x)e−πx
  • 29. image
  • 31. Independent
  • 33. image In x = 0 with x = 1 gives c1 = 0; then c2 = 0 for x = 2, say.
  • 35. Dependent since sin 2x = 2 sin x cos x
  • 37. y1 = ex, = y2 = 0.001ex + ex

Problem Set 2.3, page 61

  • 1. 4e2x, −ex + 8e−2x, −cos x − 2 sin x
  • 3. 0, 0, (D − 2I)(−4e−2x = 8e−2x + 8e−2x
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 15. Combine the two conditions to get L(cy + kw) = L(cy) + L(kw) = cLy + kLw. The converse is simple.

Problem Set 2.4, page 69

  • 1.. y′ = y0 cos ω0t + (v00) sin ω0t. At integer t (if ω0 = π), because of periodicity.
  • 3. (i) Lower by a factor image (ii) higher by image
  • 5. image
  • 7. mLθ″ = −mg sin θ ≈ −mgθ (tangential component of W = mg), image.
  • 9. image, where m = 1 kg, ay = π · 0.012 · 2y meter3 is the volume of the water that causes the restoring force. aγy with γ = 9800 nt (= weight/meter3). image. Frequency image.
  • 13. image
  • 15. image
  • 17. The positive solutions of tan t = 1, that is, π/4 (max), 5π/4 (min). etc
  • 19. image

Problem Set 2.5, page 73

  • 3. y = (c1 + c2 In x)x−1.8
  • 5. image
  • 7. image
  • 9. y = (c1 + c2 In x)x0.6
  • 11. image
  • 13. y = x−3/2
  • 15. y = (3.6 + 4.0 In x)/x
  • 17. y = cos (In x) + sin (In x)
  • 19. y = −0.525x5 + 0.625x−3

Problem Set 2.6, page 79

  • 3. W = −2.2e−3x
  • 5. W = −x4
  • 7. W = a
  • 9. y″ + 25y = 0, W = 5, y = 3 cos 5x − sin 5x
  • 11. y″ + 5y + 6.34 = 0, W = 0.3e−5x, 3e−2.5cos 0.3x
  • 13. y″ + 2y′ = 0, W = −2e−2x, y = 0.5(1 + e−2x
  • 15. y″ − 3.24y = 0, W = 1.8, y = 14.2 cosh 1.8x + 9.1 sinh 1.8x

Problem Set 2.7, page 84

  • 1. image
  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 17. y = e−0.1x(1.5 cos 0.5x − sin 0.5x) + 2e0.5x

Problem Set 2.8, page 91

  • 3. yp = 1.0625 cos 2t + 3.1875 sin 2t
  • 5. yp = −1.28 cos 4.5t + 0.36 sin 4.5t
  • 7. image
  • 9. y = e−1.5t(A cos t + B sin t) + 0.8 cos t + 0.4 sin t
  • 11. image
  • 13. y = A cos t + B sin t − (cos ωt)/(ω2 − 1)
  • 15. image
  • 17. image
  • 19. image
  • 25. CAS Experiment. The choice of needs experimentation, inspection of the curves obtained, and then changes on a trail-and-error basis. It is interesting to see how in the case of beats the period gets increasingly longer and the maximum amplitude gets increasingly larger as ω/(2π)approaches the resonance frequency.

Problem Set 2.9, page 98

  • 1. RI′ + I/C = 0, I = cet/(RC)
  • 3. LI′ + RI = E, I = (E/R) + ceRt/L = 4.8 + ce−40t
  • 5. I = 2 (cos t − cos 20t)/399
  • 7. I0 is maximum when S = 0; thus, c = 1/(ω2L).
  • 9. I = 0
  • 11. I = 5.5 cos 10t + 16.5 sin 10t A
  • 13. I = e−5t(A cos 10t + B sin 10t) − 400 cos 25t + 200 sin 25t A
  • 15. image
  • 17. E(0) = 600, I′(0) = 600, I = e−3t (−100 cos 4t + 75 sin 4t) + 100 cos t
  • 19. R = 2Ω, L = 1 H, C = 1/12 F, E = 4.4 sin 10t V

Problem Set 2.10, page 102

  • 1. image
  • 3. image
  • 5. image
  • 7. y = (c1 + c2x)e2x + x−2e2x
  • 9. y = (c1 + c2x)ex + 4x7/2ex
  • 11. y = c1x2 + c2x3 + 1/(2x4)
  • 11. y = c1x2 + c2x3 + 1/(2x4)
  • 13. y = c1x−3 + c2x3 + 3x5

Chapter 2 Review Questions and Problems, page 102

  • 7. y = c1e−4.5x + c2e−3.5x
  • 9. y = e−3x (A cos 5x + B sin 5x)
  • 11. y = (c1 + c2x)e0.8x
  • 13. y = c1x−4 + c2x3
  • 15. y = c1e2x + c2ex/2 − 3x + x2
  • 17. y = (c1 + c2x)e1.5x + 0.25x2e1.5x
  • 19. image
  • 21. y = −4x + 2x3 + 1/x
  • 23. I = −0.01093 cos 415t + 0.05273 sin 415t A
  • 25. image
  • 27. RLC − circuit with R = 20 Ω, L = 4 H, C = 0.1 F, E = −25 cos 4t V
  • 29. image

Problem Set 3.1, page 111

  • 9. Linearly independent
  • 11. Linearly independent
  • 13. Linearly independent
  • 15. Linearly dependent

Problem Set 3.2, page 116

  • 1. y = c1 + c2 cos 5x + c3 sin 5x
  • 3. y = c1 + c2x + c3 cos 2x + c4 sin 2x
  • 5. y = A1 cos x + B1 sin x + A2 cos 3x + B2 sin 3x
  • 7. y = 2.398 + e−1.6x (1.002 cos 1.5x − 1.998 sin 1.5x)
  • 9. y = 4ex + 5ex/2 cos 3x
  • 11. y = cosh 5x − cos 4x
  • 13. y = e0.25x + 4.3e−0.7x + 12.1 cos 0.1x − 0.6 sin 0.1x

Problem Set 3.3, page 122

  • 1. image
  • 3. y = c1 cos x + c2 sin x + c3 cos 3x + c4 sin 3x + 0.1 sinh 2x
  • 5. image
  • 7. image
  • 9. image
  • 11. y = e−3x (−1.4 cos x − sin x)
  • 13. y = 2 − 2 sin x + cos x

Chapter 3 Review Questions and Problems, page 122

  • 7. y = c1 + e−2x (A cos 3x + B sin 3x)
  • 9. y = c1 cosh 2x + c2 sinh 2x + c3 cos 2x + c4 sin 2x + cosh x
  • 11. y = (c1 + c2x + c3x2)e−1.5x
  • 13. y = (c1 + c2x + c3x2)e−2x + x2 − 3x + 3
  • 15. image
  • 17. y = 2e−2x cos 4x + 0.05 x − 0.06
  • 19. y = 4e−4x + 5e5x

Problem Set 4.1, page 136

  • 1. Yes
  • 5. y1 = 0.02(−y1 + y2), y2 = 0.02(y1 − 2y2 + y3), y3 = 0.02(y2 − y3)
  • 7. c1 = 1, c2 = −5
  • 9. c1 = 10, c2 = 5
  • 11. image
  • 13. y1 = y2, y2 = 24y1 − 2y2, y1 = c1e4t + c2e−6t = y, y2 = y
  • 15. (a) For example, C = 1000 gives −2.39993, −. 0.000167. (b) −2.4, 0. image gives the critical case. C about 0.18506.

Problem Set 4.3, page 147

  • 1. y1 = c1e−2t + c2e−2t, y2 = −3c1e2tc2
  • 3. y1 = 2c1e2t + 2c2, y2 = c1e2tc2
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. y1 = 2 sinh t, y2 = 2 cosh t
  • 15. image
  • 17. image
  • 19. I1 = c1et + 3c2e−3t, I2 = −3c1etc2e−3t

Problem Set 4.4, page 151

  • 1. Unstable improper node, y1 = c1et, y2 = c2e2t
  • 3. Center, always stable, y1 = A cos 3t + B sin 3t, y2 = 3B cos 3t − 3A sin 3t
  • 5. Stable spiral, y1 = e−2t(A cos 2t + B sin 2t), y2 = e−2t(B cos 2tA sin 2t)
  • 7. Saddle point, always unstable, y1 = c1et + c2e3t, y2 = c1et + c2e3t
  • 9. Unstable node, y1 = c1e6t + c2e2t, y2 = 2c1e6t − 2c2e2t
  • 11. y = et (A cos t + B sin t). Stable and attractive spirals
  • 15. p = 0.2 ≠ 0 (was 0) δ < 0, spiral point, unstable.
  • 17. For instance, image

Problem Set 4.5, page 159

  • 5. Center at (0, 0). At (2, 0) set image. Then image. Saddle point at (2, 0).
  • 7. (0, 0), y1 = −y1 + y2, y2 = −y1 m y2, stable and attractive spiral point; (−2, 2), image saddle point
  • 9. (0, 0) saddle point, (−3, 0) and (3, 0) centers.
  • 11. image saddle points; image centers. Use −cos image
  • 13. image
  • 15. By multiplication, image By integration, image

Problem Set 4.6, page 163

  • 3. y1 = c1et + c2et, y2 = −c1et + c2ete3t
  • 5. y1 = c1e5t + c2e2t − 0.43t − 0.24, y2 = c1e2t − 2c2e2t + 1.12t + 0.53.
  • 7. y1 = c1et + 4c2e2t − 3t − 4 − 2et − 5c2e2t + 5t + 7.5 + et
  • 9. The formula for v shows that these various choices differ by multiples of the eigenvector for λ = −2, which can be absorbed into, or taken out of c1, in the general solution. y(h)
  • 11. image
  • 13. y1 = cos 2t + sin 2t + 4 cos t, y2 = 2 cos 2t − 2 sin 2t + sin t
  • 15. y1 = 3et − 4et + e2t, y2 = −4et + t
  • 17. image
  • 19. c1 = 17.948, c2 = −67.948

Chapter 4 Review Questions and Problems, page 164

  • 11. y1 = c1e4t + c2e−4t, y2 = 2c1e4t − 2c2e−4t. Saddle point.
  • 13. image asymptotically stable spiral point
  • 15. y1 = c1e−5t + c2et, y2 = c1e−5tc2et. Stable node
  • 17. y1 = et(A cos 2t + B sin 2t), y2 = et(B cos 2tA sin 2t). Stable and attractive spiral point
  • 19. Unstable spiral point
  • 21. y1 = c1e−4t + c2e4t − 1 − 8t2, y2 = −c1e−4t + c2e4t − 4t
  • 23. y1 = 2c1et + 2c2e3t + cos t − sin t, y2 = −c1et + c2e3t
  • 25. I1′ + 2.5(I1I2) = 169 sin t, 2.5(I2′ − I2′ − I1′) + 25I2 = 0, I1 = (19 + 32.5t)e−5t − 19 cos t + 62.5 sin t, I2 = (−6 − 32.5t)e−5t + 6 cos t + 2.5 sin t
  • 27. (0, 0) Saddle point; (−1, 0), (1, 0) centers
  • 29. (nπ, 0) center when n is even and saddle point when n is odd

Problem Set 5.1, page 174

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. image but x = 2 is too large to give good values. Exact: y = (x − 2)2ex

Problem Set 5.2, page 179

  • 5. image
  • 11. Set x = az. y = c1Pn(x/a) + c2Qn(x/a)
  • 15. image

Problem Set 5.3, page 186

  • 3. image
  • 5. b0 = 1, c0 = 0, r2 = 0, y1 = ex, y2 = ex In x
  • 7. image
  • 9. image
  • 11. y1 = ex, y2 = ex/x
  • 13. y1 = ex, y2 = ex In x
  • 15. image
  • 17. image
  • 19. image

Problem Set 5.4, page 195

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 13. image implies image and image somewhere betweenx1 and x2 by Rolle's theorem. Now use (21b) to get Jn+1(x) = 0 there. Conversely, image thus image implies Jn(x) = 0 in between by Roll's theorem and (21a) with v = n + 1.
  • 15.By Rolle, Jo = 0 at least once between two zeros of J0. Use Jo = −J1 by (21b) with v = 0. Together J1 = 0 at least once between two zeros of Jo. Also use (xJ1)′ = xJo by (21a) with v = 1 and Rolle.
  • 19. Use (21b) with v = 0, (21a) with v = 1, (21d) with v = 2, respectively.
  • 21. Integrate (21a).
  • 23. Use (21a) with v = 1, partial integration, (21b) with v = 0, partial integration.
  • 25. Use (21d) to get

    image

Problem Set 5.5, page 200

  • 1. c1J4(x) + c2Y4(x)
  • 3. c1J2/3(x2) + c2Y2/3(x2)
  • 5. image
  • 7. image
  • 9. x3(c1J3(x) + c2Y3(x))
  • 11. Set H(1) = kH(2) and use (10).
  • 13. Use (20) in Sec. 5.4.

