7.3 Proving Trigonometric Identities

  • Prove identities using other identities.

  • Use the product-to-sum identities and the sum-to-product identities to derive other identities.

The Logic of Proving Identities

We outline two algebraic methods for proving identities.

Method 1. Start with either the left side or the right side of the equation and obtain the other side. For example, suppose you are trying to prove that the equation P=QP=Q is an identity. You might try to produce a string of statements (R1,R2, or T1,T2,)(R1,R2, or T1,T2,) like the following, which start with P and end with Q or start with Q and end with P:

P=R1orQ=T1=R2=T2=Q=P.
P===R1R2QorQ===T1T2P.

Method 2. Work with each side separately until you obtain the same expression. For example, suppose you are trying to prove that P=QP=Q is an identity. You might be able to produce two strings of statements like the following, each ending with the same statement S.

P=R1orQ=T1=R2=T2=S=S.
P===R1R2SorQ===T1T2S.

The number of steps in each string might be different, but in each case the result is S.

A first step in learning to prove identities is to have at hand a list of the identities that you have already learned. Such a list is on the inside back cover of this text. Ask your instructor which ones you are expected to memorize. The more identities you prove, the easier it will be to prove new ones. A list of helpful hints is shown at left.

Proving Identities

In what follows, method 1 is used in Examples 1, 3, and 4, and method 2 is used in Examples 2 and 5.

Example 1

Prove the identity 1+sin2θ=(sinθ+cosθ)21+sin2θ=(sinθ+cosθ)2.

Solution

Let’s use method 1. We begin with the right side and obtain the left side:

(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θSquaring=1+2sinθcosθRecallingtheidentitysin2x+cos2x=1andsubtituting=1+sin2θ.Usingsin2x=2sinxcosx
(sinθ+cosθ)2===sin2θ+2sinθcosθ+cos2θ1+2sinθcosθ1+sin2θ.SquaringRecallingtheidentitysin2x+cos2x=1andsubtitutingUsingsin2x=2sinxcosx

We could also begin with the left side and obtain the right side:

1+sin2θ=1+2sincosθUsingsin2x=2sinxcosx=sin2θ+2sinθcosθ+cos2θReplacing1withsin2θ+cos2θ=(sinθ+cosθ)2.Factoring
1+sin2θ===1+2sincosθsin2θ+2sinθcosθ+cos2θ(sinθ+cosθ)2.Usingsin2x=2sinxcosxReplacing1withsin2θ+cos2θFactoring

Now Try Exercises 13 and 19.

Example 2

Prove the identity

sin2xtan2x=tan2x-sin2x.
sin2xtan2x=tan2xsin2x.

Solution

For this proof, we are going to work with each side separately using method 2. We try to obtain the same expression on each side. In actual practice, you might work on one side for a while, then work on the other side, and then go back to the first side. In other words, you work back and forth until you arrive at the same expression. Let’s start with the right side.

tan2x-sin2x=sin2xcos2x-sin2xRecallingtheidentitytanx=sinxcosxandsubstituting=sin2xcos2x-sin2xcos2xcos2xMultiplying by 1 in order tosubtract=sin2x-sin2xcos2xcos2xCarrying out the subtraction=sin2x(1-cos2x)cos2xFactoring=sin2xsin2xcos2xRecalling the identity1-cos2x5sin2xandsubstituting=sin4xcos2x
tan2xsin2x======sin2xcos2xsin2xsin2xcos2xsin2xcos2xcos2xsin2xsin2xcos2xcos2xsin2x(1cos2x)cos2xsin2xsin2xcos2xsin4xcos2xRecallingtheidentitytanx=sinxcosxandsubstitutingMultiplying by 1 in order tosubtractCarrying out the subtractionFactoringRecalling the identity1cos2x5sin2xandsubstituting

At this point, we stop and work with the left side, sin2xtan2xsin2xtan2x, of the original identity and try to end with the same expression that we ended with on the right side:

sin2xtan2x=sin2xsin2xcos2xRecalling the identitytanx=sinxcosxand substituting=sin4xcos2x.
sin2xtan2x==sin2xsin2xcos2xsin4xcos2x.Recalling the identitytanx=sinxcosxand substituting

We have obtained the same expression from each side, so the proof is complete.

Now Try Exercise 25.

Example 3

Prove the identity

sin2xsinx-cos2xcosx=secx.
sin2xsinxcos2xcosx=secx.

