Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A

Accumulation capacity 443–446
of dissolution pore 487t, 488
identification markers for 399
in conventional logging 399, 400t
nuclear magnetic logging and 399, 400t, 401f
volcanic barriers, interbeds and 399, 401f
of pore 484–488, 485f, 485t, 486f, 487t
intergranular 486–487, 487t
types 443, 446
of vesicles 486, 487t
in volcanic reservoir spaces 484–488
of volcanic rock fracture 488–489, 488f, 489f
Accumulation-permeation unit (A-P) 103
applications for 450–455, 452f, 453f, 454f
barriers, interbeds and tracing extension within 407f, 408
cap rocks, reservoirs, basal bed and 408–409
characterization of 393–397, 428–436
challenges in 395
geological 398–399, 398t, 430, 431f, 432f
qualitative 395
classification of 442–443, 445t
concept of 393–397
flow unit and 393–394
fracture-cavity unit and 394
reservoir unit and 394
connection 436–442, 440f, 441t
modes 439
superposition relationship of 439, 440f
types of 439
distribution of 397, 447–448
models 430, 433f, 436, 437f
vertical 408–409, 409f
volcanic 447–450
division of 401f, 408
in borehole 430, 433f
dynamic date and 415–416, 417f
effusive facies 447, 450
characteristics of 398, 398t
deliverability of 448
model 419, 420f
scale of 448, 449f
eruptive facies 448, 449f
explosive facies 447
characteristics of 398, 398t
deliverability of 448
model 418–419, 419f
framework models, volcanic 553–555, 554f
geometry and scale characterization of 430–432, 435f
outcrop data for 428–436
parameters of 433–434, 436f
survey location and 428–429, 429f
identification of 395–396, 397–428
division and 406–412
markers for 397–405
model 418–421
single-well 397–412
interfaces of 410–412
abrupt 410, 411f
lithofacies and 410, 412f
lithological 410, 413f
petrophysical properties 410–412, 414f
tracing 421, 422f
interwell combination and 415, 416f
principles 414–415
layers 399, 401f, 424
identification of 406–407, 407f
volcanic 404, 405f
volcanic barrier and interbed 404, 405f
volcanic sedimentary barriers, interbeds and 399, 402f, 404
patterns 395, 460
planar distribution and 423–427, 426f
prediction of 397–428
profile and 
inversion 421–423, 423f
models 436, 437f
multiwell 415
seismic reflection 417–421
standard 415, 416f
scale of 453–455, 454f
seismic data, shape and 430–434
shape and 430, 434f
small- 395
spatial combination technique and 428, 428f
spatial distribution and 427–428, 428f, 436, 438f, 453, 453f
subvolcanic conduit facies 398, 398t
subvolcanic facies model 419–421, 421f
technical solutions for 395–397, 396f
3D attribute volume assemblage technique and 427
tracing-and-closure techniques for 427
volcanic 428f, 448–450, 450f, 451f
volcanic conduit facies 447
characteristics of 398, 398t
deliverability of 448
model 418, 418f
scale of 448, 449f
volcanic gas reservoir patterns and 
characterization of 513–525, 515t
fractured 515t, 518–519, 520f
fractured-dissolution porous 515t, 525, 526f
fractured-intergranular porous 515t, 521, 523f
fractured-microporous 515t, 521–524, 524f
fractured-vesicular 515t, 520–521, 522f
intergranular porous 515t, 516–518, 517f
microporous 518, 519f
vesicular 513–515, 515t, 516f
volcanic reservoir patterns and 508–525
classification of 509–513, 511t
combined 511t, 512–513
fractured 512
fractured-dissolution porous 513
fractured-intergranular porous 512
fractured-vesicular 512
intergranular porous 509
microporous 512
single 509–512, 511t
vesicular 509
volcanic sedimentary facies 447
characteristics of 398t, 399
scale of 448, 449f
Acoustic impedance 
inversion, effective volcanic reservoir and 384–385, 385f, 386f
model, effective volcanic reservoir and 384, 384f, 385, 385f
Acoustic log 
effective porosity and 285
identification methods 325–329
full-wave oscillogram attenuation as 327
interval transit time and p-s velocity ratio as 327–329, 327f, 328f
identification technique 324–329
principle of 324–325, 326f, 327f, 327t
volcanic reservoir fracture and 
analysis and effectiveness of 233–234, 235f
conventional logging and 212t, 213, 213f
Amaerule, J. O. 393–394
Andesite 183–186, 184f, 226
AVF relationship analysis 193, 193f

