Index

Note: Page numbers followed by f indicate figures, and t indicate tables.

A

Absorption 127–128
of nanomaterials 191
TCES materials and 130
thermal properties for 387t
Active LTES 95f, 102–118
chilled water-PCM cool TES 115–118, 115f, 116f, 118f
essential aspects of 121t
merits of 123
operation modes for 117t
essential aspects of 121t
HTM and 102
ITES 85, 111–115
encapsulated ice storage 115, 115f
external melt-ice-thermal storage system 111, 111f
HTM and 111–112
ice slurry storage system 114, 114f
ice storage using harvesting method 113–114, 113f
internal melt-ice-thermal storage 112, 112f, 113f
water with 112
Active solar energy 229t
Active solar heating storage 76–77, 76f
Adsorption 127–128
nanotechnology in TES and 174
open adsorption systems, for TCES 131–134, 133f, 134f
TCES materials and 130
thermal properties for 387t
Air handling cooling system, MPCM with 110, 110f
Air handling unit (AHU) 334
Ammonium nitrate (NH4NO373
Analytical/numerical modeling and simulation, for TES systems 247–256
Aquifer thermal energy storage (ATES) 146–149, 146f, 148t
BTES and 150–151
for building heating 147, 149f
CO2 and 352, 353t, 354t
COP for 149
cost analysis for 352–355
design specifications of 353t
economic analysis of 355t
expense of 355
installation cost of 353
limitations of 149
Area units 369t
Artificial neural network (ANN) 311
soft control method and 315
ASHRAE 348
Atomic force microscopy (AFM) 171t
Attenuated total reflection (ATR) 171t
Attenuated total reflection-Fourier transform infrared (ATR-FTR) 171t

B

Batteries 28–30
bio-batteries 36
comparison of technologies 31t
flow batteries 30t, 31t
electrochemical energy storage and 28
electrolytes in 29
schematic for 30f
types of 30t, 43t
lead-acid 31t
characteristics of 45t
depth of discharge for 42f
operation and maintenance costs of 43t
Li-ion 28, 31t
characteristics of 45t
operation and maintenance costs of 43t
NaS 28, 31t
characteristics of 45t
operation and maintenance costs of 43t
schematic for 29f
NiCd 
characteristics of 45t
operation and maintenance costs of 43t
nickel-based 31t
operation and maintenance costs of 43t
PSB 30t, 43t
redox flow 29
types of 28
VRB 30t, 43t
energy efficiency of 30
Zn-air 28
characteristics of 45t
operation and maintenance costs of 43t
ZnBr 28, 30t, 43t
characteristics of 45t
operation and maintenance costs of 43t
Beacon POWER flywheel 24, 24f
Bio-batteries 36
Biomass energy 
LCTs and 205t
sources 8
theoretical and technical potential and availability of 9t
Biomethane 16t
Borehole thermal energy storage (BTES) 150–151, 150f, 151f, 151t
expense of 355
BP Statistical Review of World Energy 5
BSim 257t
Buffer storage, economic feasibility of 399t
Building fabric storage, as low energy thermal storage 204
Building load prediction 317–319
Building thermal mass (BTM) 317
load shifting and 323t
night setup control and 319
peak load and 319–320
Buildings 
in developed countries, energy consumption by 11, 11t
green 228
heating for 
ATES for 147, 149f
TCES for 140–142, 141f
low energy thermal storage for 362–364
LTES for 83, 84f, 94, 360t
performance assessment of 89–94
medium and high temperature thermal storage in 37–38
STES and 73–75
sustainable TES and 228, 232f
TES in 59
whole building simulation program 256
Bulk modulus, for high temperature STES 80f

C

Calcium sulfate 132t
Capacitors, for electrostatic energy storage 31, 32f
Capric acid 96
Carbon dioxide emissions (CO25
ATES and 352, 353t, 354t
catalytic hydrogenation of CO2 17t
EACE 13–15, 15t
energy efficiency and 12, 17t
exergy and 289–290
geothermal energy storage and 218
LCTs and 204
SeTES and 352–353
targets for 13, 15t
TES system optimization and 335, 336
value-added management for 18t
Carbon emissions 3
energy management and 13
targets for 13, 15t
Carbon footprint 
climate change and 13
energy efficiency and 12
with STES 69
with TCES materials 130
TermoDeck and 75
Carbon-free TES 359–362
Catalytic hydrogenation of CO2 17t
Cavern thermal storage 152–155, 152f, 153f
Ceilings, STES in 74
Charging control, for TES systems 319, 320f
Chemical looping combustion (CLC) 223, 225f, 226t
Chemical storage 127
classification of 128f
Chemicals 
in nanomaterials 167f
value-added management for 17t
Chemische Wärmespeicherung— Niedertemperatur (CWS-NT) 138–140, 139f
Chilled water packed bed LTES, systems design for 239–241, 240t
Chilled water-PCM cool TES 115–118, 115f, 116f, 118f
essential aspects of 121t
merits of 123
operation modes for 117t
China 
energy consumption by 3
NaS battery in 28
WMEC and 5
CHP thermal storage 223–227
Circular dichroism (CD) 171t
Classical control method, PID and 313
Classical Stefan problem 247, 249t
Climate change 13
Closed adsorption system, for TCES 134–135, 135f
Closed loop system, for BTES 150–151
Closed-loop controllers 312, 313f
Coal 
reserves of 2f
for solar hydrogen production 35
units and conversion factors for 367t
Coal bed methane, value-added management for 16t
Coefficient of performance (COP) 
for ATES 149
of GSHP 220, 222, 222f
Color coatings, LTES PCM and 101, 102t
Comfort cooling, with LTES PCM 108–111, 109f
Complex problems 325
Compressed air energy storage (CAES) 22t, 26–28, 27f
characteristics of 45t
operation and maintenance costs of 43t
Compressive strength, with STES 69
Concentrating solar power (CSP) 212, 212t, 213–215, 213f
status of 214t
Conservation of energy 
exergy and 281
law of 21
Conservation of mass, exergy and 281
Constant-proportion control 322–324
Container materials, for high temperature salts 395t
Control law 314
Control methodologies 
for HVAC 314f
for TES systems 313–315, 316–326
Control systems, of TES systems 311–326
comparison of 316t
Conversion factors, units and 367-373
area units 369t
density units 370t
dynamic viscosity units 372t
for heat contents 367t
high pressure units 371t
kinematic viscosity units 372t
length units 369t
low pressure units 371t
mass flow units 371t
mass units 370t
multiples and submultiples of 368t
speed units 371t
torque units 372t
volumetric gas flow units 370t
volumetric liquid flow units 370t
installations with 402t
performance tests for 348
Cooling, heating, and power plant (CHCP) 223–225, 226–227, 227f
Crude oil, units and conversion factors for 367t
Cryogenic energy storage (CES) 37
schematic for 37f
CTES, eutectics and 121t
Cycling capacity, depth of discharge and 42f
Cylindrical geometry, for TES systems 262t