Chapter 5 Review Questions and Problems, page 200

  • 11. cos 2x, sin 2x
  • 13.(x − 1)−5, (x − 1)7; Euler–Cauchy with x − 1 instead of x
  • 15. J/s(x), J−/5(x)
  • 17. ex, 1 + x
  • 19. image

Problem Set 6.1, page 210

  • 1. 3/s2 + 12/s
  • 3. s/(s2 + π2)
  • 5. 1/((s − 2)2 − 1)
  • 7. (ω cos θ + s sin θ)/(s2 + ω2)
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 19. Use eat = cosh at + sinh at.
  • 23. Set ct = p. Then image
  • 25. 0.2 cos 1.8t + sin 1.8t
  • 27. image
  • 29. 2t3 − 1.9t5
  • 31. image
  • 33. image
  • 35. image
  • 37. πte−πt
  • 39. image
  • 41. e−5πt sinh π t
  • 43. image
  • 45. (ko + k1t)eat

Problem Set 6.2, page 216

  • 1. y = 1.25e−5.2t − 1.25 cos 2t + 3.25 sin 2t
  • 3. (s − 3)(s + 2) = 11s + 28 − 11 = 11s + 17, y = 10/(s − 3) + 1/(s + 2), y = 10e3t + e−2t
  • 5. image
  • 7. image
  • 11. (s + 1.5)2Y = s + 31.5 + 3 + 54/s4 + 64/s, Y = 1/(s + 1.5) + 1/(s + 1.5)2 + 24/s4 + 32/s2, y = (1 + t)e−1.5t + 4t3 − 16t2 + 32t
  • 13. image
  • 15. image
  • 17. image
  • 19. image
  • 21. image Answer: (s2 − 2)/(s3 − 4a)
  • 23. 12(1 − et/4
  • 25. (1 − cos ωt2
  • 27. image
  • 29. image

Problem Set 6.3, page 223

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. (se−πs/2 + e−πs)/(s2 + 1)
  • 13. 2[1 + u(t − π)]sin 3t
  • 15. (t − 3)3u(t − 3)/6
  • 17. et cos t (0 < t < 2π)
  • 19. image
  • 21. image
  • 23. image
  • 25. t − sin t(0 < < 1), cos (t − 1) + sin (t − 1) − sin t (t > 1)
  • 27. image
  • 29. 0.1i′ + 25i = 490e−5t[1 − u(t − 1)], i = 20(e−5te−250t) + 20u(t − 1)[−e−5t + e−250t+245]
  • 31. image
  • 33. image
  • 35. i = (10 sin 10t + 100 sin t)(u(t − π) − u(t − 3π))
  • 37. image
  • 39. image

Problem Set 6.4, page 230

  • 3. image
  • 5. sin t(0 < t < π);0(π < t < 2π);−sin t(t > 2)
  • 7. image
  • 9. y = 0.1[et + e−2t(−cos t + 7 sin t)] + 0.1u(t − 10)[−et + e2t+30(cos (t − 10) − 7 sin (t − 10))]
  • 11. image
  • 15. keps/(sseps) (s > 0)

Problem Set 6.5, page 237

  • 1. t
  • 3. (etet)/2 = sinh t
  • 5. image
  • 7. ett − 1
  • 9. y − 1 * y = 1, y = et
  • 11. y = cos t
  • 13. image
  • 17. e4te−1.5t
  • 19. t sin πt
  • 21.t − sin ωt)/ω2
  • 23. 4.5(cosh 3t − 1)
  • 25. 1.5t sin 6t

Problem Set 6.6, page 241

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 15. image
  • 17. In s − In (s − 1);(−1 + et)/t
  • 19. [In (s2 + 1) − 2 In (s − 1)]′ = 2s/(s2 + 1) − 2/(s − 1);2(−cos t + et)/t

Problem Set 6.7, page 246

  • 3. y1 = −e−5t + 4e2t, y2 = e−5t + 3e2t
  • 5. y1 = −cos t + sin t + 1 + u(t − 1)[−1 + cos (t − 1)− sin (t − 1)] y2 = cos t + sin t − 1 + u(t − 1)[1 − cos (t − 1) − sin (t − 1)]
  • 7. image
  • 9. y1 = (3 + 4t)e3t, y2 = (1 − 4t)e3t
  • 11. y1 = et + e2t, y2 = e2t
  • 13. y1 = −4et + sin 10t + 4 cos t, y2 = 4et − sin 10t + 4 cos t
  • 15. y1 = et,y2 = et,y3 = etet
  • 19. image

Chapter 6 Review Questions and Problems, page 251

  • 11. image
  • 13. image
  • 15. image
  • 17. Sec. 6.6; 2s2/(s2 + 1)2
  • 19. 12/(s2(s + 3))
  • 21. tu(t − 1)
  • 23. sin (ωt + θ)
  • 25. 3t2 + t3
  • 27. et(3 cos t − 2 sin t)
  • 29. y = e−2t(13 cos t + 11 sin t) + 10t − 8
  • 31. et + u(t − π)[1.2 cos t − 3.6 sin t + 2et − 0.8e2t−2π]
  • 33. 0 ≠ (0 image t image 2), 1 − 2e−(t−2) (t > 2)
  • 35. y1 = 4ete−2t,y2 = ete−2t
  • 37. image
  • 39. image
  • 41. 1 − et(0 < t < 4), (e4 − 1)et (t > 4)
  • 43. image
  • 45. image

Problem Set 7.1, page 261

  • 3. 3 × 3, 3 × 4, 3 × 6, 2 × 2, 2 × 3, 3 × 2
  • 5. image
  • 7. No, no, yes, no, no
  • 9. image
  • 11. image
  • 13. image
  • 15. image

Problem Set 7.2, page 270

  • 5. 10, n(n + 1)/2
  • 7. image
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. image
  • 25. (d) AB = (AB)T = BTAT = BA; etc. (e) Answer. If AB = −BA.
  • 29. P = [85 62 30]T, ν = [44,920 30,940]T

Problem Set 7.3, page 280

  • 1. x = −2, y = 0.5
  • 3. x = 1, y = 3, z = −5
  • 5. x = 6, y = −7
  • 7. x = −3t, y = t arb., z = 2t
  • 9. x = 3t − 1, y = −t + 4, z = t arb.
  • 11. w = 1, x = t1 arb., y = 2t2t1, z = t2 arb.
  • 13. w = 3, x = 0, y = 2, z = 6
  • 17. I1 = 2, I2 = 6, I3 = 8
  • 19. I1 = (R1 + R2)E0/(R1R2)A, I2 = E0/R1 A, I3 = E0/R2 A
  • 21 x2 = 1600 − x1, x3 = 600 + x1, x4 = 1000 − − x1. No
  • 23. C:3x1x3 = 0, H:8x1 − 2x4 = 0, O:22 − 2x3x4 = 0, thus C3H8 + 5O2 → 3CO2 + 4H2O

Problem Set 7.4, page 287

  • 1. 1; [2 −1 3]; [2 −1]T
  • 3. 3; {[3 5 0], [0 3 5], [0 0 1]}
  • 5. 3; {[2 −1 4], [0 1 −46], [0 0 1]}; {[2 0 1], [0 3 23], [0 0 1]}
  • 7. 2; [8 0 4 0], [0 2 0 4]; [8 0 4], [0 2 0]
  • 9. 3; [9 0 1 0], [0 9 8 9], [0 0 1 0]
  • 11. (c) 1
  • 17. No
  • 19. Yes
  • 21. No
  • 23. Yes
  • 25. Yes
  • 27. 2, [−2 0 1], [0 2 1]
  • 29. No
  • 31. No
  • 33. image
  • 35. image

Problem Set 7.7, page 300

  • 7. cos (α + β)
  • 9. 1
  • 11. 40
  • 13. 289
  • 15. −64
  • 17. 2
  • 19. 2
  • 21. x = 3.5, y = −1.0
  • 23. x = 0, y = 4, z = −1
  • 25. w = 3, x = 0, y = 2, z = −2

Problem Set 7.8, page 308

  • 1. image
  • 3. image
  • 5. image
  • 7. A−1 = A
  • 9. image
  • 11. image
  • 15. AA−1 = I, (AA−1)−1 = (A−1)−1A−1 = I. Multiply by A from the right.

Problem Set 7.9, page 318

  • 1. [1 0]T, [0 1]T; [1 0]T, [0 − 1]T; [0 −1]T; [1 1]T, [−1 1]T
  • 3. 1, [1 11 −7]T
  • 5. No
  • 7. Dimension 2, basis xex, ex
  • 9. image
  • 11. x1 = 5y1y2, x2 = 3y1y2
  • 13. x1 = 2y1 − 3y2, x2 = −10y1 + 16y2 + y3, x3 = −7y1 + 11y2 + y3
  • 15. image
  • 17. image
  • 19. 1
  • 21. k = −20
  • 23. image
  • 25. a = [5 3 2]T, b = [3 2 −1]T, 90 + 14 = 2(38 + 14)

Chapter 7 Review Questions and Problems, page 318

  • 11. image
  • 13. [21 −8 −31]T, [21 −8 31]
  • 15. 197, 0
  • 17. −5, det A2 = (det A)2 = 25, 0
  • 19. image
  • 21. x = 4, y = −2, z = 8
  • 23. x= 6, y = 2t + 2, z = t arb.
  • 25. x = 0.4, y = −1.3, z = 1.7
  • 27. x = 10, y = −2
  • 29. Ranks 2, 2, ∞
  • 31. Ranks 2, 2, 1
  • 33. I1 = 16.5 A, I2 = 11 A, I3 = 5.5 A
  • 35. I1 = 4 A, I2 = 5 A, I3 = 1 A

Problem Set 8.1, page 329

  • 1. 3, [1 0]T; −0.6, [0 1]T
  • 3. −4, [2 9]T; 3, [1 1]T
  • 5. image
  • 7. λ2 = 0, [1 0]T
  • 9. 0.8 + 0.6i, [1 −i]T; 0.8 − 0.6i, [1 i]T
  • 11. −(λ3 − 18λ2 + 99λ − 162)/(λ − 3) = −(λ2 − 15λ + 54); 3, [2 −2 1]T; 6, [1 2 2]T; 9, [2 1 −2]T
  • 13. −(λ − 9)3; 9, [2 −2 1]T, defect 2
  • 15. (λ + 1)22 + 2λ − 15); −1, [1 0 0 0]T, [0 1 0 0]T; −5, [−3 −3 1 1]T, 3, [3 −3 1 −1]T
  • 17. image Eigenvalues i, −i. Corresponding eigenvectors are complex, indicating that no direction is preserved under a rotation.
  • 19. image A point onto the x2-axis goes onto itself, a point on the x1-axis onto the origin.
  • 23. Use that real entries imply real coefficients of the characteristic polynomial.

Problem Set 8.2, page 333

  • 1. 1.5, [1 −1]T, −45°; 4.5, [1 1]T, 45°
  • 3. image
  • 5. 0.5, [1 −1]T; 1.5, [1 1]T; directions −45° and 45°
  • 7. [5 8]T
  • 9. [11 12 16]T
  • 11. 1.8
  • 13. c[10 18 16]T
  • 15. X = (IA)−1y = [0.6747 0.7128 0.7543]T
  • 17. AXj = λjXj (Xj ≠ 0), (AkI)Xj = λjXjkXj = (λjk)Xj.
  • 19. From AXj = λjXj (Xj ≠ 0) and Prob. 18 follows image and image, integer). Adding on both sides, we see that image has the eigenvalue image. From this the statement follows.

Problem Set 8.3, page 338

  • 1. 0.8 ± 0.6i, [1 ±i]T; orthogonal
  • 3. 2 ± 0.8i, [1 ±i]. Not skew-symmetric!
  • 5. 1, [0 2 1]T; 6, [1 0 0]T, [0 1 −2]T; symmetric
  • 7. 0, ±25i, skew-symmetric
  • 9. 1, [0 1 0]T; i [1 0 i]T; −i, [1 0 −2]T, orthogonal
  • 15. No
  • 17. A−1 = (−AT)−1 = −(A−1)T
  • 19. No since det A = det (AT) = det (−A) = (−1)3det (A) = −det (A) = 0.