B

Basalt 183, 184f, 226
Bivariate crossplot analysis 177–179

C

California 1
CBVI method (T2 cutoff method) 291–293
Chen, B. 394
China 2, 3–4
natural gas industry in 1, 2
Songliao basin of 
acidic volcanic rocks in 114–115, 115f
characterization of 149–151
volcanic gas reservoir in 2
energy imbalance, infrastructure, supply and support 2
resources of 2
Coates method 298
Compton scatter principle 174
Conventional logging 
dissolution-pore reservoir and 352
fractured reservoir and 352
identification markers for accumulation capacity in 399, 400t
intergranular pore reservoir and 351
response characteristics of permeation capacity and 399–406, 403t, 404f
vesicular reservoir and 351
volcanic edifice and information from 19, 47
volcanic reservoir fracture and 211–223
acoustic log and 212t, 213, 213f
calculation methods for 227
caliper log and 214, 261t
compensated density, neutral logs and 212t, 214
dual laterolog and 211–212, 212t, 213f
gamma spectrometry log and 214, 261t
identification through 211–223
volcanic rock and identification model for 214–217
volcanic rock and response characteristics of 211–214, 212t
volcanic rock and, compositions in 175–177, 175f, 176t
volcanic rock's petrogenesis and 176–177, 176t
curve shapes of 176–177
curve smoothness of 177
value range of 176
Cooling unit 103
boundary of volcanic rock 95f, 96
development of 103
geological markers for 92
as product 104
volcanic eruption and 79
volcanic rock sequence and identification markers for 92–94
Cutoff  See also CBVI method
effective volcanic reservoir 
criteria for 362–366
delivery test method and 362–363, 364f
of petrophysical properties 362–364, 364f, 365f
thresholds of 362, 363–364, 363f, 365f
values 365–366, 366f
original analysis and gas saturation 338, 340f
saturation method and original resistivity 330f, 331
values of gas-bearing properties 336, 365, 366f
volcanic gas reservoir 
permeability classification and 532f, 533, 533t
throat and thresholds of 526–532, 532t

D

Deliverability 
of A-P volcanic conduit facies 448
of effusive facies A-P 448
of explosive facies A-P 448
index of gas 367t, 368, 369f
of volcanic gas reservoir 367–369, 369f
criteria 367t, 368, 369f
Delivery test method 
determination of 365, 366f
effective volcanic reservoir cutoff and 362–363, 364f
Dou, Z. 394