D

Deforming grid method, for LTES modeling and simulation 248
Density units 370t
Depth of discharge 38, 42f
Desalination systems, TES and 62
Developed countries 
buildings in, energy consumption by 11, 11t
renewable energy by 3
Developing countries, energy consumption by 3
Differential scanning calorimetry (DSC) 281t, 282t
Differential thermal analysis (DTA) 281t, 282t
Dimethyl adipate (DMA) 189, 190f
Direct current (DC) 
electrostatic energy storage and 31
for SMES 33
Direct impregnation method, for LTES PCM 87
Discharging control 
for peak load 320
for TES systems 319, 320f
Double-layered LTES PCM 96
Drake Landing Solar Community 150, 150f
Dynamic light scattering (DLS) 171t
Dynamic viscosity units 372t

E

Earth heat exchange (EHEX) 217
Earth-coupled heat pump (ECHP) 217
Earth-coupled water source heat pump (ECWSHP) 217
Earth-to-air thermal storage 155–156
Ecologically allowable CO2 emissions (EACE) 13–15, 15t
Elastic potential energy, CAES and 26
Electric heating system, STES with 75
Electric Power Research Institute 289–290
Electrical energy 
consumption of, from developed country buildings 11
energy storage for 21, 22
peak load for 21
Electrical energy storage (EES) 
characteristics of 45t
energy storage and 41
metal reserves for 43t
operation and maintenance costs of 43t
technical evaluation and comparison of technologies 45t
types of 22t
Electrochemical CO2 conversion, value-added management for 17t
Electrochemical double-layer capacitors (EDLCs) 22t
characteristics of 45t
operation and maintenance costs of 43t
Electrochemical energy storage  See Batteries
Electrolytes, in flow batteries 29
Electrostatic energy storage 31–33
capacitors for 31, 32f
supercapacitors for 32–33, 32f
Embedded coil elements, with STES 75
EMPA 135
Encapsulated ice storage 115, 115f
Encapsulation 
for LTES 
materials 86–89
PCM 86–89, 91t
microencapsulation 
for LTES PCM 87–88, 89f
with SEM 88, 90f
MPCM 95
with air handling cooling system 110, 110f
color coatings and 101
comfort cooling and 108
phase change characteristics of 109
slurry and 108, 108f
NEPCM 
n-tetradecane for 177–178
TEM of 177, 177f, 178f
Energy  see also specific types
common forms of 286t
exergy and 281–283, 285t
production of 1–3
TES systems and 281–290
Energy backup, TES and 58
Energy conservation 
energy security and 12
GTEC and 5–7
need for 11–18
TES and 62
Energy consumption 
by China 3
by developing countries 3
with external melt-ice thermal storage 122
by India 3
low energy thermal storage and 203
OECD and 3
population and 7, 8f
predictions for 7, 8f
primary 
from developed country buildings 11
TermoDeck and 74
Energy density 
CSP and 212t
energy storage and 38, 39f
for high temperature STES 79f
with STES 68f
Energy efficiency 
carbon footprint and 12
of CES 37
CO2 and 12, 17t
criteria ranking for 231f
energy storage and 38–39
exergy and 283, 286
exergy efficiency and 290t, 307
of LTES 85
need for 11–18
of PHS 25
renewable energy and 13
systems design for 13, 14t
TES and 58, 62
of VRB 30
Energy management 
carbon emissions and 13
need for 11–18
with PHS 26
with SeTES 145
value-added 13
Energy piles thermal storage 156
Energy redistribution 
with LTES PCM 106, 106f
with TES 59
Energy resources 1–3, 2f
Energy security 
energy conservation and 12
energy storage and 22
exergy and 289
Energy sources 1–3
in TES system controller 312
Energy storage 21–56 See also Thermal energy storage
by biological medium 36
capacity of 38
of ITES 85
of PCM-TES 85
by chemical medium 28–30
control and monitoring of 39
durability of 41
economics of operation for 39–40, 41f
EES and 41
for electrical energy 21, 22
by electrical medium 31–33
energy density and 38, 39f
energy efficiency and 38–39
energy security and 22
with glucose 36
by hydrogen medium 34–35
life expectancy of 39
by magnetic medium 33
by mechanical medium 23–28
off-peak load and 22
operational constraints for 41
power density and 38, 39f
for renewable energy 21
response time and 38
self-discharge and 38, 40f
self-sufficiency of 40
significance of 21–22
with STS solid storage materials 66
technical evaluation and comparison of technologies 38–41
thermal 36–38
types of 22–23
Energy vectors, management of 13
EnergyPlus 257t
Enthalpy 
latent heat of 
with LTES 121
for MPCM 101
with salt hydrates 121
PCM and 250
quasi-enthalpy method 250, 251f
Entropy generation number 287
Environment 
bio-batteries and 36
climate change and 13
CSP and 212t
exergy and 281, 288–290
LTES and 121
nanomaterials and 191
STES and 69
TCES materials and 130
TermoDeck and 75
TES and 62, 280t
Environmental SEM (ESEM) 171t
Equation-based semi-analytical (ESA) 320–321
ESim 257t
ESP-r 257t
Ethyl trans-cinnamate (EC) 179, 190f
Eutectics 
CTES and 121t
LTES and 121t, 122
PCM and 96, 385t
Exchanged/evolved gas measurement 281t
Exergy 
balance of 288f
definitions for 284t
energy and 281–283, 285t
energy efficiency and 286
environment and 288–290
PCM and 291t
for performance assessment of TES systems 286–288
quality concepts for 285–286
TES systems and 281–290
thermoeconomic optimization and 332
Exergy efficiency 
energy efficiency and 290t, 307
forms of 289t
multiobjective optimization and 337
TES system optimization and 334
Exponential change reset strategy 322
External energy storage systems  See Flow batteries
External melt-ice-thermal storage system 111, 111f
merits of 122

