5.5 Solving Exponential Equations and Logarithmic Equations

  • Solve exponential equations.

  • Solve logarithmic equations.

Solving Exponential Equations

Equations with variables in the exponents, such as

3x=20  and  25x=64,

are called exponential equations.

Sometimes, as is the case with the equation 25x=64, we can write each side as a power of the same number:

25x=26.

We can then set the exponents equal and solve:

5x=6x=65,  or  1.2.

We use the following property to solve exponential equations.

This property follows from the fact that for any a>0, a1, f(x)=ax is a one-to-one function. If ax=ay, then f(x)=f(y). Then since f is one-to-one, it follows that x=y. Conversely, if x=y, it follows that ax=ay, since we are raising a to the same power in each case.

Example 1

Solve: 23x7=32.

Now Try Exercise 7.

Another property that is used when solving some exponential equations and logarithmic equations is as follows.

This property follows from the fact that for any a>0, a1, f(x)=loga x is a one-to-one function. If loga x=loga y, then f(x)=f(y). Then since f is one-to-one, it follows that x=y. Conversely, if x=y, it follows that loga x=loga y, since we are taking the logarithm of the same number in each case.

When it does not seem possible to write each side as a power of the same base, we can use the property of logarithmic equality and take the logarithm with any base on each side and then use the power rule for logarithms.

Example 2

Solve: 3x=20.

Now Try Exercise 11.

In Example 2, we took the common logarithm on both sides of the equation. Any base will give the same result. Let’s try base 3. We have

3x=20log3 3x=log3 20x=log3 20logaax=xx=log 20log 3Using the change-of-base formulax2.7268.

Note that we must change the base in order to do the final calculation.

Example 3

Solve: 100e0.08t=2500.

Now Try Exercise 19.

Example 4

Solve: 4x+3=3x.

Now Try Exercise 21.

Example 5

Solve: ex+ex6=0.

Now Try Exercise 25.

Solving Logarithmic Equations

Equations containing variables in logarithmic expressions, such as log2 x=4 and log x+log (x+3)=1, are called logarithmic equations. To solve logarithmic equations algebraically, we first try to obtain a single logarithmic expression on one side and then write an equivalent exponential equation.

Example 6

Solve: log3x=2.

Now Try Exercise 33.

Example 7

Solve: log x+log (x+3)=1.

Now Try Exercise 41.

Example 8

Solve: log3 (2x1)log3 (x4)=2.

Now Try Exercise 45.

Example 9

Solve: ln (4x+6)ln (x+5)=ln x.

Now Try Exercise 43.

5.5 Exercise Set

Solve the exponential equation.

  1. 1. 3x=81

  2. 2. 2x=32

  3. 3. 22x=8

  4. 4. 37x=27

  5. 5. 2x=33

  6. 6. 2x=40

  7. 7. 54x7=125

  8. 8. 43x5=16

  9. 9. 27=35x·9x2

  10. 10. 3x2+4x=127

  11. 11. 84x=70

  12. 12. 28x=103x

  13. 13. 10x=52x

  14. 14. 15x=30

  15. 15. ec=52c

  16. 16. e4t=200

  17. 17. et=1000

  18. 18. et=0.04

  19. 19. e0.03t=0.08

  20. 20. 1000e0.09t=5000

  21. 21. 3x=2x1

  22. 22. 5x+2=41x

  23. 23. (3.9)x=48

  24. 24. 250(1.87)x=0

  25. 25. ex+ex=5

  26. 26. ex6ex=1

  27. 27. 32x1=5x

  28. 28. 2x+1=52x

  29. 29. 2ex=5ex

  30. 30. ex+ex=4

Solve the logarithmic equation.

  1. 31. log5 x=4

  2. 32. log2 x=3

  3. 33. log x=4

  4. 34. log x=1

  5. 35. ln x=1

  6. 36.  ln x=2

  7. 37. log6414=x

  8. 38. log125125=x

  9. 39. log2 (10+3x)=5

  10. 40. log5 (87x)=3

  11. 41. log x+log (x9)=1

  12. 42. log2 (x+1)+log2 (x1)=3

  13. 43. log2 (x+20)log2 (x+2)=log2 x

  14. 44. log (x+5)log (x3)=log 2

  15. 45. log8 (x+1)log8 x=2

  16. 46. log xlog (x+3)=1

  17. 47. log x+log (x+4)=log 12

  18. 48. log3(x+14)log3(x+6)=log3 x

  19. 49. log (x+8)log (x+1)=log 6

  20. 50. ln xln (x4)= ln 3

  21. 51. log4 (x+3)+log4 (x3)=2

  22. 52. ln (x+1) ln x= ln 4

  23. 53. log (2x+1)log (x2)=1

  24. 54. log5 (x+4)+log5 (x4)=2

  25. 55. ln (x+8)+ ln (x1)=2 ln x

  26. 56. log3 x+log3 (x+1)=log3 2+log3 (x+3)

Solve.

  1. 57. log6 x=1log6 (x5)

  2. 58. 2x29x=1256

  3. 59. 9x1=100(3x)

  4. 60. 2 ln xln 5= ln (x+10)

  5. 61. ex2=ex

  6. 62. 2 log 50=3 log 25+log (x2)

Skill Maintenance

  1. Find the vertex.

  2. Find the axis of symmetry.

  3. Determine whether there is a maximum or a minimum value and find that value. [3.3]

  1. 63. g(x)=x26

  2. 64. f(x)=x2+6x8

  3. 65. G(x)=2x24x7

  4. 66. H(x)=3x212x+16

Synthesis

Solve using any method.

  1. 67. ex+exexex=3

  2. 68. ln (ln x)=2

  3. 69. ln x=lnx

  4. 70. ln4x=ln x

  5. 71. (log3 x)2log3x2=3

  6. 72. log3 (log4 x)=0

  7. 73. lnx2=(ln x)2

  8. 74. x(ln16)=ln 6

  9. 75. 52x3·5x+2=0

  10. 76. xlog x=x3100

  11. 77. lnxln x=4

  12. 78. |2x28|=3

  13. 79. (e2x·e5x)4ex÷ex=e7

  14. 80. Given that a=(log125 5)log5 125, find the value of log3 a.

  15. 81. Given that a=log8 225 and b=log2 15, express a as a function of b.

  16. 82. Given that f(x)=exex, find f1(x) if it exists.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.190.156.80