Problem Set 8.4, page 345

  • 1. image
  • 3. image
  • 5. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. image
  • 21. image
  • 23. image

Problem Set 8.5, page 351

  • 1. Hermitian, 5, [−i 1]T, 7, [i 1]T
  • 3. Unitary, image
  • 5. Skew-Hermitian, unitary, −i, [0 −1 1]T, i, [1 0 0]T, [0 1 1]T
  • 7. Eigenvalues −1, 1; eigenvectors [1 −1]T, [1 1]T; [1 −i]T, [1 i]T; [0 1]T, [1 0]T, resp.
  • 9. Hermitian, 16
  • 11. Skew-Hermitian, −6i
  • 13. image
  • 15. image (H Hermitian, S skew-Hermitian)
  • 19.AimageTimageT A = (H + S)(HS) − (HS)(H + S) = 2(− HS + SH) = 0 if and only if HS = SH.

Chapter 8 Review Questions and Problems, page 352

  • 11. 3, [1 1]T; 2, [1 −1]T
  • 13. 3, [1 5]T; 7, [1 1]T
  • 15. 0, [2 −2 1]T; 9i, [−1 + 3i 1 + 3i 4]T; −9i, [−1 − 3i 1 − 3i 4]T
  • 17. image
  • 19. image
  • 21. image
  • 23. image
  • 25. image

Problem Set 9.1, page 360

  • 1. 5, 1, 0; image
  • 3. 8.5, −4.0, 1.7; image
  • 5. 2, 1, −2; image, Position vector of Q
  • 7. image
  • 9. Q: (0, 0, −8), |ν| = 8
  • 11. [6, 4, 0], image, [−3, −2, 0]
  • 13. [1, 5, 8]
  • 15. 7[9, −7, 8] = [63, −49, 56]
  • 17. [12, 8, 0]
  • 21. [4, 9, −3], image
  • 23. [0, 0, 5], 5
  • 25. image
  • 27. P = [0, 0, −5]
  • 29. V = [ν1, ν2, 3], ν1, ν2 arbitrary
  • 31. k = 10
  • 33. |p + q + u| image 18. Nothing
  • 35. image
  • 37. u + v + p = [−k, 0] + [l, l] + [0, −1000] = 0, −k + l + 0 = 0, 0 + l − 1000 = 0, l = 1000, k = 1000

Problem Set 9.2, page 367

  • 1.44, 44, 0
  • 3. image
  • 5. image
  • 7. image
  • 9. 300; CF. (5a) and (5b)
  • 13. Use (1) and |cos γ| image 1.
  • 15. |a + b|2 + |ab|2 = a · a + 2a · b + b · b + (a · a − 2a · b + b · b) = 2|a|2 + 2|b|2
  • 17. [2, 5, 0] · [2, 2, 2] = 14
  • 19. [0, 4, 3] · [−3, −2, 1] = −5 is negative! Why?
  • 21. Yes, because W = (p + q) · d = p · d + q · d.
  • 23. arccos 0.5976 = 53.3°
  • 27. β − α is the angle between the unit vectors a and b. Use (2).
  • 29. image
  • 31. image
  • 33. image
  • 35. (a + b) · (a − b) = |a|2 − |b|2 = 0, |a| = |b|. A square.
  • 37. 0. Why?
  • 39. If |a| = |b| or if a and b are orthogonal.

Problem Set 9.3, page 374

  • 5.m instead of m, tendency to rotate in the opposite sense.
  • 7. |v| = |[0, 20, 0] × [8, 6, 0]| = |[0, 0, −160]| = 160
  • 9. Zero volume in Fig. 191, which can happen in several ways.
  • 11. [0, 0, 7], [0, 0, −7], −4
  • 13. [6, 2, 7], [−6, −2, −7]
  • 15. 0
  • 17. [−32, −58, 34], [−42, −63, 19]
  • 19. 1, −1
  • 21. image
  • 23. 0, 0, 13
  • 25. m = [−2, −2, 0] × [2, 3, 0] = [0, 0, −10], m = 10 clockwise
  • 27. [6, 2, 0] × [1, 2, 0] = [0, 0, 10]
  • 29. image
  • 31. 3x + 2yz = 5
  • 33. 474/6 = 79

Problem Set 9.4, page 380

  • 1. Hyperbolas
  • 3. Parallel staraight lines (planes in space) image
  • 5. Circles, centers on the y-axis
  • 7. Ellipses
  • 9. Parallel planes
  • 11. Elliptic cylinders
  • 13. Paraboloids

Problem Set 9.5, page 390

  • 1. Circle, center (3, 0), radius 2
  • 3. Cubic parabola x = 0, z = y3
  • 5. Ellipse
  • 7. Helix
  • 9. A “Lissajous curve”
  • 11. image
  • 13. r = [2 + t, 1 + 2t, 3]
  • 15. r = [t, 4t − 1, 5t]
  • 17. image
  • 19. image
  • 21. Use sin (− α) = −sin α.
  • 25. u = [−sin t, 0, cos t]. At p, r′ = [−8, 0, 6]. q(w) = [6 − 8w, i, 8 + 6w].
  • 27. image
  • 29. image
  • 31. image
  • 33. Start from r(t) = [t, f(t)].
  • 35. image
  • 37. v(0) = (ω + 1) Ri, a(0) = −ω2Rj
  • 39. image
  • 41. image
  • 43. 1 year = 365 · 86,400 sec, R = 30 · 365 · 86,400/2π = 151 · 1061 [km], |a| = ω2R = |v|2/R = 5.98 · 10−6 [km/sec2]
  • 45. image
  • 49. r(t) = [t, y(t), 0], r′ = [1, y′, 0] r · r′ = 1 p y2, etc.
  • 51. image
  • 53. 3/(1 + 9t2 + 9t4)

Problem Set 9.7, page 402

  • 1. [2y − 1, 2x + 2]
  • 3. [−y> x2, 1> x]
  • 5. [4x3, 4y3]
  • 7. Use the chain rule.
  • 9. Apply the quotient rule to each component and collect terms.
  • 11. [y, x], [5, −4]
  • 13. [2x/(x2 + y2), 2y/(x2 + y2)], [0.16, 0.12]
  • 15. [8x, 18y, 2z], [40, −18, −22]
  • 17. For P on the x- and y-axes.
  • 19. [−1.25, 0]
  • 21. [0, −e]
  • 23. Points with y = 0, ±π, ±2π, ….
  • 25. −ΔT(p) = [0, 4, −1]
  • 31. Δf = [32x, −2y], δf(p) = [160, −2]
  • 33. [12x, 4y, 2z], [60, 20, 10]
  • 35. [−2x, −2y, 1], [−6, −8, 1]
  • 37. image
  • 39. image
  • 41. image
  • 43. f = xyz
  • 45. image

Problem Set 9.8, page 405

  • 1. 2x + 8y + 18z; 7
  • 3. 0, after simplification; solenoidal
  • 5. 9x2y2z2; 1296
  • 7. −2ex (cos y)z
  • 9. (b) (1)x + (2)y + (3)z = f[(ν1)x + (ν2)y + (ν3)z] + fxν1 + fyν2 + fzν3, etc.
  • 11.1, ν2, ν3] = r′ = [x′, y′, z′] = [y, 0, 0], z′ = 0, z = c3, y′ = 0, y = c2, and x′ = y = c2, x = c2t + c1. Hence as t increases from 0 to 1, this “shear flow” transforms the cube into a parallelepiped of volume l.
  • 13. div (w × r) = 0 because ν1, ν2 ν3 do not depend on x, y, z, respectively.
  • 15. −2 cos 2x + 2 cos 2y
  • 17. 0
  • 19. 2/(x2 + y2 + z2)2

Problem Set 9.9, page 408

  • 3. Use the definitions and direct calculation.
  • 5. [x(z2y2), y(x2z2), z(y2x2)]
  • 7. ex [cos y, sin y, 0]
  • 9. image
  • 11. image
  • 13. curl v = 0, irrotational, div v = 1, compressible, r = [c1et, c2et, c3et]. Sketch it.
  • 15. [−1, −1, −1], same (why?)
  • 17.yzzxxy, 0 (why?), −yzx
  • 19. [−2zy, −2xz, −2yx ], same (why?)

Chapter 9 Review Questions and Problems, page 409

  • 11. −10, 1080, 1080, 65
  • 13. [−10, −30, 0], [10, 30, 0], 0, 40
  • 15. [−1260, −1830, −300], [−210, 120, −540], undefined
  • 17. −125, 125, −125
  • 19. image
  • 21. [−2, −6, −13]
  • 23. image
  • 25. [5, 2, 0] · [4 − 1, 3 − 1, 0] = 19
  • 27. image
  • 29. [0, 0, −14], tendency of clockwise rotation
  • 31. 4
  • 33. 1, −2y
  • 35. 0, same (why?), 2(y2 + x2zx)
  • 37. [0, −2, 0]
  • 39. image

Problem Set 10.1, page 418

  • 3. 4
  • 5. r = [2 cos t, 2 sin t], image
  • 7. “Exponential helix,” (e − 1)/3
  • 9. 23.5, 0
  • 11. image
  • 15. image
  • 17. [4 cos t, + sin t, sin t, 4 cos t], [2, 2, 0]
  • 19. 144t4, 1843.2

Problem Set 10.2, page 425

  • 3. image
  • 5. exy sin z, e − 0
  • 7. cosh 1 − 2 = −0.457
  • 9. ex cosh y + ez sinh y, e − (cosh 1 + sinh 1) = 0
  • 13. image
  • 15. Dependent, x2 ≠ −4y2, etc.
  • 17. Dependent, 4 ≠ 0, etc.
  • 19. sin (a2 + 2b2 + c2)

Problem Set 10.3, page 432

  • 3. 8y3/3, 54
  • 5. image
  • 7. image
  • 9. 36 + 27y2, 144
  • 11. z = 1 − r2, dx dy = r dr dθ, Answer: π/2
  • 13. image
  • 15. image
  • 17. Tx = bh3/12, Iy = b3h/4
  • 19. Ix = (a + b)h3/24, Iy = h(a4 − b4)/(48(a − b))

Problem Set 10.4, page 438

  • 1. (−1 −1) · π/4 = −π/2
  • 3. image
  • 5. image
  • 7. 0. Why?
  • 9. image
  • 13. image
  • 15. Δ2w = 6xy, 3x(10 − x2)2 − 3x, 486
  • 17. Δ2w = 6x − 6y, − 38.4
  • 19. image

Problem Set 10.5, page 442

  • 1. Straight lines, k
  • 3. image, circles, straight lines, [−cu cos ν, −cu sin ν u]
  • 5. z = x2 + y2, circles, parabolas, [−2u2 cos ν, −2u2 sin ν, u]
  • 7. x2/a2 + y2/b2 + z2/c2 = 1, [bc cos2 ν cos u, ac cos2 ν sin u, ab sin ν cos ν], ellipses
  • 11. image
  • 13. Set x = and y = ν.
  • 15. [2 + 5 cos u, −1 + 5 sin u, ν], [5 cos u, 5 sin u, 0]
  • 17. [a cos ν cos u, −2.8 + a cos ν sin u, 3.2 + a sin ν], a = 1.5; [a2 cos2 ν cos u, a2 cos2 ν sin u, a2 cos ν sin ν]
  • 19. [cosh u, sinh u, ν], [cosh u, −sinh u, 0]

Problem Set 10.6, page 450

  • 1. F(r) N = [−u2, ν2, 0] · [−3, 2, 1] = 3u2 + 2ν2, 29.5
  • 3. F(r) N = cos3 ν cos u sin u from (3), Sec. 10.5. Answer: image
  • 5. F(r) N = −u3, −128π
  • 7. image
  • 9. image
  • 13. image
  • 15. G(r) = (1 + 9u4)3/2, |N| = (1 + 9u4)1/2, Answer: 54.4
  • 21. image
  • 23. [u cos ν, u sin ν, u], image
  • 25. [cos u cos ν, cos u sin ν, sin u], dA = (cos u) du , B the z-axis, IB = 8ν/3, IK = IB + 12 · 4π = 20.9.

Problem Set 10.7, page 457

  • 1. 224
  • 3.e−1−x + eyx, −2e−1−x + ex, 2e−3e−2 − 2e−1 + 1
  • 5. image
  • 7. [r cos u cos ν, cos u sin ν, r sin u], dV = r2 cos u dr du dv, σ = ν, 2π2a3/3
  • 9. div F = 2x + 2z, 48
  • 11. 12(e − 1/e) = 24 sinh 1
  • 13. div F = −sin z, 0
  • 15. image
  • 17. h4π/2
  • 19. 8abc(b2 + c2)/3
  • 21. (a4/4) · 2π · h = ha4π/2
  • 23. h5π/10
  • 25. Do Prob. 20 as the last one.