F

Fabric, LTES and 94
PCM and 97–100
Fatty acid esters 297t
Fatty acids 
LTES and 118
PCM and 297t
thermal properties of 386t
Feed forward controllers 312
Feedback control 312, 313f
peak load and 321
Fertilizers 17t
Finned surface models 263t
Fission energy 9
Fixed grid method 248
Floor heating system, with TCES 138–140, 140f
Floor slabs, STES in 74
Flow batteries 30t, 31t
electrochemical energy storage and 28
electrolytes in 29
redox 29
schematic for 30f
types of 30t, 43t
Fluorescence correlation spectroscopy (FCS) 171t
Flywheels 
characteristics of 45t
for kinetic energy storage 22t, 23–25
operation and maintenance costs of 43t
types of 24
Fossil fuels  See also Coal; Natural gas; Petroleum energy
CAES and 27
energy consumption predictions for 7–8
increased use of 2–3
low energy thermal storage and 204f
reserves of 2, 3f
for solar hydrogen production 35
TES and 62
value-added energy management for 16t
Fracture toughness 
with high temperature STES 80f
with STES 69
Free cooling 
as low energy thermal storage 204
LTES PCM and 102–108, 103f, 104f
studies on 205t, 208t
Front tracking scheme, for LTES modeling and simulation 248
Fuel cells 229t
Fusion energy 9 See also Latent heat of fusion
resources, theoretical and technical potential and availability of 9t
theoretical and technical potential and availability of 9t, 10
Fuzzy logic control (FLC) 311
PID and 315
soft control method and 315

G

Gain scheduling 313
Genetic algorithm (GA) 337
Geo-exchange (GHEX) 217
Geothermal energy 229t
high grade 216–217
low grade 216–217
resources, theoretical and technical potential and availability of 9–10, 9t
storage of 216–222
lithology and heat transfer with 218t
Geothermal heat transfer fluids 18t
GHEX  See Geo-exchange
Gigajoules (GJ) 7
GJ  See Gigajoules
Glazing 
low energy building design and 362–364
LTES PCM and 100–101, 100f
STES and 76
Global energy demand and consumption 5–11, 6f
breakdown of 10–11, 10f
Global total energy consumption (GTEC) 5–7, 7f
Glucose 36
Gravel/water, for cavern thermal storage 153, 153f
Green buildings 228
Greenhouse gases (GHG)  See also Carbon dioxide emissions
CAES and 27
from developed country buildings 11
exergy and 289
LCTs and 204
LEED and 228, 229
LTES and 349
SeTES and 145
solar energy and 211
sustainable TES and 203
TES and 57–58, 62, 279
Greenhouse system 220, 221f
Ground coupled heat pumps (GCHPs) 211, 217, 218
with ice storage system 218, 219f
integrated approaches to 219t
LCTs and 205t
Ground source heat pump (GSHP) 217
component specifications and characteristics for 220t
COP of 220, 222, 222f
with LHS 218, 220f

