References

  1. Abgrall, R. (1992). Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes. Technical report 1584, INRIA.
  2. Abgrall, R. (2006). Residual distribution schemes: Current status and future trends. Computers and Fluids, 35, 641–669.
  3. Absil, P.-A., Mahony, R., Sepulchre, R. (2008). Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ.
  4. Agouzal, A. and Vassilevski, Y.V. (2010). Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comp. Methods Appl. Mech. Eng., 199, 2195–2203.
  5. Agouzal, A., Lipnikov, K., Vassilevski, Y. (2010). Hessian free metric based mesh adaptation via geometry of interpolation error. Comput. Math. Math. Phys., 50(1), 124–138.
  6. Alauzet, F. (2009). Size gradation control of anisotropic meshes. Finite Elem. Anal. Des., 46, 181–202.
  7. Alauzet, F. (2016). A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes. Comput. Methods Appl. Mech. Eng., 299, 116–142.
  8. Alauzet, F. and Frazza, L. (2020). 3D RANS anisotropic mesh adaptation on the high-lift version of NASA’s common research model (HL-CRM). AIAA Paper 2019-2947.
  9. Alauzet, F. and Loseille, A. (2009a). High order sonic boom modeling by adaptive methods. RR-6845, INRIA.
  10. Alauzet, F. and Loseille, A. (2009b). On the use of space filling curves for parallel anisotropic mesh adaptation. In Proceedings of the 18th International Meshing Roundtable, Clark, B.W. (ed.) Springer, Berlin.
  11. Alauzet, F. and Loseille, A. (2010). High order sonic boom modeling by adaptive methods. J. Comput. Phys., 229, 561–593.
  12. Alauzet, F. and Mehrenberger, M. (2010). P1-conservative solution interpolation on unstructured triangular meshes. Int. J. Numer. Methods Eng., 84(13), 1552–1588.
  13. Alauzet, F. and Olivier, G. (2011). Extension of metric-based anisotropic mesh adaptation to time-dependent problems involving moving geometries. 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2011-0896, Orlando, FL.
  14. Alauzet, F., Frey, P.J., George, P.-L., Mohammadi, B. (2007). 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations. J. Comp. Phys., 222, 592–623.
  15. Alauzet, F., Dervieux, A., Frazza, L., Loseille, A. (2019). Numerical uncertainties estimation and mitigation by mesh adaptation. In Uncertainty Management for Robust Industrial Design in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 66, Hirsch, C., Wunsch, D., Szumbarski, J., Laniewski-Wollk, L., Pons-Prats, J. (eds). Springer, Dordrecht.
  16. Anderson, W.K. and Venkatakrishnan, V. (1999). Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Comput. Fluids, 28(4–5), 443–480.
  17. Andrus, J.F. (1979). Numerical solution of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal., 16(4), 605–611.
  18. Andrus, J.F. (1993). Stability of a multi-rate method for numerical integration of ODEs. Comput. Math. Appl., 25(2), 3–14.
  19. Angrand, F.J. and Dervieux, A. (1984). Some explicit triangular finite element schemes for the Euler equations. Int. J. Numer. Methods Fluids, 4, 749–764.
  20. Apel, T. (1999). Anisotropic Finite Elements: Local Estimates and Applications. Teubner, Stuttgart.
  21. Arian, E. and Salas, M.D. (1999). Admitting the inadmissible: Adjoint formulation for incomplete cost functionals in aerodynamic optimization. AIAA Journal, 37(1), 37–44.
  22. Arsigny, V., Fillard, P., Pennec, X., Ayache, N. (2006). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Mag. Res. Med., 56(2), 411–421.
  23. Babuška, I. and Strouboulis, T. (2001). The Finite Element Method and its Reliability. Oxford Scientific Publications, New York.
  24. Baines, M. (1994). Moving Finite Elements. Oxford University Press, Inc., New York.
  25. Bank, R.E. and Smith, R.K. (1993). A posteriori error estimate based on hierarchical bases. SIAM J. Numer. Anal., 30, 921–935.
  26. Barth, T.J. (1993). Recent developments of high-order k-exact reconstruction on unstructured meshes. 31st AIAA Aerospace Science Meeting, AIAA-93-0668, Reno, NV.