E

Ebanks, W. J. 393–394
Effective porosity 
acoustic log and 285
criteria and effective volcanic reservoir 367t, 368, 369f
of volcanic reservoir fracture 285–293
calculation methods for 285–290
CBVI method (T2 cutoff method) and 291–293
SBVI method (T2 spectral coefficient method) and 292f, 293, 293f
statistical models and 285–290, 286f, 287f, 288f, 289f, 290f, 291t, 293
theoretical model, acoustic log and 285
theoretical model, nuclear magnetic logging and 291–293, 292f
Effective volcanic reservoir 347
acoustic impedance 
inversion and 384–385, 385f, 386f
model and 384, 384f, 385, 385f
applications for 388–390, 390f
categories of net pay thickness within 368, 388, 389f
challenges of 347–349
classification of 
criteria 366–370, 367t
techniques for 382–388
cutoff 
criteria for 362–366
delivery test method and 362–363, 364f
of petrophysical properties 362–364, 364f, 365f
thresholds of 362, 363–364, 363f, 365f
values 365–366, 366f
effective porosity criteria and 367t, 368, 369f
electrical property criteria for 367t, 370, 371f
features of 377, 379f
framework model 383, 383f, 384f
identification of 348, 349–377
markers 349–353, 350t
qualitative 349–361
quantitative 353–361, 362–377
matrix permeability criteria and 367t, 368–370, 369f
parameter inversion and 385–388, 386f, 387f
prediction of 348–349, 377–388
techniques for 382–388
seismic classification criteria for 381–382, 382f
seismic parameter sensitivity analysis of 380–381, 381f
seismic response characteristics of 379–382, 380f
Type A 379
Type B 379
Type C 380
Type D 380
technical solutions for 347–349, 348f
Type I 367t, 368, 370, 373t, 374, 375f, 382
Type II 367t, 368, 370, 373t, 374–377, 376f, 382
Type III 367t, 368, 370, 373t, 377, 378f, 382
Effusive facies 
A-P 447, 450
characteristics of 398, 398t
deliverability of 448
model 419, 420f
scale of 448, 449f
as geological markers 120–121, 121f, 122t
logging response characteristics of 127, 128f
seismic response characteristics of 135, 136f
shape of 150, 150f
volcanic massif and acidic 71, 72f, 72t
volcanic massif and basic 72–73, 72f, 72t
Electrical conductivity 299–303, 300f
Electrical property criteria 367t, 370, 371f
Elemental capture spectroscopy (ECS) 
characteristics of 181–182
integration of 163
logging 166–169
crossplot analysis of element contents and 168–169, 168f, 169t
curve, log analysis and volcanic reservoir fracture 281f, 283–284, 284f, 285t
response characteristics of 167–168, 167f, 168t
TAS plate analysis and 169, 170f, 171t
Eruptive facies 448, 449f
Explosive facies 
A-P 447
characteristics of 398, 398t
deliverability of 448
model 418–419, 419f
as geological markers 120, 120f, 121t
logging response characteristics of 126–130, 127f
seismic response characteristics of 135, 135f
shape of 149
volcanic massif and explosive 71, 72f, 72t
Extrusive facies 
as geological markers 122, 123f, 123t
logging response characteristics of 127, 128f
seismic response characteristics of 135, 136f
shape of 151, 151f
volcanic massif rock and 61–62, 61f, 63f, 64

F

Facies  See also specific type
characteristics of 113, 147–159
control constraints 160–161, 161f
crater 117, 117f
distal 117, 117f
proximal 117, 117f
favorable 160, 160f, 161f
technical solutions for 119–120, 119f
FID2 
index and volcanic reservoir fracture 264, 264f
inversion 265, 266f
Fisher, R. V. 113–114
Fluid 
distribution model 561–562
building 547
volume, mobile 536–537, 537f, 538t
FMI imaging 
logs 
calculating fracture porosity based on 227, 228
calculating fracture width based on 227
volcanic reservoir fracture, identification model and 206–208, 207f, 208t
volcanic reservoir fracture in wells and 183, 213f, 223–225, 224f, 225f
Fracture  See also Volcanic reservoir fracture
attribute models 558–561, 559f, 560f
-cavity unit and A-P 394
gas saturation models 561–562, 562f
parameter inversion 558–561, 560f
porosity 
FMI imaging logs and calculating 227, 228
permeability models and 557–561
width based on FMI imaging logs 227
Free fluid model  See Coates method