Problem Set 10.8, page 462

  • 1. x = 0, y = 0, z = 0, no contributions. x = a: ∂f/∂n = ∂f/∂x = −2x = −2a, etc. Integrals. x = a: (−2a)bc. y = b: (−2b)ac, z = c: (4c) ab. Sum 0
  • 3. The volume integral of image. The surface integral of fg/∂n = f · 2x = 2f = 8y2 over x = 1 is image. Others 0.
  • 5. The volume integral of 6y2 · 4 − 2x2 · 12 is 0; 8(x = 1), −8(y = 1), others 0.
  • 7. F = [x, 0, 0], div F = 1, use (2*), Sec. 10.7, etc.
  • 9. image
  • 10. image

Problem Set 10.9, page 468

  • 1. S: z = y (0 image x image 1, 0 image y image 4), [0, 2z, −2z] · [0, −1, 1], ±20
  • 3. image
  • 5. image
  • 7. [−ex, −ex, −ey] · [−2x, 0, 1], ±(e4 − 2e + 1)
  • 9. The sides contribute a, 3a2/2, −a, 0.
  • 11. −2π; curl F = 0
  • 13. 5k, 80π
  • 15. image
  • 17. r = [cos u, sin u, ν], [−3ν2, 0, 0] · [cos u, sin u, 0], −1
  • 19. r = [u cos ν, u sin ν, u], 0 image u image 1, 0 image ν image π/2, [−ex, 1, 0] · [−u cos ν −u sin ν, u]. Answer: 1/2

Chapter 10 Review Questions and Problems, page 469

  • 11. r = [4 − 10t, 2 + 8t], F(r) · dr = [2(4 − 10t)2, −4(2t + 8t2)] · [−10, 8] dt; −4528/3. Or using exactness.
  • 13. Not exact, curl F = (5 cos x)k, ±10
  • 15. 0 since curl F = 0
  • 17. By Stokes, ±18π
  • 19. F = grad (y2 + xz), 2π
  • 21. image
  • 23. image
  • 25. image
  • 29. div F = 20 + 6z2. Answer: 21
  • 31. 24 sinh 1 = 28.205
  • 33. Direct integration, image
  • 35. 72π

Problem Set 11.1, page 482

  • 1. image
  • 5. There is no smallest p > 0.
  • 13. image
  • 15. image
  • 17. image
  • 19. image
  • 21. image

Problem Set 11.2, page 490

  • 1. Neither, even, odd, odd, neither
  • 3. Even
  • 5. Even
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. image
  • 23. image
  • 25. image
  • 27. image
  • 29. image

Problem Set 11.3, page 494

  • 3. The output becomes a pure cosine series.
  • 5. For An this is similar to Fig. 54 in Sec. 2.8, whereas for the phase shift Bn the sense is the same for all n.
  • 7. y = C1 cos ωt + C2 sin ωt + a(ω) sint, a(ω) = 1/(ω2 − 1) = −1.33, −5.26, 4.76, 0.8, 0.01. Note the change of sign.
  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. image

Section 11.4, page 498

  • 3. image
  • 5. image
  • 7. image

Section 11.5, page 503

  • 3. Set x = ct + k.
  • 5. x = cos θ, dx = −sin θ , etc.
  • 7. λm = (mπ/10)2, m = 1, 2, …; ym = sin (mπx/10)
  • 9. λ = [(2m + 1)π/(2L)]2, m = 0, 1, …, ym = sin ((2m + 1)πx/(2L))
  • 11. λm = m2, m = 1, 2, …, ym = x sin (m In |x|)
  • 13. p = e8x, q = 0, r = e8x, λm = m2, ym = e−4x sin mx, m = 1, 2, …

Section 11.6, page 509

  • 1. 8(p1(x) − p3(x) + p5(x))
  • 3. image
  • 9. −0.4775p1(x) − 0.6908p3(x) + 1.844p5(x) − 0.8236p7(x) + 0.1658p9(x) + …, m0 = 9. Rounding seems to have considerable influence in Probs. 8–13.
  • 11. 0.7854P0(x) − 0.3540P2(x) + 0.0830P4(x) − …, m0 = 4
  • 13. 0.1212P0(x) − 0.7955P2(x) + 0.9600P4(x) − 0.3360P6(x) + …, m0 = 8
  • 15. image

Section 11.7, page 517

  • 1. image (see Example 3), etc.
  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 15. For n = 1, 2, 11, 12, 31, 32, 49, 50 the value of Si () − p/2 equals 0.28, −0.15, 0.029, − 0.026, 0.0103, −0.0099, 0.0065, −0.0064 (rounded).
  • 17. image
  • 19. image

Section 11.8, page 522

  • 1. image
  • 3. image
  • 5. image
  • 7. Yes. No
  • 9. image
  • 11. image
  • 13. image

Problem Set 11.9, page 533

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image by formula 9
  • 17. No, the assumptions in Theorem 3 are not satisfied.
  • 19. [f1 + f2 + f3 + f4, f1if2f3 + if4, f1f2 + f3f4, f1 + if2f3if4]
  • 21. image

Chapter 11 Review Questions and Problems, page 537

  • 11. image
  • 13. image
  • 15. cosh x, sinh x (−5 < x < 5), respectively
  • 17. Cf. Sec. 11.1.
  • 19. image
  • 21. image
  • 23. 0.82, 0.50, 0.36, 0.28, 0.23
  • 25. 0.0076, 0.0076, 0.0012, 0.0012, 0.0004
  • 27. image
  • 29. image

Problem Set 12.1, page 542

  • 1. L(c1u1 + c2u2) = c1L(u1) + c2L(u2) = c1 · 0 + c2 · 0 = 0
  • 3. c = 2
  • 5. c = a/b
  • 7. Any c and ω
  • 9. c = π/25
  • 15. u = 110 − (110/In 100) In (x2 + y2)
  • 17. u = a(y) cos 4πx + b(y) sin 4πx
  • 19. image
  • 21. u = e−3y (a(x) cos 2y + b(x) sin 2y) + 0.1e3y
  • 23. u = c1(y)x + c2(y)/x2 (Euler–Cauchy)
  • 25. u(x,y) = axy + bx + cy + k; a, b, c, k arbitrary constants

Problem Set 12.3, page 551

  • 5. k cos 3πt sin 3πx
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 17. image
  • 19. (a) u(0, t) = 0, (b) u(L, t) = 0, (c) ux(0,t) = 0, (d) ux(L, t) = 0. C = −A, D = −B from (a), (c). Insert this. The coefficient determinant resulting from (b), (d) must be zero to have a nontrivial solution. This gives (22).

Problem Set 12.4, page 556

  • 3. c2 = 300/[0.9/(2 · 9.80)] = 80.832 [m2/sec2]
  • 9. Elliptic, u = f1(y + 2ix) + f2(y − 2ix)
  • 11. Parabolic, u = xf1(xy) + f2(xy)
  • 13. Hyperbolic, u = f1(y − 4x) + f2(yx)
  • 15. Hyperbolic, image
  • 17. Elliptic, u = f1(y − (2 − i)x) + f2(y − (2 + i)x). Real or imaginary parts of any function u of this form are solutions. Why?

Problem Set 12.6, page 566

  • 3. u1 = sin x et, u2 = sin 2x e−4t, u3 = sin 3x e−9t differ in rapidity of decay.
  • 5. image
  • 7. image
  • 9. u = uI + uII, where uII = uuI satisfies the boundary conditions of the text, so that image
  • 11. F = A cos px + B sin px, F′ (0) = Bp = 0, B = 0, F′ (L) = −Ap sin pL = 0, p = nπ/L, etc.
  • 13. u = 1
  • 15. image
  • 17. image
  • 19. image
  • 21. image
  • 23. image
  • 25. image

Problem Set 12.7, page 574

  • 3. image
  • 5. image
  • 7. image
  • 9. Set w = −ν in (21) to get erf (−x) = −erf x.
  • 13. In (12) the argument image is 0 (the point where f jumps) when image). This gives the lower limit of integration.
  • 15. Set image in (21).

Problem Set 12.9, page 584

  • 1. (a), (b) It is multiplied by image. (c) Half
  • 5. Bmn = (−1)n+18/(mnπ2) if m odd, 0 if m even
  • 7. Bmn = (−1)m+n4ab/(mnπ2)
  • 11. image
  • 13. image
  • 17. image (corresponding eigenfundtions F4,16 and F16,14), etc.
  • 19. image

Problem Set 12.10, page 591

  • 5. image
  • 7. image
  • 11. Solve the problem in the disk r < a subject to u0 (given) on the upper semicircle and −u0 on the lower semicircle.

    image

  • 13. Increase by a factor image
  • 15. image
  • 17. No
  • 25. α11/(2π) = 0.6098; See Table A1 in App. 5.

Problem Set 12.11, page 598

  • 5. A4 = A6 = A8 = A10 = 0, A5 = 605/16, A7 = −4125/128, A9 = 7315/256
  • 9. image
  • 13. u = 320/r + 60 is smaller than the potential in Prob. 12 for 2 < r < 4.
  • 17. u = 1
  • 19. image
  • 25. Set 1/r = ρ. Then u(ρ, θ, ø) = rν(r, θ, ø), uρ = (ν + rνr)(−1/ρ2), uρρ = (2νr + rr(1/ρ4) + (ν + r)(2/ρ3), uρρ + (2/ρ)uρ = r5rr + (2/rr). Substitute this and uøø etc. into (7) [written in terms of ρ] and divide by rr5.

Problem Set 12.12, page 602

  • 5. image
  • 7. image
  • 11. Set x2/(4c2π) = z2. Use z as a new variable of integration. Use erf (∞) = 1.

Chapter 12 Review Questions and Problems, page 603

  • 17. u = c1(x)e−3y + c2(x)e2y −3
  • 19. Hyperbolic, f1(x) + f2(y + x)
  • 21. Hyperbolic, f1(y + 2x) + f2(y − 2x)
  • 23. image
  • 25. image
  • 29. 100 cos 2x e−4t
  • 39. u = (u1u0)(In r)/In (r1/r0) + (u0 In r1u1 In r0)/In (r1/r0)

Problem Set 13.1, page 612

  • 1. 1/i = i/i2 = −i, 1/i3 = i/i4 = i
  • 3. 4.8 − 1.4i
  • 5. xiy = −(x + iy), x = 0
  • 9. − 117, 4
  • 11. −8 − 6i
  • 13. − 120 − 40i
  • 15. 3 − i
  • 17. −4x2y2
  • 19. (x2y2)/(x2 + y2), 2xy/(x2 + y2)

Problem Set 13.2, page 618

  • 1. image
  • 3. image
  • 5. image
  • 7. image
  • 9. 3π/4
  • 11. image
  • 13. −1024. Answer: π
  • 15. −3i
  • 17. 2 + 2i
  • 21. image
  • 23. image
  • 25. image
  • 27. image
  • 29. i, −1 − i
  • 31. ±(1 − i), ±(2 + 2i)
  • 33. image
  • 35. image

Problem Set 13.3, page 624

  • 1. Closed disk, center − 1 + 5i, radius image
  • 3. Annulus (circular ring), center 4 − 2i, radii π and 3π
  • 5. Domain between the bisecting straight lines of the first quadrant and the fourth quadrant.
  • 7. Half-plane extending from the vertical straight line x = −1 to the right.
  • 11. image
  • 15. image
  • 17. Yes, because Re z = r cos θ → 0 and 1 − |z| → 1 as r → 0.
  • 19. f′(z) = 8(z − 4i)7. Now z − 4i = 3, hence f′ (3 + 4i) = 8 · 37 = 17,496.
  • 21. n(1 − z)n−1i, ni
  • 23. 3iz2/(z + i)4, −3i/16

Problem Set 13.4, page 629

  • 1. rx = x/r = cos θ, ry = sin θ, θx = −(sin θ)/r, θy = (cos θ)/r (a) 0 = ux − νy = ur cos θ + uθ(−sin θ)/r − νr sin θ − νθ(cos θ)/r (b) 0 = uy + νx = ur sin θ + uθ(cos θ)/r + νr cos θ + νθ(−sin θ)/r Multiply (a) by cos θ, (b) by sin θ, and add. Etc.
  • 3. Yes
  • 5. image
  • 7. Yes, when z ≠ 0. Use (7).
  • 9. Yes, when z ≠ 0, −2πi, 2πi
  • 11. Yes
  • 13. image
  • 15. f(z) = 1/z + c (c real)
  • 17. f(z) = z2 + z + c (c real)
  • 19. No
  • 21. a = π, ν = eπx sin πy
  • 23. image
  • 27. f = u + iv implies if = −ν + iu.
  • 29. Use (4), (5), and (1).