  27. Barth, T.J. and Frederickson, P.O. (1990). Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA-90-0013.
  28. Barth, T.J. and Larson, M.G. (2002). A posteriori error estimation for higher order Godunov finite volume methods on unstructured meshes. In Finite Volumes for Complex Applications III, Herbin, R. and Kröner, D. (eds). Kogan Page Ltd, London.
  29. Bassi, F. and Rebay, S. (1997). High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comp. Phys., 138(2), 251–285.
  30. Becker, R. and Rannacher, R. (1996). A feedback approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4, 237–264.
  31. Becker, R., Braack, M., Rannacher, R. (1999). Numerical simulation of laminar flames at low Mach number with adaptative finite elements. Combust. Theory Model., 3, 503–534.
  32. Belme, A. (2011). Aérodynamique instationnaire et méthode adjointe. PhD Thesis, Université de Nice Sophia Antipolis, Sophia Antipolis [in French].
  33. Belme, A., Dervieux, A., Alauzet, F. (2012). Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows. J. Comp. Phys., 231(19), 6323–6348.
  34. Belme, A., Alauzet, F., Dervieux, A. (2019). An a priori anisotropic goal-oriented estimate for viscous compressible flow and application to mesh adaptation. J. Comp. Phys., 376, 1051–1088.
  35. Berger, M.J. and Colella, P. (1989). Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82, 64–84.
  36. Braack, R.B.M. and Rannacher, R. (1999). Numerical simulation of laminar flames at low Mach number with adaptative finite elements. Combust. Theory Model., 3, 503–534.
  37. Brèthes, G. and Dervieux, A. (2016). Anisotropic norm-oriented mesh adaptation for a Poisson problem. J. Comp. Phys., 322, 804–826.
  38. Brèthes, G. and Dervieux, A. (2017). A tensorial-based mesh adaptation for a Poisson problem. Eur. J. Comput. Mech., 26(3), 245–281.
  39. Brèthes, G., Allain, O., Dervieux, A. (2015). A mesh-adaptative metric-based full-multigrid for the Poisson problem. Int. J. Numer. Methods Fluids, 79(1) [Online]. Available at: http://www-sop.inria.fr/members/Gautier.Brethes/article-ADA-MG.pdf.
  40. Bueno-Orovio, A., Castro, C., Palacios, F., Zuazua, E. (2012). Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization. AIAA Journal, 50(3), 631–646.
  41. Cao, W. (2005). On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J. Numer. Anal., 43(1), 19–40.
  42. Cao, W. (2007a). Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput., 29(2), 756–781.
  43. Cao, W. (2007b). An interpolation error estimate on anisotropic meshes in Rn and optimal metrics for mesh refinement. SIAM J. Numer. Anal., 45(6), 2368–2391.
  44. Cao, W. (2008). An interpolation error estimate in R2 based on the anisotropic measures of higher derivatives. Math. Comp., 77, 265–286.
  45. Cao, W., Huang, W., Russell, R.D. (2003). Approaches for generating moving adaptive meshes: Location versus velocity. Appl. Numer. Math., 47, 212–138.
  46. Carabias, A. (2013). Analyse et adaptation de maillage pour des schémas non-oscillatoires d’ordre élevé. PhD Thesis, Université de Nice-Sophia-Antipolis, Nice [in French].
  47. Carabias, A., Allain, O., Dervieux, A. (2011). Dissipation and dispersion control of a quadratic-reconstruction advection scheme. European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications, Trento.
  48. Carabias, A., Belme, A., Loseille, A., Dervieux, A. (2018). Anisotropic goal-oriented error analysis for a third-order accurate CENO Euler discretization. Int. J. Numer. Methods Fluids, 86(6), 392–413.
  49. Castro, C., Lozano, C., Palacios, F., Zuazua, E. (2007). Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA Journal, 45(9), 2125–2139.
  50. Charest, M.R.J., Groth, C.P.T., Gauthier, P.Q. (2015). A high-order central ENO finite-volume scheme for three-dimensional low-speed viscous flows on unstructured mesh. Commun. Comput. Phys., 17(03), 615–656.