H

Hard control method 313, 314
Heat storage capacity 129f
Heat transfer fluid (HTF) 287
CSP and 212t
for high temperature TES 303t
PCM and 287
Heat transfer medium (HTM) 
active LTES and 102
ITES and 111–112
LTES and 84–85
for rock thermal storage 157
Heating, ventilation, and air conditioning (HVAC) 
control methodologies for 314f
low energy building design and 362–364
LTES and 83
Heuristic control 322
Hexadecane 108
High grade geothermal energy 216–217
High pressure units 371t
High temperature liquids, state of development for 399t
High temperature salts, container materials for 395t
High temperature solids, state of development for 399t
High temperature STES 77–78, 78f, 79f, 80f
High temperature TES 303t
High temperature thermal storage 37–38
High-density polyethylene (HDPE) 88
Hollow core floor slab, for STES 74
Hot water, for cavern thermal storage 152, 152f
Hybrid control method 315
Hybrid method, for LTES modeling and simulation 248
Hybrid nanocomposite (HyNC) 188
preparation and thermophysical characterization of 190f
Hybrid nanomaterials 167–174, 176f
Hybrid TES 223
Hydro energy 
PHS 22t, 25–26, 25f
CAES and 26, 27–28
characteristics of 45t
operation and maintenance costs of 43t
sources 8
theoretical and technical potential and availability of 9t
Hydrogen storage systems 28, 34–35
characteristics of 45t
hydrogen-based fuel cells 34–35, 34f
operation and maintenance costs of 43t
solar hydrogen production 35, 35f
Hydrogen-based fuel cells 34–35, 34f

I

Ice slurry storage system 114, 114f
Ice storage 
GCHPs with 218, 219f
using harvesting method 113–114, 113f
Ice-thermal energy storage (ITES) 85, 111–115
encapsulated ice storage 115, 115f
external melt-ice-thermal storage system 111, 111f
HTM and 111–112
ice slurry storage system 114, 114f
ice storage using harvesting method 113–114, 113f
internal melt-ice-thermal storage 112, 112f, 113f
multiobjective optimization for 337, 338t, 339f, 340, 341t, 342t
operating cycle of 334
PCM and 337, 339f, 340f
peak load and 317
refrigerants in 334
salvage value for 336
schematic of 335f
systems design for 238–239
test results on 350t
water with 112
India, energy consumption by 3
Infrared spectroscopy (IR) 171t
Instantaneous power 38–39
Institute of Thermodynamics and Thermal Engineering (ITW) 131
Insulation 
SIP 96, 97f
for UTES 154, 154t
Integrated energy storage systems, electrochemical energy storage and 28
Intermediate models 251, 254t
Internal melt-ice-thermal storage 112, 112f, 113f, 122
International Energy Agency (IEA) 5
Task 32 142, 143t
Iron carbonate 132t
Iron hydroxide 132t

K

Kinematic viscosity units 372t
Kinetic energy storage, flywheels for 22t, 23–25

L

Latent heat of enthalpy 
with LTES 121
for MPCM 101
with salt hydrates 121
Latent heat of fusion 
for LTES 85, 86
for metal alloys 381t
for MPCM 108
for NEPCM 177
for PCM 280t
Latent heat storage materials (LHS) 
GSHP with 218, 220f
LCTs and 211–212
nanomaterials in 174–189
Latent thermal energy storage (LTES) 60–61, 83–126 See also Active LTES; Passive LTES
active 95f, 102–118
analytical/numerical modeling and simulation for 247–256
for buildings 83, 84f, 94, 360t
performance assessment of 89–94
chemical properties for 86
chilled water-PCM cool TES 115–118, 115f, 116f, 118f
essential aspects of 121t
merits of 123
operation modes for 117t
economic aspects of 86
environment and 121
eutectics and 121t, 122
exergy and 286, 287–288, 351–352, 351t, 352f
external melt-ice-thermal storage system 111, 111f
merits of 122
fabric and 94
fatty acids and 118
GHG and 349
heat storage capacity for 129f
HTM and 84–85
HVAC and 83
internal melt-ice-thermal storage 112, 112f, 113f
merits of 122
kinetic properties for 86
latent heat of enthalpy with 121
latent heat of fusion for 85, 86
materials for 
encapsulation of 86–89
limitations of 122
merits of 118–122
properties of 86
published data on 393t
paraffins for 118–122
passive 94–101, 97f
PCM and 84f, 349, 351–352, 351t, 352f, 359
color coatings and 101, 102t
comfort cooling with 108–111, 109f
direct impregnation method for 87
double-layered 96
encapsulation for 86–89, 91t
energy redistribution with 106, 106f
fabric and 97–100
free cooling and 102–108, 103f, 104f
glazing structures and 100–101, 100f
manufacturers of 93t
microencapsulation method for 87–88, 89f
radiant cooling/heating coils and 105, 105f
selection of 92, 92t
shape stabilization of 88–89, 93f
TES and 97
thermal exchange with 106f, 107f
wallboard impregnation and 94–100, 96f, 98f
phase transformation with 121
physics of 83–85
salt hydrates for 122, 188
state of development for 399t
systems 
cost analysis for 349–352
design for 238–241
economic analyses of 351t
economic feasibility of 349–352
limitations of 123
merits of 122–123
TES and 83
thermal conductivity with 121
thermal load for 89
thermal storage and 122
thermophysical properties for 86
types of 85
Lauric acid 96
Law of conservation of energy 21
Lead-acid batteries 31t
characteristics of 45t
depth of discharge for 42f
operation and maintenance costs of 43t
Leadership in energy and environmental design (LEED) 227–232
Length units 369t
Linear change reset method 322
Liquid storage materials 
for solar power plants 363t
for STES 66
thermal properties of 375–395
Lithium-ion batteries (Li-ion) 28, 31t
characteristics of 45t
operation and maintenance costs of 43t
Load shifting 
BTM and 323t
classification of 324f
for peak load 319–320
for TES systems 317, 318f
Long-term sensible thermal storage 68–69
Long-term TES, systems design for 241–242
Low carbon technologies (LCTs) 204–216, 205t
Low energy thermal storage 
for buildings 362–364
fossil fuels and 204f
sustainable TES and 203–227
Low grade geothermal energy 216–217
Low pressure units 371t
Low temperature thermal storage 37
Lower convective zone (LCZ) 72, 72f
Lyapunov's stability theory 314