Solution

sin2xsinx-cos2xcosx=2sinxcosxsinx-cos2x-sin2xcosxUsing double-angleidentities=2cosx-cos2x-sin2xcosxSimplifying=2cos2xcosx-cos2x-sin2xcosxMultiplying2cosxby1,orcosx/cosx=2cos2x-cos2x+sin2xcosxSubtracting=cos2x+sin2xcosx=1cosxUsing a Pythagorean identity=secxRecalling a basic identity
sin2xsinxcos2xcosx=======2sinxcosxsinxcos2xsin2xcosx2cosxcos2xsin2xcosx2cos2xcosxcos2xsin2xcosx2cos2xcos2x+sin2xcosxcos2x+sin2xcosx1cosxsecxUsing double-angleidentitiesSimplifyingMultiplying2cosxby1,orcosx/cosxSubtractingUsing a Pythagorean identityRecalling a basic identity

Now Try Exercise 15.

Example 4

Prove the identity

sect-1tsect=1-costt.
sect1tsect=1costt.

Solution

We use method 1, starting with the left side. Note that the left side involves sec t, whereas the right side involves cos t, so it might be wise to make use of a basic identity that involves these two expressions: sect=1/costsect=1/cost.

sect-1tsect=1cost-1t1costSubstituting 1/cos t for sec t=(1cost-1)costt=1t-costtMultiplying=1-costt
sect1tsect====1cost1t1cost(1cost1)costt1tcostt1costtSubstituting 1/cos t for sec tMultiplying

We started with the left side and obtained the right side, so the proof is complete.

Now Try Exercise 5.

Example 5

Prove the identity

cotϕ+cscϕ=sinϕ1-cosϕ.
cotϕ+cscϕ=sinϕ1cosϕ.

Solution

We are again using method 2, beginning with the left side:

cotϕ+cscϕ=cosϕsinϕ+1sinϕUsing basic identities=1+cosϕsinϕ.Adding
cotϕ+cscϕ==cosϕsinϕ+1sinϕ1+cosϕsinϕ.Using basic identitiesAdding

At this point, we stop and work with the right side of the original identity:

sinϕ1-cosϕ=sinϕ1-cosϕ1+cosϕ1+cosϕMultiplying by 1=sinϕ(1+cosϕ)1-cos2ϕ.
sinϕ1cosϕ==sinϕ1cosϕ1+cosϕ1+cosϕsinϕ(1+cosϕ)1cos2ϕ.Multiplying by 1

Continuing, we have

sinϕ1-cosϕ=sinϕ(1+cosϕ)sin2ϕUsingsin2x=1-cos2x=1+cosϕsinϕ.Simplifying
sinϕ1cosϕ==sinϕ(1+cosϕ)sin2ϕ1+cosϕsinϕ.Usingsin2x=1cos2xSimplifying

The proof is complete since we obtained the same expression from each side.

Now Try Exercise 29.

Product-to-Sum and Sum-to-Product Identities

On occasion, it is convenient to convert a product of trigonometric expressions to a sum, or the reverse. The following identities are useful in this connection.

We can derive product-to-sum identities (1) and (2) using the sum and difference identities for the cosine function:

cos(x+y)=cosxcosy-sinxsiny,Sum identitycos(x-y)=cosxcosy+sinxsiny.Difference identity
cos(x+y)cos(xy)==cosxcosysinxsiny,cosxcosy+sinxsiny.Sum identityDifference identity

Subtracting the sum identity from the difference identity, we have

cos(x-y)-cos(x+y)=2sinxsinySubtracting12[cos(x-y)-cos(x+y)]=sinxsiny.Multiplying by12
cos(xy)cos(x+y)12[cos(xy)cos(x+y)]==2sinxsinysinxsiny.SubtractingMultiplying by12

Thus, sinxsiny=12[cos(x-y)-cos(x+y)]sinxsiny=12[cos(xy)cos(x+y)].

Adding the cosine sum and difference identities, we have

cos(x-y)+cos(x+y)=2cosxcosyAdding12[cos(x-y)+cos(x+y)]=cosxcosy.Multiplying by12
cos(xy)+cos(x+y)12[cos(xy)+cos(x+y)]==2cosxcosycosxcosy.AddingMultiplying by12

Thus, cosxcosy=12[cos(x-y)+cos(x+y)]cosxcosy=12[cos(xy)+cos(x+y)].

Identities (3) and (4) can be derived in a similar manner using the sum and difference identities for the sine function.

Example 6

Find an identity for 2sin3θcos7θ2sin3θcos7θ.

Solution

We will use the identity

sinxcosy=12[sin(x+y)+sin(x-y)].
sinxcosy=12[sin(x+y)+sin(xy)].