  51. Ciarlet, P.G. and Raviart, P.A. (1972). General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Ration. Mech. Anal., 46, 177–199.
  52. Clément, P. (1975). Approximation by finite element functions using local regularization. Revue française d’automatique, informatique et recherche opérationnelle, R-2, 77–84.
  53. Cockburn, B. (2001). Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. J. Comput. Appl. Math., 128(1–2), 187–204.
  54. Cockburn, B., Karniadakis, G., Shu, C.-W. (2000). Discontinuous Galerkin Methods: Theory, Computation and Application. Springer, Berlin.
  55. Collins, M., Vecchio, F., Selby, R., Gupta, P. (1997). Failure of an offshore platform. Concrete Int., 19(8), 28–35.
  56. Constantinescu, E. and Sandu, A. (2007). Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comp, 33(3), 239–278.
  57. Coulaud, O. and Loseille, A. (2016). Very high order anisotropic metric-based mesh adaptation in 3D. Procedia Eng., 82, 353–365.
  58. Courty, F., Leservoisier, D., George, P.-L., Dervieux, A. (2006). Continuous metrics and mesh adaptation. Appl. Numer. Math., 56(2), 117–145.
  59. Darmofal, D.L., Allmaras, S.R., Yano, M., Kudo, J. (2013). An adaptive, higher-order discontinuous Galerkin finite element method for aerodynamics. AIAA Conference Paper, AIAA 2013-2871, 1–23.
  60. Derlaga, J.M. and Park, M.A. (2017). Application of exact error transport equations and adjoint error estimation to AIAA workshops. 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0076, Grapevine, TX.
  61. Dobrzynski, C. and Frey, P.J. (2008). Anisotropic Delaunay mesh adaptation for unsteady simulations. In Proceedings of the 17th International Meshing Roundtable, Garimella R.V. (ed.). Springer, Berlin.
  62. Dolejsi, V. (2014). Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm. Appl. Numer. Math., 82, 80–114.
  63. Dolejsi, V., May, G., Rangarajan, A. (2018). A continuous hp-mesh model for adaptive discontinuous Galerkin schemes. Appl. Numer. Math., 124, 1–21.
  64. Elias, R.N. and Coutinho, A.L.G.A. (2007). Stabilized edge-based finite element simulation of free-surface flows. Int. J. Numer. Meth. Fluids, 54(6–8), 965–993.
  65. Engquist, S., Harten, B., Osher, A., Chakravarthy, S.R. (1986). Some results on uniformly high-order accurate essentially non-oscillatory schemes. Appl. Numer. Math., 2(3–5), 347– 377.
  66. Engstler, C. and Lubich, C. (1997a). Multirate extrapolation methods for differential equations with different time scales. Computing, 58, 173–185.
  67. Engstler, C. and Lubich, C. (1997b). Mur8: A multirate extension of the eight-order Dormer-Prince method. Appl. Numer. Math., 25, 185–192.
  68. Ern, A. and Vohralík, M. (2015). Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. In La Serena Numerica II, Octavo Encuentro de Anàlisis Numérico de Ecuaciones Diferenciales Parciales. HAL Preprint 00921583.
  69. Fedkiw, R., Aslam, T., Merriman, B., Osher, S. (1999). A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys., 152(2), 457–492.
  70. Feghaly, R., Raphael, W., Kaddah, F. (2008). Analyses of the reasons of Roissy terminal 2E collapse in France using deterministic and reliability assessments. Structures Congress, Vancouver.
  71. Fidkowski, K.J. and Darmofal, D.L. (2011). Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAAJ, 49(4), 673–694.
  72. Formaggia, L. and Perotto, S. (2001). New anisotropic a priori error estimates. Numer. Math., 89, 641–667.
  73. Formaggia, L. and Perotto, S. (2003). Anisotropic a priori error estimates for elliptic problems. Numer. Math., 94, 67–92.
  74. Formaggia, L., Micheletti, S., Perotto, S. (2004), Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math., 51(4), 511–533.