M

Magnesium chloride (MgCl) 73
Magnesium sulfate 132t
Mass flow units 371t
Mass spectroscopy (MS) 171t
Mass units 370t
Material efficiency criteria, ranking for 231f
Medium temperature thermal storage 37–38
Metal reserves, for EES 43t
Methane 16t
Methanol 17t
Methyl cinnamate (MC) 189
Microencapsulated PCM (MPCM) 95
with air handling cooling system 110, 110f
color coatings and 101
comfort cooling and 108
latent heat of enthalpy for 101
latent heat of fusion for 108
phase change characteristics of 109
slurry and 108, 108f
Microencapsulation 
for LTES PCM 87–88, 89f
with SEM 88, 90f
Model-based predictive controls (MPC) 313, 315, 320, 325f, 327f
peak load and 325
uncertainty-based control in 326, 328f
Multiobjective optimization 329, 336–342, 337t
for ITES 337, 338t, 339f, 340, 341t, 342t
Multiwalled carbon nanotubes (MWCNTs) 177

N

Na2CO3  See Sodium carbonate
NaCl  See Sodium chloride
NaNiCl 43t, 45t
Nanoencapsulated PCM (NEPCM) 
latent heat of fusion for 177
n-tetradecane for 177–178
preparation and characterization of 184t
TEM of 177, 177f, 178f
Nanofluids, thermal conductivity for 283f
Nanomaterials 163–202
absorption of 191
adsorption of 174
classification of 165f
dimensionality classification of 168f
environment and 191
Gleiter's classification schema for 167f
global production of 165t
hybrid 167–174, 176f
impact of 164t
in LHS 174–189
mainstream synthesizing methods for 169t
manufacturing strategies for 166f
merits of 189–191
in PCM 174–189
evaluation of thermal storage properties 175–189
thermal conductivity for 180t
physicochemical characteristics of 175t
preparation and characterization of 163–167
safety with 191
thermal conductivity for 187t
thermal storage of 189
NaOH  See Sodium hydroxide
Natural gas 
reserves of 2f
for solar hydrogen production 35
units and conversion factors for 367t
value-added management for 16t
NbTi  See Niobiumtitane
Near-field scanning optical microscopy (NSOM) 171t
N-eicosane 97
Net zero emissions 3
NH4NO3  See Ammonium nitrate
NiCd batteries 
characteristics of 45t
operation and maintenance costs of 43t
Nickel-based batteries 31t
Night setup control 319, 319f
NiMH 43t, 45t
Niobiumtitane (NbTi) 33
N-octadecane 97
Nonconvective zone (NCZ) 72, 72f
N-tetradecane, for NEPCM 177–178
Nuclear energy 9
reserves of 2f
Nuclear magnetic resonance (NMR) 171t
Nuclear power, CAES and 27
Nuclear power plants, decommissioning of 9

O

Ocean energy sources 8, 9t
Oil 
units and conversion factors for 367t
value-added management for 16t
On/Off control  See Classical control method
Open adsorption systems, for TCES 131–134, 133f, 134f
Open loop system, for ATES 146
Open-loop controllers 312
Optimal control 325
Optimization, of TES systems 326–342, 328f
algorithm classification for 331t
phases of 329t
problem classification for 330t
Organization for Economic Co-operation and Development (OECD) 22
Oxidation-reduction principle 
bio-batteries and 36
hydrogen-based fuel cells and 34