G

Gamma inversion 194, 196f, 197f
Gamma ray logs 
identification principle of 174
identification principle of spectral 174
Gamma spectrometry log 214, 261t
Gamma value 198, 199f
Gas 
-bearing formation 101–102, 102t
-bearing properties 317, 343
characteristics of 317, 341–345
criteria 367t, 370, 372f
cutoff values of 336, 365, 366f
interpretation of 345
logging data and 341, 342f
multiwell correlation profile and 341–342, 343f, 344f
profile 340–341, 342f
reservoir interpretation of 343
well log data and 341, 342f
deliverability index 367t, 368, 369f
distribution models, water and 561
layer 
identification approach to 338–345
low-resistivity 343–345
single 102t, 103
volcanic 332–336, 332t, 333f, 335f
volcanic gas reservoir, aquifers and 10, 11f, 12
log interpretation 316–317, 316f
logging characteristics of 320f, 321, 321t
natural 
characteristics of 320, 320t
industry in China 1, 2
production technology 1
saturation 
cutoff analysis, original 338, 340f
models 561, 562f
saturation in volcanic rock matrix 307
calculation for 303
conduction's effects on 285, 303–305
dual Tw method and 307–308
gas column height method and 308–309, 308f, 309f
interpretation for 274
interpretation method for 303–307
model parameters for 304f, 305–307, 305f, 306t
NMR log interpretation and 307–309
original 309
special procedures for 285, 303–307, 304f, 305f, 306t
saturation interpretation for volcanic rock 299–309
additional conduction and 301–303
clay minerals and 302–303
electrical conductivity and 299–303, 300f
ionic conduction and 300–301
surface conduction and 301–302, 302f
saturation models, fracture 561–562, 562f
subzone 102, 102t
-water 
layer identification models 198–200
relationships in geological modeling 545
-water distribution 
analysis of 73
in volcanic rock reservoir 4
-water zone 313
challenges in 313–315
formation test identification for 315–318
formation test method for 317–318
identification methods for 315–317
interface 318, 319f
interpretation of 318
pressure data analysis and 318, 319f
production capacity and rate 318
technical solutions for 313–315, 314f
in volcanic rocks 317–318
zone 102
Geological markers 
for cooling unit 92
effusive facies as 120–121, 121f, 122t
explosive facies as 120, 120f, 121t
extrusive facies as 122, 123f, 123t
for lithofacies 120–125, 120f, 121f, 121t, 122t, 123f, 123t, 124f, 124t, 125f, 125t, 126f, 126t
subvolcanic facies as 123–124, 125f, 125t
volcanic conduit facies as 122, 124f, 124t
of volcanic eruption 82–84, 87
volcanic sedimentary facies as 125, 126f, 126t
Geological modeling 
applications and results for 562–563
challenges and characteristics of 543–547, 544t
digital models for 563
fluid distribution model building and 547
gas-water relationships in 545
horizontal well trajectory design and 563
multilevel architectures of 543–544
OGIP and 562–563
origins of 545
reservoir attributes model building and 547
reservoir framework model and 
building 547
levels of 551
of reservoirs 543
structural model building for 545–546
technical solutions for 543–547, 546f
for volcanic gas reservoir 73, 547–562
attribute modeling and 555–561
fluid distribution modeling and 561–562
fracture attribute models and 558–561, 559f, 560f
fracture gas saturation models and 561–562, 562f
fracture parameter inversion and 558–561, 560f
fracture porosity and permeability models in 557–561
gas and water distribution models and 561
gas saturation models and 561, 562f
levels of structural models for 547
matrix porosity and permeability models in 554f, 555–557, 556f
multilevel reservoir framework modeling technique and 550–555
multilevel structural model techniques and 547–550
structural models of volcanic eruption cycle and 548, 548f, 549f
volcanic A-P framework models and 553–555, 554f
volcanic edifice framework models and 552, 552f
volcanic edifice structural model and 548–550, 549f, 550f
volcanic eruption cycle framework models and 552, 552f
volcanic facies framework models and 552–553, 553f
volcanic massif framework models and 552, 552f
volcanic massif structural model and 550, 551f
well location and 563

H

Hao, J. 301
How to Understand Reservoir (Yuan) 394

I

Integrated attribute analysis 425–426, 426f
International Seminar for Reservoir Characterization 9