  75. Frazza, L., Loseille, A., Dervieux, A., Alauzet, F. (2019). Nonlinear corrector for Reynolds averaged Navier Stokes equations. Int. J. Numer. Methods Fluids, 91(11), 567–586.
  76. Frey, P.J. (2001). YAMS, a fully automatic adaptive isotropic surface remeshing procedure. RT-0252, INRIA.
  77. Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs, NJ.
  78. George, P.-L. (1999). Tet meshing: Construction, optimization and adaptation. In Proceedings of the 8th International Meshing Roundtable, Shimada, K. (ed.). South Lake Tao, CA.
  79. Giles, M.B. (1987). Energy stability analysis of multi-step methods on unstructured meshes. CFDL Report 87-1, MIT Department of Aeronautics & Astronautics.
  80. Giles, M.B. (1997a). On adjoint equations for error analysis and optimal grid adaptation in CFD. Technical Report NA-97/11, Oxford.
  81. Giles, M.B. (1997b). Stability analysis of a Galerkin/Runge-Kutta Navier-Stokes discretisation on unstructured tetrahedral grids. J. Comput. Phys., 132(2), 201–214.
  82. Giles, M.B. and Pierce, N.A. (1999). Improved lift and drag estimates using adjoint Euler equations. AIAA Paper, 99-3293.
  83. Giles, M.B. and Süli, A. (2002a). Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality. Acta Numerica, 11, 145–236.
  84. Groth, C.P.T. and Ivan, L. (2011). High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-367, January 4–7, Orlando, FL.
  85. Guégan, D., Allain, O., Dervieux, A., Alauzet, F. (2010). An L-Lp mesh adaptive method for computing unsteady bi-fluid flows. Int. J. Numer. Methods Eng., 84(11), 1376–1406.
  86. Günther, M. and Rentrop, P. (1993). Multirate row methods and latency of electric circuits. Appl. Numer. Math., 13, 83–102.
  87. Günther, M., Kvaerno, A., Rentrop, P., Guelhan, A., Klevanski, J., Willems, S. (1998). Multirate partitioned Runge-Kutta methods. BIT, 38(2), 101–104.
  88. Günther, M., Kvaerno, A., Rentrop, P. (2001). Multirate partitioned Runge-Kutta methods. BIT, 41(3), 504–514.
  89. Harten, A. and Chakravarthy, S. (1991). Multi-dimensional ENO schemes for general geometries. ICASE Report 91-76.
  90. Hartman, R. (2008). Multitarget error estimation and adaptivity in aerodynamic flow simulations. SIAM J. Sci. Comput., 31(1), 708–731.
  91. Hay, A. and Visonneau, M. (2006). Error estimation using the error transport equation for finite-volume methods and arbitrary meshes. Int. J. Comput. Fluid Dyn., 20(7), 463–479.
  92. Hecht, F. (2008). Mesh generation and error indicator. Slides, CIRM Summer School: More Efficiency in Finite Element Methods, Valenciennes, September.
  93. Hofer, E. (1976). A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM J. Numer. Anal., 13(5), 645–666.
  94. Huang, W. (2005). Metric tensors for anisotropic mesh generation. J. Comp. Phys., 204(2), 633–665.
  95. Huang, W. and Russel, R.D. (2011). Adaptive Moving Mesh Methods. Springer, Berlin.
  96. Itam, E., Wornom, S., Koobus, B., Dervieux, A. (2018). Hybrid simulation of high-Reynolds number flows relying on a variational multiscale model. In Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Hoarau, Y., Peng, S.-H., Schwamborn, D., Revell, D. (eds). Springer, Berlin.
  97. Itam, E., Wornom, S., Koobus, B., Dervieux, A. (2019). A volume-agglomeration multirate time advancing for high Reynolds number flow simulation. Int. J. Numer. Methods Fluids, 89, 326–341.
  98. Ivan, L. (2011). Development of high-order ceno finite-volume schemes with block-based adaptive mesh refinement. PhD Thesis, University of Toronto.
  99. Ivan, L. and Groth, C.P.T (2007). High-order central ENO finite-volume scheme with adaptive mesh refinement, AIAA 2007-4323. 18th AIAA Computational Fluid Dynamics Conference, June 25–28, Miami, FL.