P

P116 97
Packed bed models 
chilled water packed bed LTES, systems design for 239–241, 240t
for PCM 264t
for TES systems 264t
Packing factor, with STES 69
Parabolic trough solar power plant 215–216, 215f, 217t
Paraffins 
for LTES 118–122
PCM and 297t
Pareto optimization 329, 332f, 336–342, 339f
Particle swarm optimization 325
Passive LTES 94–101, 95f, 97f
Passive solar energy 229t
Passive solar heating storage 75–76, 76f
Payback period, multiobjective optimization and 337
Peak load (peak demand) 311
active LTES and 102, 109
BTM and 319–320
discharging control for 320
for electrical energy 21
feedback control and 321
load shifting for 319–320
management of 318f
minimization of 319
MPC and 325
PHS for 25
PID and 321
sustainable TES and 211
TermoDeck and 74
TES and 59
systems 317
wind-thermal-cold energy storage and 222
Petroleum energy  See also Natural gas; Oil
reserves of 2f
Petroleum products, units and conversion factors for 367t
cylindrical geometry for 262t
eutectics and 96, 385t
exergy and 291t
fatty acid esters and 297t
fatty acids and 297t
finned surface models for 263t
HTF and 287
inorganic substances for 379t
ITES and 337, 339f, 340f
latent heat of fusion for 280t
LTES and 84f, 349, 351–352, 351t, 352f, 359
color coatings and 101, 102t
comfort cooling with 108–111, 109f
direct impregnation method for 87
double-layered 96
encapsulation for 86–89, 91t
energy redistribution with 106, 106f
fabric and 97–100
free cooling and 102–108, 103f, 104f
glazing structures and 100–101, 100f
manufacturers of 93t
microencapsulation method for 87–88, 89f
radiant cooling/heating coils and 105, 105f
selection of 92, 92t
shape stabilization of 88–89, 93f
TES and 97
thermal exchange with 106f, 107f
wallboard impregnation and 94–100, 96f, 98f
mathematical models for 252t
modeling of 247–278, 260t
analysis of 261–266
approaches to 250, 250t
nanomaterials in 174–189
evaluation of thermal storage properties 175–189
thermal conductivity for 180t
NEPCM 
latent heat of fusion for 177
n-tetradecane for 177–178
preparation and characterization of 184t
TEM of 177, 177f, 178f
organic substances for 382t
packed bed models for 264t
paraffins and 297t
parameters for 399t
peak load and 317
physical factors in 249t
porous and fibrous material models for 265t
rectangular geometry for 260t
for residential applications 377t
salt hydrates and 297t
simulation of 247–278, 260t
analysis of 261–266
slurry models for 265t
for solar power plants 363t
spherical geometry for 262t
state of development for 399t
thermal conductivity for 280
thermal properties of 280, 385t
Phase change materials thermal energy storage (PCM-TES) 85
Piller's POWERBRIDGE 24
Polyethylene glycol (PEG) 96
Polysulphide bromide batteries (PSB) 30t, 43t
Population 
energy consumption and 7, 8f
growth of 8
Porous and fibrous material models 265t
for TES systems 265t
Potassium nitrate (KNO373
Power density, energy storage and 38, 39f
Power supply, for TES systems 316
Power-transfer chain 38–39
Pressurized water system 243
Primary energy consumption 
from developed country buildings 11
TermoDeck and 74
Priority-based control strategy 322
Proportional, integral, and derivative (PID) 311
classical control method and 313
FLC and 315
peak load and 321
Pumped hydro energy storage (PHS) 22t, 25–26, 25f
CAES and 26, 27–28
characteristics of 45t
operation and maintenance costs of 43t

Q

Quasi-enthalpy method 250, 251f

R

RADCOOL 257t
Radiant cooling/heating coils, LTES PCM and 105, 105f
Raman scattering (RS) 171t
Rectangular geometry, for TES systems 260t
Redox flow batteries 29
Refrigerants 
in GSHP 220t
in ITES 114, 334
value-added management for 18t
Renewable energy 
from bio-batteries 36
challenges of 230t
by developed countries 3
energy efficiency and 13
energy storage for 21
long-term STES and 68–69
SeTES and 145
short-term sensible thermal storage and 67
strengths of 230t
value-added management for 17t
versatile types of 229t
Response time, energy storage and 38
Rock bed, with STES 71–72, 71f
Rock mines, for CAES 27
Rock thermal storage 157, 158f
Roof pond thermal storage 157–158