J

Jiao, F. 394
Jiao, Y. 393–394
Jin, B. 113–114

K

Kelameili Gasfield 2
Kepugef, D. B. C. 113–114
Kozeny equation 296–297, 298f

L

Lava 
acidic 178
amygadaloids, vesicles and 92
baked edge of 92
oxidation top of 92
top and bottom structure of 92
vitreous and molten slag crust of 92
volcanic eruption rhythm and 
clastic rock and 79
rhythm and 79, 89–92, 90f, 91f, 93f
volcanic structure in 172
rhyolitic 172, 172t, 173f
vesicular 172, 172t, 173f
volcaniclastic 
texture of 172–173
welded brecciated 171f, 172t, 173
welded tuff 171f, 172, 172t
Li, S. 17, 113–114
Lithofacies 
attributes of 
extraction of 143, 143f
multiple 144–145, 146f
sensitive 141–142
single 143–144, 144f
boundaries 140, 140f, 141
classification of 113–114, 114t
cored interval and, identification in 124f, 131–133, 131f
criteria 370
delineation in single-wells 198
distribution of 141, 142f
horizontal 117, 117f
interwell 139, 140, 140f
model 140, 140f
planar 140, 140f
revealing 160, 160f, 161f
geological markers for 120–125, 120f, 121f, 121t, 122t, 123f, 123t, 124f, 124t, 125f, 125t, 126f, 126t
identification of 133–134, 134f, 149
cored interval and 124f, 131–133, 131f
markers for 120–130
integrative technique for 146–147, 148f
interfaces of A-P and 410, 412f
of intergranular pore 468t, 471
models 114–117
noncored interval and 
classification and identification of 133–134, 134f
subfacies division of 134, 134f
pattern 
of acidic volcanic rocks 114–115, 115f
of different 132–133
of pore dissolution 468t, 472–473
prediction of 118
settings in 130–131, 131f
size 
using outcrop data 152, 153f
using seismic data 152–155, 154f, 155f, 156f
skeletal profile network and 141, 142f
thickness variation of 141, 142f
vertical distribution of 115–117
alternating sequence as 116f, 117
strengthening-upward sequence as 116f, 117
weakening-upward sequence as 115–117, 116f
of vesicles 463, 468t
of volcanic reservoir fracture 474
of volcanic rock 3
of volcanic rock fracture 474
Lithological distribution 
by AVF relationship analysis 193, 193f
by frequency-divided 
attribute inversion 145–147, 194–198
processing 193
by frequency-divided inversion 191–198
principles of 191–194
gamma inversion and 194, 196f, 197f
patterns 201
petrophysical analysis and 194, 195f
prediction of 194–198, 197f, 199f
seismic profile analysis and 186–188
by seismic waveform classification 189–191, 191f, 192f
major steps in 189–191, 191f, 192f
wave impedance inversion and 194, 195f, 196f
Lithology 
applications of 198–201
characteristics of 163
composition of single-well and 94, 95f
criteria 370, 373t
identification 
challenges in 163–165
technical solutions for 163–165, 165f
volcanic rock texture and 175f, 178–179, 179t
indicators 
identification of volcanic edifice and 37–39, 39f
for volcanic rock formation 21–23, 22t, 23f
of intergranular pore 468t, 471
interpretation models 198
planar distribution of 198, 199f
of pore dissolution 468t, 472–473
prediction 
challenges in 163–165
of distribution, through seismic profile analysis 186–188
planar distribution through 187–188, 190f
profile distribution through 187, 189f
technical solutions for 163–165, 165f
seismic response characteristics of different 183–186, 186t
andesite, rhyolite and 183–186, 184f, 226
basalt and 183, 184f, 226
orthophyre and 183, 184f, 223
volcanic breccia and 183, 184f, 187, 190f
top and bottom contacts, volcanic edifice interface and 44–45, 46f
variation of volcanic edifice 40–41, 42f
of vesicles 463, 468t
volcanic 
characteristics of 18
comprehensive 181f, 182, 182f
identification of 166–182
prediction of 183–198
principle of 166–167
volcanic eruption 
within 82–84, 84f
characteristics of 87
volcanic massif and assemblage of 
classification of 59, 60f
indicators of 59–62
of volcanic reservoir fracture 474
volcanic rock 
distribution of 164
fracture of 474
identification of 164, 180–182, 181f
Liu, W. 393–394, 461
Liu, Y. 15
Log 
-based identification technique, conventional well 331–338, 340f
characteristics of 332–336, 332t, 333f, 334f, 335f, 337f
cross-plot analysis and 336, 337f
curve-overlapping method and 336–338, 339f
identification methods for 336–338
principle of 331, 331t
quantitative saturation interpretation methods and 327, 338, 340f
saturation and porosity crossplot analysis and 338, 340f
calibration, well 315
data 
core-depth adjustment and repositioning 277, 277f
curve joining and 276, 276f
gas-bearing properties and well 341, 342f
preprocessing and volcanic reservoir fracture 276–277, 276f, 277f
gamma ray 
identification principle of 174
identification principle of spectral 174
interpretation 
of volcanic rock fracture 484
resistivity identification principle of 174
three porosity identification principle of 174
volcanic reservoir fracture and imaging 206–211
calculation methods for 227
FMI identification model and 206–208, 207f, 208t
identification and evaluation of 204–205, 274
identification and lithological constraints of 209
identification through 206–226
response characteristics of 206, 206f
array induction identification 329–331
methods 329–331
mud invasion profile analysis and 329–331
original resistivity cutoff and saturation method and 330f, 331
principle of 329, 329t
calibration 132–133
characteristics 86, 92–94
of cycle interface 85f, 86
of dry zones in volcanic rock 320f, 321, 321t
of gas 320f, 321, 321t
of water 320f, 321, 321t
curve 
well 40–41, 42f
-while-drilling 318
curve and volcanic reservoir fracture 277–278
crossplot analysis 281–282, 282f, 283f, 283t
determination of matrix 277
ECS log analysis and 281f, 283–284, 284f, 285t
key layers of 277
normalization of 277, 278f
data and gas-bearing properties 341, 342f
differential spectrum method and 323–324, 324f, 325f
crossplot analysis of element contents and 168–169, 168f, 169t
response characteristics of 167–168, 167f, 168t
TAS plate analysis and 169, 170f, 171t
geological 
formation test identification and 315–318
methods 315–317
identification techniques for well 318–338
indicator 
analysis 315–316
of volcanic massif 61–62, 61f
interface characteristics and volcanic eruption period 88
principles 320, 320f
response characteristics 84–86, 85f, 86f
of effusive facies 127, 128f
of explosive facies 126–130, 127f
of extrusive facies 127, 128f
of periclines 40, 42f
of subvolcanic facies 129, 129f
of volcanic conduit 39–40, 41f
of volcanic conduit facies 128, 129f
of volcanic craters 39, 40f
of volcanic eruption period 87–88
of volcanic sedimentary facies 130, 130f
shift spectrum method and 321–323, 322f, 323f
T2 spectrum analysis and 321, 322f
well, volcanic rock response characteristics and 175–177, 175f, 176t