  100. Ivan, L. and Groth, C.P.T. (2014). High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. J. Comp. Phys., 257, 830–862.
  101. Ivan, L., De Sterck, H., Groth, C.P.T. (2014). A fourth-order solution-adaptive CENO scheme for space-physics flows on three-dimensional multi-block cubed-sphere grids. 22nd Annual Conference of the CFD Society of Canada, Toronto, Ontario.
  102. Jakobsen, B. and Rosendahl, F. (1994). The Sleipner platform accident. Structural Engineering International, 4(3), 190–193.
  103. Jones, W.T., Nielsen, E.J., Park, M.A. (2006). Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom reduction. AIAA Paper, 2006–1150.
  104. Karypis, G. and Kumar, V. (2006). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1), 359–392.
  105. Kirby, R. (2002). On the convergence of high resolution methods with multiple time scales for hyperbolic laws. Math. Comput., 72(243), 129–1250.
  106. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B. (2005). A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys., 206(1), 363–393.
  107. Koobus, B., Alauzet, F., Dervieux, A. (2011). Some compressible numerical models for unstructured meshes. In CFD Hanbook, Magoulès, F. (ed.). CRC Press, London.
  108. Koshizuka, S., Tamako, S., Oka, Y. (1995). A particle method for incompressible viscous flows with fluid fragmentation. Comput. Fluid Dyn. J., 4(1), 29–46.
  109. Lafon, F.C. and Abgrall, R. (1993). ENO schemes on unstructured meshes. INRIA Report 2099.
  110. Lallemand, M.H., Steve, H., Dervieux, A. (1992). Unstructured multigridding by volume agglomeration: Current status. Comput. Fluids, 21, 397–433.
  111. Layton, W., Lee, H.K., Peterson, J. (2002). A defect-correction method for the incompressible Navier-Stokes equations. Appl. Math. Comput., 129(1), 1–19.
  112. Leicht, T. and Hartmann, R. (2010). Error estimation and anisotropic mesh refinement for 3D laminar aerodynamic flow simulations. J. Comp. Phys., 229(19), 7344–7360.
  113. Levy, W., Laflin, K.R., Tinoco, E.N., Vassberg, J.C., Mani, M., Rider, B., Morrison, J.H., Wahls, R.A., Morrison, J.H., Brodersen, O.P. et al. (2017). Summary of data from the fifth AIAA CFD drag prediction workshop. 51th AIAA Aerospace and Sciences Meeting, AIAA-2013-0046, Dallas, TX.
  114. Löhner, R. (1989). Adaptive remeshing for transient problems. Comput. Methods Appl. Mech. Eng., 75, 195–214.
  115. Löhner, R., Morgan, K., Zienkiewicz, O.C. (1984). The use of domain splitting with an explicit hyperbolic solver. Comput. Methods Appl. Mech. Eng., 45, 313–329.
  116. Loseille, A. (2008). Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides. Application à la prédiction haute-fidélité du bang sonique. PhD Thesis, Université Pierre et Marie Curie, Paris VI [in French].
  117. Loseille, A. and Löhner, R. (2010). Adaptive anisotropic simulations in aerodynamics. 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2010-169, Orlando, FL.
  118. Loseille, A. and Menier, V. (2013). Serial and parallel mesh modification through a unique cavity-based primitive. In Proceedings of the 22th International Meshing Roundtable, Sarrate, J. and Staten, M. (eds). Springer, Berlin.
  119. Loseille, A., Dervieux, A., Frey, P.J., Alauzet, F. (2007). Achievement of global second-order mesh convergence for discontinuous flows with adapted unstructured meshes. AIAA Paper, 2007–4186.
  120. Loseille, A., Dervieux, A., Alauzet, F. (2010a). A 3D goal-oriented anisotropic mesh adaptation applied to inviscid flows in aeronautics. 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2010-1067, Orlando, FL.
  121. Loseille, A., Dervieux, A., Alauzet, F. (2010b). Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comput. Phys., 229, 2866–2897.