Problem Set 13.5, page 632

  • 3. eie−2π = 0.001867
  • 5. e2(−1) = −7.389
  • 7. image
  • 9. 5ei arctan (3/4) = 5e0.644i
  • 11. 6.3eπi
  • 13. image
  • 15. exp (x2y2) cos 2xy, exp (x2y2) sin 2xy
  • 17. Re (exp (z3)) = exp (x3 − 3xy2) cos (3x2yy3)
  • 19. z = 2nπi, n = 0, 1, …

Problem Set 13.6, page 636

  • 1. Use (11), then (5) for eiy, and simplify.
  • 7. cosh 1 = 1.543, i sinh 1 = 1.175i
  • 9. Both −0.642 − 1.069i. Why?
  • 11. i sinh π = 11.55i, both
  • 15. Insert the definitions on the left, multiply out, and simplify.
  • 17. z = ±(2n + 1)i/2
  • 19. z = ±nπi

Problem Set 13.7, page 640

  • 5. In 11 + πi
  • 7. image
  • 9. i arctan (0.8/0.6) = 0.927i
  • 11. In e + πi/2 = 1 + πi/2
  • 13. ±2nπi, n = 0, 1, …
  • 15. image
  • 17. In (i2) = In (−1) = (1 ± 2ni, 2 In i = (1 ± 4ni, n = 0, 1, …
  • 19. e4−3i = e4 (cos 3 − i sin 3) = −54.05 − 7.70i
  • 21. e0.6e0.4i = e0.6 (cos 0.4 + i sin 0.4) = 1.678 + 0.710i
  • 23. image
  • 25. e(3−i)(In 3+πi) = 27eπ(cos (3π − In 3) + i sin (3π − In 3)) = −284.2 + 556.4i
  • 27. e(2−i)Ln(−1) = e(2−ii = eπ = 23.14

Chapter 13 Review Questions and Problems, page 641

  • 1. 2 − 3i
  • 3. 27.46e0.9929i
  • 11. −5 + 12i
  • 13. 0.16 − 0.12i
  • 15. i
  • 17. image
  • 19. 15e−πi/2
  • 21. ±3, ±3i
  • 23. image
  • 25. f(z) = −iz2/2
  • 27. f(z) = e−2z
  • 29. image
  • 31. cos 3 cosh 1 + i sin 3 sinh 1 = −1.528 + 0.166i
  • 33. i tanh 1 = 0.7616i
  • 35. cosh π cos π + i sinh π sin π = −11.592

Problem Set 14.1, page 651

  • 1. Straight segment from (2, 1) to (5, 2.5).
  • 3. Parabola y = x2 from (1, 2) to (2, 8).
  • 5. Circle through (0, 0), center (3, − 1), radius image, oriented clockwise.
  • 7. Semicircle, center 2, radius 4.
  • 9. Cubic parabola y = x3 (−2 image x image 2)
  • 11. z(t) = t + (2 + t)i (−1 image t image 1)
  • 13. z(t) = 2 − i + 2eit (0 image t image π)
  • 15. z(t) = 2 cosh t + i sinh t (− ∞ < t < ∞)
  • 17. Circle z(t) = −aib + reit (0 image t image 2π)
  • 19. image
  • 21. z(t) = (1 + i)t (1 image t image 3), Re z = t, z′ (t) = 1 + i. Answer: 4 + 4i
  • 23. eieπi = 1 − (−1) = 2
  • 25. image
  • 27. image
  • 29. image
  • 35. image

Problem Set 14.2, page 659

  • 1. Use (12), Sec. 14.1, with m = 2.
  • 3. Yes
  • 5. 5
  • 7. (a) Yes. (b) No, we would have to move the contour across ±2i.
  • 9. 0, yes
  • 11. πi, no
  • 13. 0, yes
  • 15. −π, no
  • 17. 0, no
  • 19. 0, yes
  • 21.i
  • 23. 1/z + 1/(z −1), hence 2πi + 2πi = 4πi.
  • 25. 0 (Why?)
  • 27. 0 (Why?)
  • 29. 0

Problem Set 14.3, page 663

  • 1. image
  • 3. 0
  • 5. image
  • 7.i(i/2)3/2 = π/8
  • 11. image
  • 13. image
  • 15.i cosh (−π2 − πi) = −2πi cosh π2 = −60,739i since cosh πi = cos π = −1 and sinh πi = i sin π = 0.
  • 17. image
  • 19.ie2i/(2i) = πe2i

Problem Set 14.4, page 667

  • 1. (2πi/3!)(−cos 0) = −πi/3
  • 3. (2πi/(n − 1)!)e0
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. 0. Why?
  • 17. 0 by Cauchy's integral theorem for a doubly connected domain; see (6) in Sec. 14.2.
  • 19. image

Chapter 14 Review Questions and Problems, page 668

  • 21. image
  • 23. image by cauchy's integral formula.
  • 25. image
  • 27. image
  • 29. −4πi

Problem Set 15.1, page 679

  • 1. zn = (2i/2)n; bounded, divergent, ±1, ±i
  • 3. image by algebra; convergent to −πi/2
  • 5. Bounded, divergent, ±1 + 10i
  • 7. Unbounded, hence divergent
  • 9. Convergent to 0, hence bounded
  • 17. Divergent; use 1/In n > 1/n.
  • 19. Convergent; use ∑ 1/n2.
  • 21. Convergent
  • 23. Convergent
  • 25. Divergent
  • 29. By absolute convergence and Cauchy's convergence principle, for given image > 0 we have for every n > N(image) and p = 1, 2, …

    image

    hence image by (6*), Sec. 13.2, hence convergence by Cauchy's principle.

Problem Set 15.2, page 684

  • 1. No! Nonnegative integer powers of z (or zz0) only!
  • 3. At the center, in a disk, in the whole plane
  • 5. image
  • 7. π/2, ∞
  • 9. image
  • 11. image
  • 13. image
  • 15. 2i, 1
  • 17. image

Problem Set 15.3, page 689

  • 3. image
  • 5. 2
  • 7. image
  • 9. image
  • 11. image
  • 13. 1
  • 15. image

Problem Set 15.4, page 697

  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. z3/(1!3) − z7/(3!7) + z11/(5!11) − + …, R = ∞
  • 13. image
  • 17. Team Project. (a) (Ln (1 + z))′ = 1 − z + z2 − + … = 1/(1 + z). (c) Use that the terms of (sin iy)/(iy) are all positive, so that the sum cannot be zero.
  • 19. image
  • 21. image
  • 23. image
  • 25. image

Problem Set 15.5, page 704

  • 3. image
  • 5. image
  • 7. Nowhere
  • 9. |z − 2i| image 2 − ∂, ∂ > 0
  • 11. |zn| image 1 ∑ 1/n2 converges. Use Theorem 5.
  • 13. |sinn |z|| image 1 for all z, and ∑ 1/n2 converges. Use Theorem 5.
  • 15. R = 4 by Theorem 2 in Sec. 15.2; use Theorem 1.
  • 17. image

Chapter 15 Review Questions and Problems, page 706

  • 11. 1
  • 13. 3
  • 15. image
  • 17. ∞, e2x
  • 19. ∞, cosh image
  • 21. image
  • 23. image
  • 25. image
  • 27. image
  • 29. image

Problem Set 16.1, page 714

  • 1. image
  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 19. image
  • 21. image
  • 23. z8 + z12 + z16 + …, |z| < 1, −z4 − 1 − z−4z−8 − …, |z| > 1
  • 25. image

Section 16.2, page 719

  • 1. 0 ± 2π, ±4π, …, fourth order
  • 3. −81i, fourth order
  • 5. ±1, ±2, …, second order
  • 7. ±(2 + 2i), ±i, simple
  • 9. image
  • 11. f(z) = (zz0)n g(z), g(z0) ≠ 0, hence f2(z) = (zz0)2n g2(z).
  • 13. Second-order poles at i and −2i
  • 15. Simple pole at ∞, essential singularity at 1 + i
  • 17. Fourth-order poles at ±nπi, n = 0, 1, …, essential singularity at ∞
  • 19. ex(1 − ex) = 0, ez = 1, z = ±2nπi simple zeros. Answer: at simple poles ±2nπi, essential singularity at ∞
  • 21. 1, ∞ essential singularities, ±2nπi, simple poles

Section 16.3, page 725

  • 3. image
  • 5. image
  • 7. 1/π at 0, ±1, …
  • 9. −1 at ±2nπi
  • 11. image
  • 15. Simple poles at image inside C, residue −1/(2π). Answer:i
  • 17. Simple poles at π/2, residue eπ/2/(−sin π /2), and at −π/2, residue e−π/2/sin π/2 = e−π/2. Answer: −4πi sinh π/2
  • 19. image
  • 21. z−2 cos πz = … + π4/(4!z) − + …. Answer:5i/24
  • 23. image
  • 25. image

Problem Set 16.4, page 733

  • 1. image
  • 3. image
  • 5. 5π/12
  • 7. image
  • 9. 0. Why? (Make a sketch.)
  • 11. π/2
  • 13.0. Why?
  • 15. π/3
  • 17.0. Why?
  • 19. Simple poles at image
  • 21. Simple poles at 1 and ±2πi, residues i and −. Answer: image
  • 23. −π/2
  • 25. 0
  • 27. Let q(z) = (za1)(za2)…(zak). Use (4) in Sec. 16.3 to form the sum of the residues 1/q′(a1) + … + 1/q′(ak and show that this sum is 0; here k > 1.

Chapter 16 Review Questions and Problems, page 733

  • 11.i
  • 13.i(− 10 − 10)
  • 15. image
  • 17.0 (n even), (−1)(n−1)/2i/(n − 1)!(n odd)
  • 19.π/6
  • 21. π/60
  • 23.0. Why?
  • 25. image

Problem Set 17.1, page 741

  • 5. Only in size
  • 7. x = c, w = −y + ic; y = k, w = −k = ix
  • 9. Parallel displacement; each point is moved 2 to the right and 1 up.
  • 11. image
  • 13. −5 image Re z image −2
  • 15. u image 1
  • 17. image
  • 19. 0 < u < In 4, π/4 < v image 3π/4
  • 21. image
  • 23. image
  • 25. sinh z = 0 at z = 0, ±πi, ±2πi, …
  • 29. M = |z| = 1 on the unit circle, J = |z|2
  • 31. |w′| = 1/|z|2 on the unit circle, J = 1/|z|4
  • 33. M = ex = 1 for the x = 0, y-axis, J = e2x
  • 35. M = 1/|z| = on the unit circle, J = 1/|z|2

Problem Set 17.2, page 745

  • 7. image
  • 9. image
  • 11. z = 0, 1/(a + ib)
  • 13. image
  • 15. z = i, 2i
  • 17. image
  • 19. image

Problem Set 17.3, page 750

  • 3. Apply the inverse g of f on both sides of z1 = f(z1) to get g(z1) = g(f(z1)) = z1.
  • 9. w = iz, a rotation. Sketch to see.
  • 11. w = (z + i)/(zi)
  • 13. w = 1/z, almost by inspection
  • 15. w = 1/z − 1
  • 17. w = (2zi)/(−iz − 2)
  • 19. w = (z4i)(−iz4 + 1)

Problem Set 17.4, page 754

  • 1. Circle |w| = ec
  • 3. image
  • 5. w-plane without w = 0
  • 7. < |w| < e,v > 0
  • 9. ±(2n + 1)π/2, n = 0, 1, …
  • 11. u2/cosh2 2 + v2/sinh2 2 < 1, u > 0,v > 0
  • 13. Elliptic annulus bounded by u2/cosh2 1 + v2/sinh2 1 = 1 and u2/cosh23 + v2/sinh2 3 = 1
  • 15. image
  • 17. image
  • 19. Hyperbolas u2/cos2 c v2/sin2 c − sinh2 c − sinh2 c = 1 when c ≠ 0, π, and u2/cos2 cv2/sin2 c = cosh2 c − sinh2 c = 1 when c = 0, π.
  • 21. Interior of u2/cosh2 2 + v2/sinh2 2 = 1 in the fourth quadrant, or map π/2 < x < π, 0 < y < 2 by w = sin z (why?).
  • 23. v < 0
  • 25. The images of the five points in the figure can be obtained directly from the function w.