S

Salt 
high temperature, container materials for 395t
for solar pond/lake STES 73
Salt caverns, for CAES 27
Salt hydrates 
latent heat of enthalpy with 121
for LTES 122, 188
PCM and 297t
Salvage value, for ITES 336
Scanning electron microscope (SEM) 171t, 180f
microencapsulation with 88, 90f
Scanning tunneling microscopy (STM) 171t
Sea water thermal storage 156–157
Seasonal thermal energy storage (SeTES) 145–162
BTES and 150–151
for building heating 147, 149f
CO2 and 352, 353t, 354t
COP for 149
cost analysis for 352–355
design specifications of 353t
economic analysis of 355t
expense of 355
installation cost of 353
limitations of 149
expense of 355
cavern thermal storage 152–155, 152f, 153f
CO2 and 352–353
comparison of storage concepts 155t
cost analysis for 352–355
earth-to-air thermal storage 155–156
economic feasibility of 352–355, 399t
energy management with 145
energy piles thermal storage 156
GHG and 145
investment costs for 356f
major project reviews 159t
renewable energy and 145
rock thermal storage 157, 158f
roof pond thermal storage 157–158
sea water thermal storage 156–157
state of development for 399t
technologies for 145–158
Second law of efficiency of thermal system 286
Second law of thermodynamics, exergy and 281
Self-discharge 
bio-batteries and 36
energy storage and 38, 40f
by flywheels 25
with STES 69
solid storage materials 66
by supercapacitors 33
Semi-analytical (SA) 320–321
Sensible thermal energy storage (STES) 60, 65–81
active solar heating storage 76–77, 76f
buildings and 73–75
with electric heating system 75
embedded coil elements with 75
energy density with 68f
glazing and 76
heat storage capacity for 129f
high temperature 77–78, 78f, 79f, 80f
liquid storage materials for 66
long-term 68–69
materials for 65–66
properties of 69
published data on 392t
technical specifications of 80t
parameters for 399t
passive solar heating storage 75–76, 76f
rock bed with 71–72, 71f
selection of materials and methodology 66–69
short-term 67
solar pond/lake with 72–73, 72f
solid storage materials for 65–66
state of development for 399t
stratification of 77, 78f
systems design for 237–238
technologies 69–77
thermal conductivity of 359
water with 69–71, 70f
Sensor, in TES system controller 312
Shape stabilization, of LTES PCM 88–89, 93f
Short-term sensible thermal storage 67
economic feasibility of 399t
Short-term TES, systems design for 242
Short-term thermal storage in piping systems, systems design for 242–243
Silicon oxide 132t
Simple models 251, 254t
Slurry 
ice slurry storage system 114, 114f
models 
for PCM 265t
for TES systems 265t
MPCM and 108, 108f
Small-angle X-ray scattering (SAXS) 171t
Sodium carbonate (Na2CO373
Sodium chloride (NaCl) 73
Sodium hydroxide (NaOH) 135–136
Sodium sulfur batteries (NaS) 28, 31t
characteristics of 45t
operation and maintenance costs of 43t
schematic for 29f
Soft control method 315
Solar energy 
active 229t
active solar heating storage 76–77, 76f
GHG and 211
LCTs and 205t, 211
passive solar energy 229t
passive solar heating storage 75–76, 76f
reserves of 2f
short-term sensible thermal storage and 67
for TES 362, 362f
Solar houses, in Turkey 301t
Solar hydrogen production 35, 35f
Solar pond/lake, with STES 72–73, 72f
Solar power 
CAES and 27
status of 214t
theoretical and technical potential and availability of 9t
Solar power plants 
high temperature thermal storage in 37–38
parabolic trough 215–216, 215f, 217t
storage media for 363t
Solar thermal facilities, installations with 401t
Solid storage materials 
for solar power plants 363t
for STES 65–66
thermal properties of 375–395
Solid/gas TCES 136–137, 136f, 137f
Sophisticated models 251, 254t
Sorption storage 127–128 See also Absorption; Adsorption
classification of 128f
water and 128
Speed units 371t
Spherical geometry 
for PCM 262t
for TES systems 262t
Stefan problem 247, 249t
Step change reset strategy 322
Storage capacity 
for energy 38
of ITES 85
of PCM-TES 85
for heat 129f
for STES 69
Storage capacity-based controls 322, 324f
Storage-priority control 324
Stratification, of STES 77, 78f
Structurally insulated panel (SIP) 96, 97f
Styrene-butadiene-styrene (SBS) 88
Sun-dependent energy sources 8, 9, 9t
Sun-independent energy sources 8, 9, 9t
Supercapacitors 22t, 32–33, 32f
characteristics of 45t
operation and maintenance costs of 43t
Superconductive magnetic energy storage (SMES) 22t, 33, 33f
characteristics of 45t
operation and maintenance costs of 43t
Supercooling, for LTES 86
PCM 88
Surface enhanced Raman spectroscopy (SERS) 171t
Sustainable buildings 228
Sustainable development, exergy and 283
Sustainable TES 203–235 See also Renewable energy
buildings and 228, 232f
CHP thermal storage 223–227
CLC 223, 225f, 226t
geothermal energy storage 216–222
GHG and 203
hybrid TES 223
LCTs 204–216
LEED and 227–232
low energy thermal storage and 203–227
performance indicators for 228t
wind-thermal-cold energy storage 222–223
Systems design 
for chilled water packed bed LTES 239–241, 240t
examples of 241–244
for ITES 238–239
for long-term TES 241–242
for LTES 238–241
for pressurized water system 243
for short-term TES 242
for short-term thermal storage in piping systems 242–243
for STES 237–238
for TES 237–245
for waste heat recovery 244