M

Magma evolution cycle 86f, 97–98
Meng, X. 16
Mercury 
injection 503, 503t, 504f
constant-rate 480–481, 480f, 480t, 503–504, 503t, 505f
intrusion method 366, 367f
Mu, L. 393–394

N

Nonreservoir 
sedimentary volcanic 352–353
acoustic imaging log and 352
conventional logging and 353
geological characteristics of 352–353
logging response characteristics of 352–353
nuclear magnetic logging and 353
qualitative identification of 353, 354f
resistivity imaging log and 352
tight volcanic 352
acoustic imaging log and 352
conventional logging and 352
geological characteristics of 352
logging response characteristics of 352
nuclear magnetic logging and 352
qualitative identification of 353–356, 355f
resistivity imaging log and 352
volcanic, qualitative identification of 350t, 353–356
Northeast Pipeline Network 2
Nuclear magnetic logging 
accumulation capacity and 399, 400t, 401f
dissolution-pore reservoir and 351
effective porosity of 291–293, 292f
fractured reservoir and 352
intergranular pore reservoir and 351
methods 321–324
permeation capacity 403–404, 403f, 403t
sedimentary volcanic nonreservoir and 353
technique 320–324
tight volcanic nonreservoir and 352
total porosity of volcanic reservoir fracture and 294
vesicular reservoir and 351
volcanic reservoir fracture and 291–293, 292f