Problem Set 17.5, page 756

  • 1. w moves once around the circle image
  • 3. Four sheets, branch point at z = −1
  • 5. −,i/4, three sheets
  • 7. z0, n sheets
  • 9. image two sheets

Chapter 17 Review Questions and Problems, page 756

  • 11. 1 < |w| < 4, |arg w| < π/4
  • 13. Horizontal strip −8 < v < 8
  • 15. image, same (why?)
  • 17. |w| > 1
  • 19. image
  • 21. w = 1 + iv, v < 0
  • 23. image
  • 25. Rotation w = iz
  • 27. w = 1/z
  • 29. z = 0
  • 31. image
  • 33. z = 0, ±i, ±3i
  • 35. w = e4x
  • 37. w = iz2 + 1
  • 39. w = z2/(2c)

Problem Set 18.1, page 762

  • 1. 2.5 mm = 0.25 cm; Φ = Re 110 (1 + (Ln z)/ln 4)
  • 3. image
  • 5. Φ(x) = Re(375 + 25z)
  • 7. Φ(r) = Re (32 − z)
  • 13. Use Fig. 391 in Sec. 17.4 with the z- and w- planes interchanged and cos z = sin image.
  • 15. Φ 220 (x3 − 3xy2) Re (220z3)

Problem Set 18.2, page 766

  • 3. image
  • 5. image (b) x2y2 = c, xy = c, ex cos y = c
  • 7. See Fig. 392 in Sec. 17.4. Φ = Re(sin2 z), sin2x)y = 0), sin2 x cosh2 1 − cos2 x sinh2 1(y = 1), −sinh2 y(x = 0, π).
  • 9. Φ (x, y) = cos2 x cosh2 y − sin2 x sinh2 y; cosh2 y (x = 0), −sinh y image cos2 x (y = 0), cos2 x cosh2 1 − sin2 x sinh2 1 (y = 1)
  • 13. Corresponding rays in the w-plane make equal angles, and the mapping is conformal.
  • 15. Apply w = z2.
  • 17. z = (2zi)/(−iZ − 2)(by (3) in Sec. 17.3.
  • 19. image

Problem Set 18.3, page 769

  • 1. (80/d)y + 20. Rotate through π/2.
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. Re F(z) = 100 + (200/π) Re (arcsin z)

Problem Set 18.4, page 776

  • 1.V (z) continuously differentiable.
  • 3. |F′(iy)| = 1 + 1/y2, |y| image 1, is maximum at y = ±1, namely, 2.
  • 5. Calculate or note that 2 = div grad and curl grad is the zero vector; see Sec. 9.8 and Problem Set 9.7.
  • 7. Horizontal parallel flow to the right.
  • 9. F(z) = z4
  • 11. Uniform parallel flow upward, image
  • 13. F(z) = z3
  • 15. F(z) = z/r0 + r0/z
  • 17. Use that w = arccos z gives z = cos w and interchanging the roles of the z- and w-planes.
  • 19. y/(x2 + y2) = c or x2 + (yk)2 = k2

Problem Set 18.5, page 781

  • 5. image
  • 7. image
  • 9. Φ = 3 − 4r2 cos 2θ + r4 cos 4θ
  • 11. image
  • 13. image
  • 15. image
  • 17. image

Problem Set 18.6, page 784

  • 1. image
  • 3. Use (2). F(z0 + eix) = (2 + 3eix)2, etc. F(4) = 100
  • 5. No, because |z| is not analytic.
  • 7. image
  • 9. image
  • 13. |F(z)| = [cos2 x + sinh2 y]1/2, z = ±i, Max = [1 + sinh2 1]1/2 = 1.543
  • 15. |F(z)|2 = sinh2 2x cos2 2y + cosh2 2x sin2 2y = sinh2 2x + 1 · sin2 2y, z = 1, Max = sinh 2 = 3.627
  • 17. |F(z)|2 = 4(2 − 2cos 2θ), z = π/2, 3π/2, Max = 4
  • 19. No. Make up a counterexample.

Chapter 18 Review Questions and Problems, page 785

  • 11. Φ = 10(1 − x + y), F = 10 − 10(1 + i)z
  • 13. image
  • 17. 2(1 − (2/π)Arg z)
  • 19. 30(1 − (2/π)Arg (z − 1))
  • 21. image
  • 23. T(x,y) = x(2y + 1) = const
  • 25. image

Problem Set 19.1, page 796

  • 1. 0.84175 · 102, −0.52868 · 103, 0.92414 · 103, −0.36201 · 106
  • 3.6.3698, 6.794, 8.15, impossible
  • 5. Add first, then round.
  • 7. 29.9667, 0.0335; 29.9667, 0.0333704 (6S-exact)
  • 9. 29.97, 0.035; 29.97, 0.03337; 30, 0.0; 30, 0.033
  • 11. image
  • 13. image
  • 15. (a) 1.38629 − 1.38604 = 0.00025, (b) ln 1.00025 = 0.000249969 is 6S-exact.
  • 19. In the present case, (b) is slightly more accurate than (a) (which may produce nonsensical results; cf. Prob. 20).
  • 21. c4 · 24 + … + c0 · 20 = (1 0 1 1 1.)2, NOT (1 1 1 0 1.)2
  • 23. The algorithm in Prob. 22 repeats 0011 infinitely often.
  • 25. n = 26. The beginning is 0.09375 (n = 1).
  • 27. I14 = 0.1812 (0.1705 4S-exact), I13 = 0.1812 (0.1820), I12 = 0.1951 (0.1951), I11 = 0.2102 (0.2103), etc.
  • 29. −0.126 · 10−2, −0.402 · 10−3; −0.266 · 10−6, −0.847 − 10−7

Problem Set 19.2, page 807

  • 3. g = 0.5 cos x, x = 0.450184 (= x10, exact to 6S)
  • 5. Convergence to 4.7 for all these starting values;
  • 7. x = x/(ex sin x); 0.5, 0.63256, …converges to 0.58853 (5S-exact) in 14 steps.
  • 9. x = x4 − 0.12; x0 = 0, x3 = −0.119794(6S-exact)
  • 11. g = 4/x + x3/16 − x5/576; x0 = 2, xn = 2.39165 (n image 6), 2.405 4S-exact
  • 13. This follows from the intermediate value theorem of calculus.
  • 15. x3 = 0.450184
  • 17. Convergence to x = 4.7, 4.7, 0.8, −0.5, respectively. Reason seen easily from the graph of f.
  • 19. image
  • 21. 1.834243 (= x4), 0.656620(= x4), −2.49086 (= x4)
  • 23. x0 = 4.5, x4 = 4.73004 (6S-exact)
  • 25. (a) ALGORITHM BISECT (f, a0,b0, image N) Bisection Method

    This algorithm computes the solution c of f(x) = 0 (f continuous) within the tolerance image, given an initial interval [a0,b0] such that f(a0)f(b0) < 0.

    image

    Note that [aN, bN] gives (aN + bN)/2 as an approximation of the zero and (bNaN)/2 as a corresponding error bound.

    (b) 0.739085; (c) 1.30980, 0.429494

  • 27. x2 = 1.5, x3 = 1.76471, …, x7 = 1.83424 (6S-exact)
  • 29.0.904557 (6S-exact)

Problem Set 19.3, page 819

  • 1. L0(x) = −2x + 19, L1(x) = 2x − 18, p1(9.3) = L0(9.3) · f0 + L1(9.3) · f1 = 0.1086 · 9.3 + 1.230 = 2.2297
  • 3. image
  • 5. 0.8033 (error −0.0245), 0.4872 (error −0.0148); quadratic; 0.7839 (−0.0051), 0.4678 (0.0046)
  • 7. p2(x) = 1.1640x − 0.337x2; −0.5089(error 0.1262), 0.4053(−0.0226), 0.9053(0.0186), 0.9911(−0.0672)
  • 9. p2(x) = −0.44304x2 + 1.30896x − 0.023220, p2(0.75) = 0.70929 (5S-exact 0.71116)
  • 11. image
  • 13. 2x2 − 4x + 2
  • 15. p3(x) = 2.1972 + (x − 9) · 0.1082 + (x − 9)(x − 9.5) · 0.005235
  • 17. image

Problem Set 19.4, page 826

  • 9. [−1.39 (x − 5)2 + 0.58(x − 5)3]″ = 0.004 at x = 5.8 (due to roundoff; should be 0).
  • 11. image
  • 13. 1 − x2, −2(x − 1) − (x − 1)2 + 2(x − 1)3, −1 + 2(x − 2) + 5(x − 2)2
  • 15. 4 + x2x3, −8(x − 2) − 5(x − 2)2 + 5(x − 2)3, 4 + 32(x − 4) + 25(x − 4)2 − 11(x − 4)3
  • 17. Use the fact that the third derivative of a cubic polynomial is constant, so that g″′ is piecewise constant, hence constant throughout under the present assumption. Now integrate three times.
  • 19. Curvature f/(1 + f′2)3/2f″ if |f′| is small.

Problem Set 19.5, page 839

  • 1. 0.747131, which is larger than 0.746824. Why?
  • 3. 0.5, 0.375, 0.34375, 0.335 (exact)
  • 5. image0.5 ≈ 0.03452 (image0.5 = 0.03307), image0.25 ≈ 0.00829 (image0.25 = 0.00820)
  • 7. 0.693254 (6S-exact 0.693147)
  • 9. 0.073930 (6S-exact 0.073928)
  • 11. 0.785392 (6S-exact 0.785398)
  • 13. (0.785398126 − 0.785392156)/15 = 0.39792 · 10−6
  • 15. (a) M2 = 2; |KM2| = 2/(12n2) = 10−5/2,n = 183. (b) fiv = 24/x5,M4 = 24, |CM4| = 24/(180) · (2m4) = 10−n5/2, 2m = 12.8, hence 14.
  • 17. 0.94614588, 0.94608693 (8S-exact 0.94608307)
  • 19. 0.9460831 (7S-exact)
  • 21. 0.9774586 (7S-exact 0.9774377)
  • 23. image
  • 25. image
  • 27. 0.08, 0.32, 0.176, 0.256 (exact)
  • 29. image

Chapter 19 Review Questions and Problems, page 841

  • 17. 4.375, 4.50, 6.0, impossible
  • 19. 44.885 image s image 44.995
  • 21. The same as that of image.
  • 23. image x1 = 39.95, x2 = 0.05, x2 = 2/39.95 = 0.05006 (erroe less than 1 unit of the last digit)
  • 25. x = x4 − 0.1, −0.1, −0.9999, −0.99900399
  • 27. 0.824
  • 29.x + x3, 2(x − 1) + 3(x − 1)2 − (x − 1)3
  • 31. 0.26, M2 = 6, image, −0.02 image image image 0, 0.01
  • 33. 0.90443, 0.90452 (5S-exact 0.90452)
  • 35. (a) (0.43 − 2 · 0.23 + 0)/0.04 = 1.2, (b) (0.33 − 2 · 0.23 + 0.13)/0.01 = 1.2 (exact)

Problem Set 20.1, page 851

  • 1. x1 = 7.3, x2 = −3.2
  • 3. No solution
  • 5. x1 = 2, x2 = 1
  • 7. image
  • 9. image
  • 11. image
  • 13. image
  • 15. image

Problem Set 20.2, page 857

  • 1. image
  • 3. image
  • 5. image
  • 7. image
  • 9. image
  • 11. image
  • 13. No, since xT (−A)X = −XT Ax < 0; yes; yes; no
  • 15. image
  • 17. image
  • 19. image

Problem Set 20.3, page 863

  • 5. Exact 0.5, 0.5, 0.5
  • 7. x1 = 2, x2 = −4, x3 = 8
  • 9. Exact 2, 1, 4
  • 11. (a) x(3)T = [0.49983 0.50001 0.500017], (b) x(3)T = [0.50333 0.49985 0.49968]
  • 13. 8, −16, 43, 86 steps; spectral radius 0.09, 0.35, 0.72, 0.85, approximately
  • 15. [1.99934 1.00043 3.99684]T (Jacobi, Step 5); [2.00004 0.998059 4.00072]T (Gauss–Seidel)
  • 19. image

Problem Set 20.4, page 871

  • 1. 18, image 8, [0.125 −0.375 1 0 −0.75 0]
  • 3. image
  • 5. image
  • 7. ab + bc + ca = 0
  • 9. image
  • 11. image
  • 13. k = 19 · 13 = 247; ill-conditioned
  • 15. k = 20 · 20 = 400; ill-conditioned
  • 17. 167 image 21 · 15 = 315
  • 19. [− 4]T, [−144.0 184.0]T, k = 25,921 extremely ill-conditioned
  • 21. Small residual [0.145 0.120], but large deviation of image.
  • 23. 27, 748, 28,375, 943,656, 29,070,279

Problem Set 20.5, page 875

  • 1. 1.846 − 1.038x
  • 3. 1.48 + 0.09x
  • 5. s = 90t − 675, vav = 90 km/hr
  • 9. −11.36 + 5.45x − 0.589x2
  • 11. 1.89 − 0.739x + 0.207x2
  • 13. 2.552 + 16.23x, −4.114 + 13.73x + 2.500x2, 2.730 + 1.466x − 1.778x2 + 2.852x3

Problem Set 20.7, page 884

  • 1. 5, 0, 5; radii 6, 5, 6. Spectrum {−1, 4, 9}
  • 3. Centers 0; radii 0.5, 0.7, 0.4. Skew-symmetric, hence λ = iμ, −0.7 image μ image 0.7.
  • 5. image
  • 7. t11 = 100, t22 = t33 = 1
  • 9. They lie in the intervals with endpoints ajj ± (n − 1) · 10−5. Why?
  • 11. image
  • 13. image
  • 15. image
  • 17. Show that AimageT = imageTA.
  • 19. 0 lies in no Gerschgorin disk, by (3) with >; hence det A = λ1…λn ≠ 0.