  122. Loseille, A., Frazza, L., Alauzet, F. (2018). Comparing anisotropic adaptive strategies on the 2nd AIAA Sonic Boom Workshop geometry. AIAA J., 56(3), 938–952.
  123. Mbinky, E. (2013). Adaptation de maillages pour des interpolations d’ordre très élevé. Thesis, Pierre et Marie Curie, Paris VI.
  124. Mbinky, E., Alauzet, F., Loseille, A. (2012). High-order interpolation for mesh adaptation. Proceedings of ECCOMAS CFD, Vienna.
  125. Mer, K. (1998). Variational analysis of a mixed element volume scheme with fourth-order viscosity on general triangulations. Comput. Methods Appl. Eng., 153, 45–62.
  126. Michal, T., Babcock, D.S., Kamenetskiy, D., Krakos, J., Mani, M., Glasby, R.S., Erwin, T., Stefanski, D. (2017). Comparison of fixed and adaptive unstructured grid results for drag prediction workshop 6. AIAA Paper, 2017-0961. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX.
  127. Michal, T., Kamenetskiy, D., Krakos, J. (2018a). Anisotropic adaptive mesh results for the third high lift prediction workshop (HiLiftPW-3). AIAA Paper, 2018-1257. 56th AIAA Aerospace Sciences Meeting, Kissimmee, FL.
  128. Michal, T., Kamenetskiyd, D.S., Marcum, D., Alauzet, F., Frazza, L., Loseille, A. (2018b). Comparing anisotropic error estimates for ONERA M6 wing RANS simulations. AIAA Paper, 2018-0920. 56th AIAA Aerospace Sciences Meeting, Kissimmee, FL.
  129. Mirebeau, J.-M. (2010). Optimal meshes for finite elements of arbitrary order. Constr. Approx., 32, 339–383.
  130. Mugg, P.R. (2012). Construction and analysis of multi-rate partitioned Runge-Kutta methods. Thesis, Naval Postgraduate School, Monterey, CA.
  131. Oberkampf, W.L. and Trucano, T.G. (2002). Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci., 38(3), 209–272.
  132. Ouvrard, H., Kozubskaya, T., Abalakin, I., Koobus, B., Dervieux, A. (2009). Advective vertex-centered reconstruction scheme on unstructured meshes. RR-7033, INRIA.
  133. Pagnutti, D. and Ollivier-Gooch, C. (2009). A generalized framework for high order anisotropic mesh adaptation. Comput. Struct., 87, 670–679.
  134. Park, M.A. and Nemec, M. (2017). Near field summary and statistical analysis of the second AIAA Sonic Boom Prediction Workshop. 23th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2017-3256, Denver, CO.
  135. Picasso, M. (2003). An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comp., 24(4), 1328–1355.
  136. Pierce, N.A. and Giles, M.B. (2000). Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Review, 42(2), 247–264.
  137. Pierce, N.A. and Giles, M.B. (2004). Adjoint and defect error bounding and correction for functional estimates. J. Comp. Phys., 200(2), 769–794.
  138. Rangarajan, A.M., May, G., Dolejsi, V. (2017). Adjoint-based anisotropic mesh adaptation for discontinuous Galerkin methods using a continuous mesh model. 23rd AIAA Computational Fluid Dynamics Conference. 10.2514/6.2017-3100.
  139. Rangarajan, A.M., Balan, A., May, G. (2018). Mesh optimization for discontinuous Galerkin methods using a continuous mesh model. AIAA J., 56(10), 4060–4073.
  140. Rentrop, P. (1985). Partitioned Runge-Kutta methods with stiffness detection and step-size control. Numer. Mathematik, 47, 545–564.
  141. Rice, J.R. (1960). Split Runge-Kutta method for simultaneous equations. J. Res. Natl. Inst. Stand. Technol., 64B(3), 151–170.
  142. Rogé, G. and Martin, L. (2008). Goal-oriented anisotropic grid adaptation / Adaptation de maillage anisotrope oriente objectif. Comptes rendus mathematique, 346(19–20), 1109–1112.
  143. Rumsey, C.L. and Slotnick, J.P. (2015). Overview and summary of the second AIAA High Lift Prediction Workshop. J. Aircraft, 52(4), 1006–1025.