O

Original gas in place (OGIP) 562–563
Orthophyre 183, 184f, 223
Oxide 
-closure model 166–167
content, calculation of 166–167

P

Pavlinov, V. I. 113–114
Peng, Y. 16
Periclines 39
characteristics of 40
logging response 40, 42f
seismic response 44, 45f
composition of 39
discontinuity of 39
identification of 47–48, 48f
Permeation capacity 446–447
identification markers for 399–405, 403t
nuclear magnetic logging 403–404, 403f, 403t
reservoir 
characterization of 505–508
matrix 505–507, 506f, 507t
response characteristics of conventional logging and 399–406, 403t, 404f
of throat 
fractured 503t, 508
matrix 505–508
by origin 507, 507t
size of 507–508, 507t
types of 507, 507t
types of 446
Petrogenesis 
conventional logging and volcanic rocks' 176–177, 176t
curve shapes of 176–177
curve smoothness of 177
value range of 176
mechanisms of 118
of volcanic rock 3, 80, 176–177, 176t
Petrophysical analysis 
lithological distribution and 194, 195f
matrix parameters in volcanic reservoir fracture and 280, 281f, 282t
Petrophysical criteria 367–369, 369f
Petrophysical properties 
A-P interfaces of 410–412, 414f
effective volcanic reservoir cutoff of 362–364, 364f, 365f
Planar distribution 450–453, 452f
A-P and 423–427, 426f
of gamma value 198, 199f
lithofacies of 140, 140f
lithology of 198, 199f
prediction 187–188, 190f
of wave impedance value 194–198, 197f
Planar prediction 
facies 139–145
distribution 141–145, 143f, 144f, 145f, 146f
profile facies and 140–141
single-well facies and 139–140
of volcanic edifice 49–51, 49f, 50f
of volcanic gas reservoir 19–20, 20f
of volcanic massif 65–67, 66f
of volcanic rock formation 26–28, 27f, 28f
Pore 
accumulation capacity of 484–488, 485f, 485t, 486f, 487t
-contraction throat and volcanic gas reservoir 492, 492f, 493–497
characteristics of 493–496, 494t
shape and size of 496–497, 496f
types of 494t, 496
dissolution 
accumulation capacity of 487t, 488
classification of 462
identification of 472–473
lithology and lithofacies of 468t, 472–473
pore size of 464t, 482–484
shape of 472f, 473, 478, 478t
size of 473
traces 472f, 473
intergranular 
accumulation capacity of 486–487, 487t
classification of 462
identification of 470–472
lithology and lithofacies of 468t, 471
pore size of 464t, 481–482, 481t
shape of 471, 471f
size of 464t, 471f, 472
structure and texture of 471, 471f
reservoir, dissolution- 351–352
acoustic imaging log and 351
conventional logging and 352
effectiveness of 359–361, 361f
geological characteristics of 351
logging response characteristics of 351–352
nuclear magnetic logging and 351
resistivity imaging log and 351
reservoir, intergranular 351
acoustic imaging log and 351
conventional logging and 351
effectiveness of 359, 360f
geological characteristics of 351
logging response characteristics of 351
nuclear magnetic logging and 351
resistivity imaging log and 351
shape of 477–478, 477t
size 
various 481–482, 481t
of vesicles 464t, 481, 481t
of volcanic reservoir spaces 479–484, 480t
structure criteria 367t, 370, 372f
structure index method, apparent 
calculation of volcanic reservoir fracture and 219, 221f
volcanic reservoir fracture index and 218
-throat radius 362, 363f
of volcanic rock reservoir 3
heterogeneity of 4
lateral and vertical continuity of 4
Poststack seismic attribute analysis 241–252
absorption coefficient analysis and 250–252, 251f, 268
coherence analysis and 245–246, 246f, 265
margin-detection technique and 247, 248f, 268
prediction methods for 265–269
stress analysis technique and 252, 252f, 253f, 269
“three-instantaneous” 247–250, 249f, 250f, 268
Prestack prediction method 252–262, 262f, 269
anisotropic characteristics of 253–254, 253f
AVA technique and 255
controlling factors of 261–262
forward modeling and 256–258, 257f
FVA technique and 255–256, 255f
method selection for 258–261, 260f, 261t
prediction method of 214, 256–262
prediction principle of 254–256
prestack subazimuth processing and 258, 258t, 259f
VVA technique and 254, 254f
Principal component analysis 
concept of 178, 179–180, 219
steps of 180, 180f, 218