Problem Set 20.8, page 887

  • 1. q = 10, 10.9908, 10.9999; |image| image 3, 3028, 0.0275
  • 3. q ± δ = 4 ± 1.633, 4.786 ± 0.619, 4.917 ± 0.398
  • 5. Same answer as in Prob. 3, possibly except for small roundoff errors.
  • 7. q = 5.5, 5.5738, 5.6018; |image| image 0.5, 0.3115, 0.1899; eigenvalues (4S) 1.697, 3.382, 5.303, 5.618
  • 9. y = Ax = λx, yTx = λxTx, yTy = λ2xTx, image2 ≤ yTy/xTx − (yTx/xTx)2 = λ2 − λ2 = 0
  • 11. q = 1, …, −2.8993 approximates −3 (0 of the given matrix), |image| image 1.633, …, 0.7024 (Step 8)

Problem Set 20.9, page 896

  • 1. image
  • 3. image
  • 5. image
  • 7. Eigenvalues 16, 6, 2

    image

  • 9. Eigenvalues (4S) 141.4, 68.64, −30.04

    image

Chapter 20 Review Questions and Problems, page 896

  • 15. [3.9 4.3 1.8]T
  • 17. [−2 0 5]T
  • 19. image
  • 21. image
  • 23. image
  • 25. image
  • 27. 30
  • 29. 5
  • 31. 115 · 0.4458 = 51.27
  • 33. image
  • 35. 1.514 + 1.129x −0.214x2
  • 37. Centers 15,35,90; radii 30,35,25, respectively, Eigenvalues (3S) 2.63, 40.8, 96.6
  • 39. Centers 0, −1, −4; radii 9, 6, 7, respectively; eigenvalues 0. 4.446, −9.446

Problem Set 21.1, page 910

  • 1. y = se−0.2x, 0.00458, 0.00830 (errors of y5, y10)
  • 3. y = x − tanh x (set yx = u), 0.00929, 0.01885 (errors of y5, y10)
  • 5. y = ex, 0.0013, 0.0042 (errors of y5, y10)
  • 7. y = 1/(1 − x2/2), 0.00029, 0.01187 (errors of y5, y10)
  • 9. Errors 0.03547 and 0.28715 of and y5 and y10 much larger
  • 11. y = 1/(1 − x2/2); error −10−8, −4 · 10−8, …, −6 · 10−7, +9 · 10−6; image = 0.0002/15 = 1.3 · 10−5 (use RK with h = 0.2)
  • 13. y = tan x; error 0.83 · 10−7, 0.16 · 10−6, …, −0.56 · 10−6, +0.13 · 10−5
  • 15. y = 3 cos x − 2 cos2 x; error · 107: 0.18, 0.74, 1.73, 3.28, 5.59, 9.04, 14.3, 22.8, 36.8, 61.4
  • 17. y′ = 1/(2 − x4); error · 109: 0.2, 3.1, 10.7, 23.2, 28.5, −32.3, −376, −1656, −3489, +80444
  • 19. Errors for Euler–Cauchy 0.02002, 0.06286, 0.05074; for improved Euler–Cauchy −0.000455, 0.012086 0.009601; for Runge–Kutta. 0.0000011, 0.000016, 0.000536

Problem Set 21.2, page 915

  • 1. image
  • 3. y = tan x, y4, …, y10 (error · 105) 0.422798 (−0.49), 0.546315 (−1.2), 0.684161 (−2.4), 0.842332 (−4.4), 1.029714 (−7.5), 1.260288 (−13), 1.557626 (−22)
  • 5. RK error smaller in absolute value, error · 105 = 0.4, 0.3, 0.2, 5.6 (for x = 0.4, 0.6, 0.8, 1.0)
  • 7. y = exp (x3) − 1, y4, …, y10 (error · 1010) 0.008032 (−4), 0.015749 (− 10), 0.027370 (− 17), 0.043810 (− 26), 0.066096 (− 39), 0.095411 (− 54), 0.133156 (− 74)
  • 13. y = exp (x2). Errors · 102 from x = 0.3 to 0.7: −5, −11, −19, −31, −41
  • 15. (a) 0, 0.02, 0.0884, 0.215848, y4 = 0.417818, y5 = 0.708887 (poor) (b) By 30−50%

Problem Set 21.3, page 922

  • 1. y1 = −e−2x + 4ex errors of y1 (of y2) from 0.002 to 0.5 (from −0.01 to 0.1), monotone
  • 3. image
  • 5. image, y = 0.8 (error 0.005), 0.61 (0.01), 0.429 (0.012), 0.2561 (0.0142), 0.0905 (0.0160)
  • 7. By about a factor 105. imagen (y1) · 106 = −0.082, …, −0.27, imagen(y2) · 106 = 0.08, …, 0.27
  • 9. Errors of (of y1 (of y2) from 0.3 · 10−5 to 1.3 · 10−5 (from 0.3 · 10−5 to 0.6 · 10−5)
  • 11. (y1, y2) = (0, 1), (0.20, 0.98), (0.39, 0.92), …, (−0.23, −0.97), (−0.42, −0.91), (−0.59), (−0.81); continuation will give an “ellipse.”

Problem Set 21.4, page 930

  • 3. −3u11 + u12 = −200, u11 − 3u12 = −100
  • 5. 105, 155, 105, 115; Step 5: 104.94, 154.97, 104.97, 114.98
  • 7. 0, 0, 0, 0. All equipotential lines meet at the corners (why?). Step 5: 0.29298, 0.14649, 0.14649, 0.073245
  • 9. 0.108253, 0.108253, 0.324760, 0.324760; Step 10: 0.108538, 0.108396, 0.324902, 0.324831
  • 11. (a). u11 = −u12 = −66. (b) Reduce to 4 equations by symmetry.

    image

  • 13. u12 = u32 = 31.25, u21 = u23 = 18.75, ujk = 25 at the others
  • 15. u21 = u23 = 0.25, u12 = u32 = 0.25, ujk = 0 otherwise
  • 17. image u12 = u22 = 0.3170. (0.1083, 0.3248 are 4S-values of the solution of the linear system of the problem.)

Problem Set 21.5, page 935

  • 5. u11 = 0.766, u21 = 1.109, u12 = 1.957, u22 = 3.293
  • 7. A, as in Example 1, right sides −220, −220, −220, −220. Solution u11 = u21 = 125.7, u21 = u22 = 157.1
  • 13. image
  • 15. b = [−200, −100, −100, 0]T; u11 = 73.68, u21 = u12 = 47.37, u22 = 15.79 (4S)

Problem Set 21.6, page 941

  • 5. 0, 0.6625, 1.25, 1.7125, 2, 2.1, 2, 1.7125, 1.25, 0.6625, 0
  • 7. Substantially less accurate, 0.15, 0.25 (t = 0.04), 0.100, 0.163 (t = 0.08)
  • 9. Step 5 gives 0, 0.06279, 0.09336, 0.08364, 0.04707, 0.
  • 11. Step 2: 0 (exact 0), 0.0453 (0.0422), 0.0672 (0.0658), 0.0671 (0.0628), 0.0394 (0.0373), 0 (0)
  • 13. 0.3301, 0.5706, 0.4522, 0.2380 (t = 0.04), 0.06538, 0.10603, 0.10565, 0.6543 (t = 0.20)
  • 15. 0.1018, 0.1673, 0.1673, 0.1018 (t = 0.04), 0.0219, 0.0355, …(t = 0.20)

Problem Set 21.7, page 944

  • 1. u(x, 1) = 0, −0.05, −0.10, −0.15, −0.20, 0
  • 3. For x = 0.2, 0.4 we obtain 0.24, 0.40 (t = 0.2), 0.08 0.16 (t = 0.4), −0.08, −0.16 (t = 0.6), etc.
  • 5. 0, 0.354, 0.766, 1.271, 1.679, 1.834, … (t = 0.1); 0, 0.575, 0.935, 1.135, 1.296, 1.357, … (t = 0.2)
  • 7. 0.190, 0.308, 0.308, 0.190, (3S-exact: 0.178, 0.288, 0.288, 0.178)

Chapter 21 Review Questions and Problems, page 945

  • 17. y = ex, 0.038, 0.125 (errors of y5 and y10)
  • 19. y = tan x; 0 (0), 0.10050 (−0.00017), 0.20304 (−0.00033), 0.30981 (−0.00048), 0.42341 (−0.00062), 0.54702 (−0.00072), 0.68490 (−0.00076), 0.84295 (−0.00066), 1.0299 (−0.0002), 1.2593 (0.0009), 1.5538 (0.0039)
  • 21. 0.1003346(0.8 · 10−7)0.2027099 (1.6 · 10−7), 0.3093360 (2.1 · 10−7), 0.4227930 (2.3 · 10−7), 0.5463023 (1.8 · 10−7)
  • 23. y = sin x, y0.8 = 0.717366, y1.0 = 0.841496 (errors − 1.0 · 10−5, −2.5 · 10−5)
  • 25. image
  • 27. image
  • 29. 3.93, 15.71, 58.93
  • 31. 0, 0.04, 0.08, 0.12, 0.15, 0.16, 0.15, 0.12, 0.08, 0.04, 0 (t = 0.3 3 time steps)
  • 33. u(p11) = u(p31) = 270, u(p21) = u(p13) = u(p23) = u(p33) = 30., u(p12) = u(p32) = 90, u(p22) = 60
  • 35. 0.043330, 0.077321, 0.089952, 0.058488 (t = 0.04), 0.010956, 0.017720, 0.017747, 0.010964 (t = 0.20)

Problem Set 22.1, page 953

  • 3. f(x) = 2(x1 − 1)2 + (x2 + 2)2 − 6; Step 3; (1.037, −1.926), value −5.992
  • 9. Step 5: (0.11247, −0.00012), value 0.000016

Problem Set 22.2, page 957

  • 7. No
  • 9. x3,x4 is the unused time on M1, M2, respectively.
  • 11. f(2.5, 2.5) = 100
  • 13. image
  • 15. f(9,6) = 360
  • 17. 0.5x1 + 0.75x2 image 45 (copper), 0.5x1 + 0.25x2 image 30, f = 120x1 + 100x2, fmax = f(45,30) = 8400
  • 19. f = x1 + x2, 2x1 + 3x2 image 1200, 4x1 + 2x2 image 1600, fmax = f(300,200) = 500
  • 21. x1/3 + x2/2 image 100, x1/3 + x2/6 image 80,f = 150x1 + 100x2,fmax = f(210, 60) = 37,500

Problem Set 22.3, page 961

  • 3. f(120/11, 60/11) = 480/11
  • 5. Eliminate in Coloumn 3, so that 20 goes. image
  • 7. image
  • 9. fmax = 6 on the segment from (3, 0, 0) to (0, 0, 2)
  • 11. We minimize! The augmented matrix is

    image

    The pivot is 600. The calculation gives

    image

    image

    Hence −f has the maximum value −13.5, so that f has the minimum value 13.5, at the point

    image

  • 13. fmax = f (5, 4, 6) = 478

Problem Set 22.4, page 968

  • 1. f(6, 3) = 84
  • 3. f(20, 20) = 40
  • 5. f(10, 5) = 5500
  • 7. f(1, 1, 0) = 13
  • 9. image

Chapter 22 Review Questions and Problems, page 968

  • 9. Step 5: [0.353 −0.028]T. Slower. Why?
  • 11. Of course! Step 5: [−1.003 1.897]T
  • 17. f(2, 4) = 100
  • 19. f(3, 6) = −54

Problem Set 23.1, page 974

  • 9. image
  • 11. image
  • 13. image
  • 15. image
  • 17. If G is complete.
  • 19. image

Problem Set 23.2, page 979

  • 1. 5
  • 3. 4
  • 5. The idea is to go backward. There is a vk-1 adjacent to vk and labeled k − 1, etc. Now the only vertex labeled 0 is s. Hence λ(v0) = 0 implies v0 = s, so thatvov1 − … − vk-1vk is a path suk that has length k.
  • 15. Delete the edge (2, 4).
  • 17. No

Problem Set 23.3, page 983

  • 1. (1, 2), (2, 4), (4, 3); L2 = 12, L3 = 36, L4 = 28
  • 5. (1, 2), (2, 4), (3, 4), (3, 5); L2 = 2, L3 = 4, L4 = 3, L5 = 6
  • 7. (1, 2), (2, 4), (3, 4); L2 = 10, L3 = 15, L4 = 13
  • 9. (1, 5), (2, 3), (2, 6), (3, 4), (3, 5); L2 = 9, L3 = 7, L4 = 8, L5 = 4, L6 = 14

Problem Set 23.4, page 987

  • 1. image
  • 3. image
  • 5. image
  • 9. Yes
  • 11. image
  • 13. New York–Washington–Chicago–Dalles–Denver–Los Angeles
  • 15.G is connected. If G were not a tree, it would have a cycle, but this cycle would provide two paths between any pair of its vertices, contradicting the uniqueness.
  • 19. If we add an edge (u, v) to T, then since T is connected, there is a path (uv) in T which, together with (u, v), forms a cycle.