  144. Rumsey, C.L., Slotnick, J.P., Long, M., Stuever, R.A., Wayman, T.R. (2011). Summary of the first AIAA CFD High-Lift Prediction Workshop. J. Aircraft, 48(6), 2068–2079.
  145. Rumsey, C.L., Slotnick, J.P., Sclafani, A.J. (2018). Overview and summary of the third AIAA high lift prediction workshop. AIAA-Paper, 2018-1258. 56th AIAA Aerospace and Sciences Meeting, AIAA-2018-1258, Kissimmee, FL.
  146. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA.
  147. Sand, J. and Skelboe, S. (1992). Stability of backward Euler multirate methods and convergence of waveform relaxation. BIT, 32, 350–366.
  148. Sandu, A. and Constantinescu, E. (2009). Multirate explicit Adams methods for time integration of conservation laws. J. Sci. Comp., 38, 229–249.
  149. Savcenco, V., Hundsdorfer, W., Verwer, J.G. (2007). A multirate time stepping strategy for stiff ordinary differential equations. BIT, 47, 137–155.
  150. Seny, B., Lambrechts, J., Toulorge, T., Legat, V., Remacle, J.-F. (2014). An efficient parallel implementation of explicit multirate Runge-Kutta schemes for discontinuous Galerkin computations. J. Comput. Phys., 256, 135–160.
  151. Shu, C.W. and Cockburn, B. (2001). Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16(3), 173–261.
  152. Shu, C.W. and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439–471.
  153. Skelboe, S. (1989). Stability properties of backward differentiation multirate formulas. Appl. Numer. Math., 5, 151–160.
  154. Tinoco, E.N., Brodersen, O.P., Keye, S., Laflin, K.R., Feltrop, E., Vassberg, J.C., Mani, M., Rider, B., Wahls, R.A., Morrison, J.H. et al. (2017). Summary of data from the Sixth AIAA CFD Drag Prediction Workshop: CRM cases 2 to 5. 55th AIAA Aerospace and Sciences Meeting, AIAA-2017-1208, Grapevine, TX.
  155. Venditti, D.A. and Darmofal, D.L. (2000). Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow. J. Comput. Phys., 164(1), 204–227.
  156. Venditti, D.A. and Darmofal, D.L. (2002). Grid adaptation for functional outputs: Application to two-dimensional inviscid flows. J. Comput. Phys., 176(1), 40–69.
  157. Venditti, D.A. and Darmofal, D.L. (2003). Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows. J. Comput. Phys., 187(1), 22–46.
  158. Verfürth, R. (1996). A Review of A Posteriori Error Estimation and Adaptative Mesh-Refinement Techniques. Wiley Teubner Mathematics, New York.
  159. Verfürth, R. (2013). A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford.
  160. Weiner, R., Arnold, M., Rentrop, P., Strehmel, K. (1993). Partioning strategies in Runge-Kutta type methods. IMA J. Numer. Analysis, 13, 303–319.
  161. Yan, G. and Olivier-Gooch, C.F. (2015). Accuracy of discretization error estimation by the error transport equation on unstructured meshes–Nonlinear systems of equations. 22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2015-2747, Dallas, TX.
  162. Yan, G. and Ollivier-Gooch, C.F. (2017). Towards higher order discretization error estimation by error transport using unstructured finite-volume methods for unsteady problems. Comput. Fluids, 154, 245–255.
  163. Yano, M. and Darmofal, D.L. (2014). Anisotropic simplex mesh adaptation by metric optimization for higher-order DG discretizations of 3D compressible flows. 10th WCCM, July 2012, Sao Paolo, Blucher Mechanical Engineering Proceedings, 1(1), 1–16.
  164. Yano, M., Modisette, J.M., Darmofal, D.L. (2011). The importance of mesh adaptation for higher-order discretizations of aerodynamics flows. 20th AIAA Computational Fluid Dynamics Conference, AIAA-2011-3852, Honolulu, HI.
  165. Zienkiewicz, O.C. and Zhu, J.Z. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Meth. Eng, 33(7), 1331–1364.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.141.2.23