Q

Qiu, J. 17, 113–114
Qiu, Y. 393–394

R

Ren, Z. 461
Reservoir  See also specific type
attributes model building 547
dissolution-pore 351–352
acoustic imaging log and 351
conventional logging and 352
effectiveness of 359–361, 361f
geological characteristics of 351
logging response characteristics of 351–352
nuclear magnetic logging and 351
resistivity imaging log and 351
effectiveness by type 350t, 356–361
fractured 352
acoustic imaging log and 352
conventional logging and 352
distinguishing 356, 357f
geological characteristics of 352
logging response characteristics of 352
nuclear magnetic logging and 352
resistivity imaging log and 352
framework model and 
building 547
levels of 551
geological modeling of 543
intergranular pore 351
acoustic imaging log and 351
conventional logging and 351
effectiveness of 359, 360f
geological characteristics of 351
logging response characteristics of 351
nuclear magnetic logging and 351
resistivity imaging log and 351
shape of 477–478, 477t
interpretation of gas-bearing properties 343
unit and A-P 394
vesicular 349–351
acoustic imaging log and 349
conventional logging and 351
effectiveness of 356–359, 358f
geological characteristics of 349
logging response characteristics of 349–351
nuclear magnetic logging and 351
resistivity imaging log and 349
Rhyolite 183–186, 184f, 226
RTC index 
inversion 265
volcanic reservoir fracture and 263–264, 263f

S

SBVI method (T2 spectral coefficient method) 292f, 293, 293f
Schmincke, H. C. 113–114
SDR method 298–299
Sedimentary rock 
as cycle separator 96–97, 97f
in dormancy period 84, 84f, 85f
formation 86, 86f
geological characteristics of, volcanic gas reservoir and 5t
interface 84, 84f, 85f, 86, 88
volcanic 87, 88
internal, external rock and identification of 25–26, 25f
volcanic massif, weathered crust and 61–62, 61f, 63, 63f
Seismic attribute  See also Poststack seismic attribute analysis
analysis 424
method 423–426
of volcanic edifice 49–50, 49f
combination and optimization of 424–426, 425f
extraction 424, 425f
of volcanic rock formation 26–27, 27f
Seismic classification criteria 381–382, 382f
Seismic data 
lithofacies size using 152–155, 154f, 155f, 156f
shape and scale of A-P 430–434
volcanic facies geometry/shape using 151–152
volumes with interwell constraints 558
Seismic indicators 61f, 62, 65–66, 66f
Seismic interpretation 187–188, 190f
Seismic inversion prediction method 426–427, 427f
Seismic markers 92
Seismic parameter sensitivity analysis 380–381, 381f
Seismic profile 
analysis 
prediction of lithological distribution and 186–188
volcanic rock architecture and 186–187, 187f, 188f, 189f
identification of 101
Seismic reflection 
period 
within 88
interface of 88, 89
profile and A-P 417–421
waveform, volcanic reservoir fracture and 240f, 241, 242f
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.103.10