Problem Set 23.5, page 990

  • 1. If G is a tree.
  • 3. A shortest spanning tree of the largest connected graph that contains vertex 1.
  • 7. (1, 4), (1, 3), (1, 2), (2, 6), (3, 5); L = 32
  • 9. (1, 4), (4, 3), (4, 2), (3, 5); L = 20
  • 11. (1, 4), (4, 3), (4, 5), (1, 2); L = 12

Problem Set 23.6, page 997

  • 1. {3, 6}, 11 + 3 = 14
  • 3. {4, 5, 6}, 10 + 5 + 13 = 28
  • 5. {3, 6, 7}, 8 + 4 + 4 = 16
  • 7. S {1, 4}, 8 + 6 = 14
  • 9. One is interested in flows from s to t, not in the opposite direction.
  • 13. Δ12 = 5, Δ24 = 8, Δ45 = 2; Δ12 = 5, Δ25 = 3; Δ13 = 4, Δ35 = 9 P1: 1 − 2 − 4 − 5, Δf = 2; P2: 1 − 2 − 5, Δf = 3; P3: 1 − 3 − 5, Δf = 4
  • 15. 1 − 2 − 5, Δf = 2; 1 − 4 − 2 − 5, Δf = 2, etc.
  • 17. f13 = f35 = 8, f14 = f45 = 5, f12 = f24 = f46 = 4, f56 = 13, f = 4 + 13 = 17, is f = 17 is unique.
  • 19. For instance, f12 = 10, f24 = f45 = 7, f13 = f25 = 5, f35 = 3, f32 = 2, f = 3 + 5 + 7 = 15, f = 15 is unique.

Problem Set 23.7, page 1000

  • 3. (2, 3) and (5, 6)
  • 5. By considering only edges with one labeled end and one unlabeled end
  • 7. 1 − 2 − 5, Δt 2; 1 − 4 − 2 − 5, Δt 1; f = 6 + 2 + 1 = 9, where 6 is the given flow
  • 9. 1 − 2 − 4 − 6, Δt 2; 1 − 3 − 5 − 6, Δt 1; f = 4 + 2 + 1 = 7, where 4 is the given flow
  • 15. S = {1, 2, 4, 5}, T = {3, 6}, cap(S, T) = 14

Problem Set 23.8, page 1005

  • 1. No
  • 3. No
  • 5. Yes, S = {1, 4, 5, 8}
  • 7. Yes, S = {1, 3, 5}
  • 11. 1 − 2 − 3 − 7 − 5 − 4
  • 13. 1 − 2 − 3 − 7 − 5 − 4 is augmenting and gives 1 − 2 − 3 − 7 − 5 − 4 and is of maximum cardinality.
  • 15. 1 − 4 − 3 − 6 − 7 − 8 is augmenting and gives 1 − 4 − 3 − 6 − 7 − 8 and (1, 4), (3, 6), (7, 8) is of maximum cardinality.
  • 19. 3
  • 21. 2
  • 23. 3
  • 25. K4

Chapter 23 Review Questions and Problems, page 1006

  • 11. image
  • 13. image
  • 15. image
  • 17. image
  • 19. (1, 2), (1, 4), (2, 3); L2 = 2, L3 = 5, L4 = 5
  • 23. (1, 6), (4, 5), (2, 3), (7, 8)

Problem Set 24.1, page 1015

  • 1. qL = 19, qM = 20, qU = 20.5
  • 3. qL = 138, qM = 144, qU = 154
  • 5. qL = 199, qM = 201, qU = 201
  • 7. qL = 1.3, qM = 1.4, qU = 1.45
  • 9. qL = 89.9, qM = 91.0, qU = 91.8
  • 11. image
  • 13. image
  • 15. image
  • 17. 3.54, 1.29

Problem Set 24.2, page 1017

  • 1. 23 outcomes: RRR, RRL, RLR, LRR, RLL, LRL, LLR, LLL
  • 3. 62 = 36 outcomes (1, 1), (1, 2), …, (6, 6) first number (second number) referring to the first die (second die)
  • 5. Infinitely many outcomes H TH TTH TTTH … (H = Head, T = Tail)
  • 7. The space of ordered pairs of numbers
  • 9. 10 outcomes: D ND NNDNNNNNNNNND
  • 11. Yes
  • 17. AB = B implies AB by the definition of union. Conversely. AB implies that AB = B because always BAB, and if AB, we must have equality in the previous relation.

Problem Set 24.3, page 1024

  • 1. 1 − 4/216 = 98315%, by Theorem 1
  • 3. image
  • 5. image
  • 7. Small sample from a large population containing many items in each class we are interested in (defectives and nondefectives, etc.)
  • 9. image
  • 11. image
  • 13. 1 − 0.963 = 11.5%
  • 15. 1 − 0.8754 = 0.4138 < 1 − 0.752 = 0.4375 < 0.5 (c < b < a)
  • 17. A = B∪(ABc)hence pA = p(B) + p(ABc) image p (B) by disjointedness of B and ABc

Problem Set 24.4, page 1028

  • 1. In 10! = 3,628,800 ways
  • 3. image
  • 5. image
  • 7. 210, 70, 112, 28
  • 9. In 6!/6 = 120 ways
  • 11. 9 · 8 = 72
  • 13. (b) 1/(12n)
  • 15.P (No two people have a birthday in common) = 365 · 364 … 346/36520 = 0.59. Answer: 41%, which is surprisingly large.

Problem Set 24.5, page 1034

  • 1. image
  • 3. image
  • 5. No, because of (6)
  • 7. image
  • 9. k = 5; 50%
  • 11. 0.53 = 12.5%
  • 13. image
  • 15. X > b, X image b, X image c, etc.

Problem Set 24.6, page 1038

  • 1. image
  • 3. μ = π, σ2 = π2/3; cf. Example 2
  • 5. image
  • 7. image
  • 9. 750, 1, 0.002
  • 11. c = 0.073
  • 13. $643.50
  • 15. image
  • 17. X = Product of the 2 numbers. E(X) = 12.25, 12 cents
  • 19. (0 + 1 · 3 + 3 · 8 + 1 · 27)/8 = 54/8 6 · 75

Problem Set 24.7, page 1044

  • 3. 38%
  • 5. image
  • 7. 0.265
  • 9. f(x) = 0.5xe−0.5/x!,f(0) + f(1) = e−0.5(1.0 + 0.5) = 0.91. Answer: 9%
  • 11. image
  • 13. 42%, 47.2%, 10.5%, 0.3%
  • 15. 1 − e−0.2 = 18%

Problem Set 24.8, page 1050

  • 1. 0.1587, 0.5, 0.6915, 0.6247
  • 3. 45.065, 56.978, 2.022
  • 5. 15.9%
  • 7. 31.1%, 95.4%
  • 9. About 58%
  • 11. t = 1084 hours
  • 13. About 683 (Fig. 521a)

Problem Set 24.9, page 1059

  • 1. image
  • 3. image
  • 5. f2(y) = 1/(β2 − α2) if α2 < y lt; β2
  • 7. 27.45 mm, 0.38 mm
  • 11.25.26 cm, 0.0078 cm
  • 13. 50%
  • 15. The distributions in Prob. 17 and Example 1
  • 17. No

Chapter 24 Review Questions and Problems, page 1060

  • 11. QL = 110, QM = 112, QU = 115
  • 13. image
  • 21. xmin image xj image xmax. Sum over j from 1.
  • 17. image
  • 19. image
  • 21. f(x) = 2x, x = 1, 2, …
  • 23. image
  • 25. 0.1587, 0.6306, 0.5, 0.4950

Problem Set 25.2, page 1067

  • 1. In Example 1, image
  • 3. image
  • 5. image
  • 7. 7/12
  • 9. image
  • 11. image
  • 13. image
  • 15. Variability larger than perhaps expected

Problem Set 25.3, page 1077

  • 3. Shorter by a factor image
  • 5. 4, 16
  • 7. image
  • 9. CONF0.99{63.72 image μ image 66.28}
  • 11. image
  • 13. CONF0.95{0.023 image σ2 image 0.085}
  • 15. n − 1 = 99 degrees of freedom. F(c1) = 0.025, c1 = 74.2, F(c2) = 0.975, c2 = 129.6. Hence k1 = 12.41, k2 = 7.10. CONF0.95 {7.10 image σ2 image 12.41}.
  • 17. CONF0.95{0.74 image σ2 image 5.19}
  • 19. Z = X + Y is normal with mean 105 and variance 1.25. Answer: P(104 image Z image 106) = 63%

Problem Set 25.4, page 1086

  • 3. image
  • 5. c = 6090 > 6019: do not reject the hypothesis.
  • 7. σ2/n = 1.8, c = 57.8, accept the hypothesis.
  • 9. μ < 58.69 or μ > 61.31
  • 11. image
  • 13. image
  • 15. 19 · 1.02/0.82 = 29.69 < c = 30.14 (Table A10. Appendix 5), accept the hypothesis
  • 17. image

Problem Set 25.5, page 1091

  • 1. LCL = 1 − 2.58 · 0.02/2 = 0.974, UCL = 1.026
  • 3. 27
  • 5. Choose 4 times the original sample size
  • 9. image
  • 11. image
  • 13. In about 30% (5%) of the cases
  • 15. image

Problem Set 25.6, page 1095

  • 1. 0.9825, 0.9384, 0.4060
  • 3. 0.8187, 0.6703, 0.1353
  • 5. e−25θ(1 + 25θ), P(A; 1.5) = 94.5, α = 5.5%
  • 7. 19.5%, 14.7%
  • 9. (1 − θ)n + nθ(1 − θ)n−1
  • 11. image
  • 13. image
  • 15. image

Problem Set 25.7, page 1099

  • 3. image
  • 5. image
  • 7. image
  • 9. 42 even digits, accept.
  • 13. image
  • 15. Combining the last three nonzero values, we have Kr − 1 = 9 (r = 1 since we estimated the mean, image Accept the hypothesis.

Problem Set 25.8, page 1102

  • 3. image is the probability that 7 cases in 8 trials favor A under the hypothesis that A and B are equally good. Reject.
  • 5. image
  • 7. image Hypothesis rejected.
  • 9. image
  • 11. Consider image
  • 13. n = 8;4 transpositions, P(T image 4) = 0.007, Assert that fertilizing increases yield.
  • 15. P(T) image 2) = 2.8%. Assert that there is an increase.

Problem Set 25.9, page 1111

  • 1. y = 0.98 + 0.495x
  • 3. y = −11,457.p + 43.2x
  • 5. y = −10 + 0.55x
  • 7. y = 0.5932 + 0.1138x, R = 1/0.1138
  • 9. y = 0.32923 + 0.00032x, y(66) = 0.35035
  • 13. c = 3.18 (Table A9), k1 = 43.2, q0 = 54,878, K = 1.502, CONF0.95{41.7 image K1} image 44.7}.
  • 15. image

Chapter 25 Review Questions and Problems, page 1111

  • 15. image
  • 17. CONF0.99{27.94 image μ image 34.81}
  • 19. image
  • 21. image
  • 23. α = 1 − (1 − θ)6 = 5.85%, when θ = 0.01. For θ = 15% we obtain β = (1 − θ)6 = 37.7%. If n increases, so does α, whereas β decreases.
  • 25. y = 3.4 − 1.85x
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.147.103.8