T

Temperature conversion formulas 372t
Terawatt-years (TWy) 2, 2f
TermoDeck 74
Thermal analysis (TA) 281t, 282t
Thermal conductivity 
for high temperature STES 79f
for LTES 86, 121
for nanofluids 283f
for nanomaterials 187t
for nanotechnology PCM 180t
for PCM 280
for STES 69, 359
for TCES materials 130
for UTES 155
Thermal containment unit (TCU) 178, 179f
Thermal energy storage (TES) 36–38 See also specific types
aspects of 58–59
in buildings 59
comparison of technologies 62, 63t
cost analysis for 349–355
economic and societal prospects for 347–357
economic feasibility of 349–355
energy redistribution with 59
generic operational mode of 57, 58f
GHG and 279
LTES and 83
PCM and 97
nanomaterials and 163–202
absorption of 191
adsorption and 174
classification of 165f
dimensionality classification of 168f
environment and 191
Gleiter's classification schema for 167f
global production of 165t
hybrid 167–174, 176f
impact of 164t
in latent heat storage materials 174–189
mainstream synthesizing methods for 169t
manufacturing strategies for 166f
merits of 189–191
in PCM 174–189, 178f, 180t
physicochemical characteristics of 175t
preparation and characterization of 163–167
safety with 191
thermal conductivity for 187t
thermal storage of 189
need for 59
parametric and cost comparison of 399-400
solar energy for 362, 362f
state of development for 399t
suitable material couples for 390t
system optimization 
CO2 and 335, 336
exergy efficiencies and 334
systems 
analytical/numerical modeling and simulation for 247–256
applications of 359–366
assessment of 279–310, 292t
case studies of 292t
characteristics and comparison of 302t
charging control for 319, 320f
commissioning of 347–349
control and optimization of 311–346
control methodologies for 313–315, 316–326
control systems of 311–326, 316t
cost of two-tank system 400t
cylindrical geometry for 262t
design rules of thumb for 397-398
discharging control for 319, 320f
energy and 281–290
exergy and 281–290
finned surface models for 263t
futuristic development of 364–365
installations with 401-404
load shifting for 317, 318f
modeling and simulation of 247–278, 260t
night setup control for 319, 319f
optimization of 326–342, 328f, 329t, 330t, 331t
packed bed models for 264t
peak load and 317
porous and fibrous material models for 265t
power supply for 316
properties of 279–281, 280t
rectangular geometry for 260t
research studies on 297t
slurry models for 265t
societal implications of 356–357
spherical geometry for 262t
thermoeconomic optimization for 330–336
systems design for 237–245
technologies for 57–64
types of 60–62
Thermal expansion coefficient 
for high temperature STES 79f
with STES 69
Thermal insulation, for UTES 154, 154t
Thermal load 59
for LTES 89
Thermal storage 
low energy 
for buildings 362–364
fossil fuels and 204f
sustainable TES and 203–227
LTES and 122
of nanomaterials 189
Thermoacoustimetry 281t
Thermochemical accumulator (TCA) 137–138, 138f, 139t
Thermochemical energy storage (TCES) 59, 61–62, 127–144
for building heating 140–142, 141f
closed adsorption system for 134–135, 135f
floor heating system with 138–140, 140f
heat storage capacity for 129f
materials 128–130
absorption and 130
adsorption and 130
carbon footprint with 130
environment and 130
thermal conductivity for 130
open adsorption systems for 131–134, 133f, 134f
phenomena of 127–128
principles of 128–130
solid/gas 136–137, 136f, 137f
state of development for 399t
systems 130–142
classification of 130, 132t
water and 140–142, 141f
Thermoeconomic optimization, for TES systems 330–336
Thermoelectrometry 281t
Thermogravimetric analysis (TGA) 281t, 282t
Thermomagnetometry 281t
Thermomanometry 281t
Thermomechanometry 281t
Tip-enhanced Raman spectroscopy (TERS) 171t
Torque units 372t
Transducers, for energy storage 22
Transmission electron microscopy (TEM) 171t
of NEPCM 177, 177f, 178f
Trireforming 17t
TRNSYS 161, 257t
Trombe walls 100
Turkey, solar houses in 301t
TWy  See Terawatt-years

U

Uncertainty-based control, in MPC 326, 328f
Underground coal gasification (UCG), value-added management for 16t
Underground thermal energy storage (UTES) 
BTES and 150–151
for building heating 147, 149f
CO2 and 352, 353t, 354t
COP for 149
cost analysis for 352–355
design specifications of 353t
economic analysis of 355t
expense of 355
installation cost of 353
limitations of 149
expense of 355
cavern thermal storage 152–155, 152f, 153f
energy piles thermal storage 156
state of development for 399t
thermal conductivity of 155
thermal insulation for 154, 154t
Uninterruptible power supply, flywheels for 24
United States, WMEC and 5
Units, conversion factors and 367-373
area units 369t
density units 370t
dynamic viscosity units 372t
for heat contents 367t
high pressure units 371t
kinematic viscosity units 372t
length units 369t
low pressure units 371t
mass flow units 371t
mass units 370t
multiples and submultiples of 368t
speed units 371t
torque units 372t
volumetric gas flow units 370t
volumetric liquid flow units 370t
Upper convective zone (UCV) 72, 72f
Uranium 2f
Urea 73

V

Value-added energy management 13
for CO2 18t
for fossil fuels 16t
for renewable energy 17t
Vanadium redox battery (VRB) 30t, 43t
energy efficiency of 30
Variable air volume (VAV) 117–118, 119f
Volume units 369t
Volumetric gas flow units 370t
Volumetric liquid flow units 370t
V-Redox 43t, 45t

W

Wallboard impregnation 94–100, 96f, 98f
Waste heat recovery, systems design for 244
chilled water packed bed LTES, systems design for 239–241, 240t
chilled water-PCM cool TES 115–118, 115f, 116f, 118f
essential aspects of 121t
merits of 123
operation modes for 117t
ECWSHP 217
gravel/water, for cavern thermal storage 153, 153f
hot water, for cavern thermal storage 152, 152f
with ITES 112
pressurized water system 243
sea water thermal storage 156–157
sorption storage and 128
with STES 69–71, 70f
TCES and 140–142, 141f
Weighted-averaging (WA) 320–321
Weighted-sum approach, for TES system optimization 329
Whole building simulation program 256
Wind energy 8, 229t
reserves of 2f
Wind power 
CAES and 27
LCTs and 205t
theoretical and technical potential and availability of 9t
Wind-thermal-cold energy storage 222–223, 224t
World market energy consumption (WMEC) 5, 6f

X

X-ray diffraction (XRD) 171t

Z

Zinc bromine battery (ZnBr) 28, 30t, 43t
characteristics of 45t
operation and maintenance costs of 43t
Zn-air batteries 28
characteristics of 45t
operation and maintenance costs of 43t
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.141.24.134