Here x=3θx=3θ and y=7θy=7θ. Thus,

2sin3θcos7θ=212[sin(3θ+7θ)+sin(3θ-7θ)]=sin10θ+sin(-4θ)=sin10θ-sin4θ.Usingsin(-θ)=-sin θ
2sin3θcos7θ===212[sin(3θ+7θ)+sin(3θ7θ)]sin10θ+sin(4θ)sin10θsin4θ.Usingsin(θ)=sin θ

Now Try Exercise 37.

The sum-to-product identities (5)–(8) can be derived using the product-to-sum identities. Proofs are left to the exercises.

Example 7

Find an identity for cosθ+cos5θcosθ+cos5θ.

Solution

We will use the identity

cosy+cosx=2cosx+y2cosx-y2.
cosy+cosx=2cosx+y2cosxy2.

Here x=5θx=5θ and y=θy=θ. Thus,

cosθ+cos5θ=2cos5θ+θ2cos5θ-θ2=2cos3θcos2θ.
cosθ+cos5θ==2cos5θ+θ2cos5θθ22cos3θcos2θ.

Now Try Exercise 35.

7.3 Exercise Set

Prove the identity.

  1. 1. secx-sinxtanx=cosxsecxsinxtanx=cosx

  2. 2. 1+cosθsinθ+sinθcosθ=cosθ+1sinθcosθ1+cosθsinθ+sinθcosθ=cosθ+1sinθcosθ

  3. 3. 1-cosxsinx=sinx1+cosx1cosxsinx=sinx1+cosx

  4. 4. 1+tany1+coty=secycscy1+tany1+coty=secycscy

  5. 5. 1+tanθ1-tanθ+1+cotθ1-cotθ=01+tanθ1tanθ+1+cotθ1cotθ=0

  6. 6. sinx+cosxsecx+cscx=sinxsecxsinx+cosxsecx+cscx=sinxsecx

  7. 7. cos2α+cotαcos2α-cotα=cos2αtanα+1cos2αtanα-1cos2α+cotαcos2αcotα=cos2αtanα+1cos2αtanα1

  8. 8. sec2θ=sec2θ2-sec2θsec2θ=sec2θ2sec2θ

  9. 9. 2tanθ1+tan2θ=sin2θ2tanθ1+tan2θ=sin2θ

  10. 10. cos(u-v)cosusinv=tanu+cotvcos(uv)cosusinv=tanu+cotv

  11. 11. 1-cos5θcos3θ-sin5θsin3θ=2sin2θ1cos5θcos3θsin5θsin3θ=2sin2θ

  12. 12. cos4x-sin4x=cos2xcos4xsin4x=cos2x

  13. 13. 2sinθcos3θ+2sin3θcosθ=sin2θ2sinθcos3θ+2sin3θcosθ=sin2θ

  14. 14. tan3t-tant1+tan3ttant=2tant1-tan2ttan3ttant1+tan3ttant=2tant1tan2t

  15. 15. tanx-sinx2tanx=sin2x2tanxsinx2tanx=sin2x2

  16. 16. cos3β-sin3βcosβ-sinβ=2+sin2β2cos3βsin3βcosβsinβ=2+sin2β2

  17. 17. sin(α+β)sin(α-β)=sin2α-sin2βsin(α+β)sin(αβ)=sin2αsin2β

  18. 18. cos2x(1-sec2x)=-sin2xcos2x(1sec2x)=sin2x

  19. 19. tanθ(tanθ+cotθ)=sec2θtanθ(tanθ+cotθ)=sec2θ

  20. 20. cosθ+sinθcosθ=1+tanθcosθ+sinθcosθ=1+tanθ

  21. 21. 1+cos2xsin2x=2csc2x-11+cos2xsin2x=2csc2x1

  22. 22. tany+cotycscy=secytany+cotycscy=secy

  23. 23. 1+sinx1-sinx+sinx-11+sinx=4secxtanx1+sinx1sinx+sinx11+sinx=4secxtanx

  24. 24. tanθ-cotθ=(secθ-cscθ)(sinθ+cosθ)tanθcotθ=(secθcscθ)(sinθ+cosθ)

  25. 25. cos2αcot2α=cot2α-cos2αcos2αcot2α=cot2αcos2α

  26. 26. tanx+cotxsecx+cscx=1cosx+sinxtanx+cotxsecx+cscx=1cosx+sinx

  27. 27. 2sin2θcos2θ+cos4θ=1-sin4θ2sin2θcos2θ+cos4θ=1sin4θ

  28. 28. cotθcscθ-1=cscθ+1cotθcotθcscθ1=cscθ+1cotθ

  29. 29. 1+sinx1-sinx=(secx+tanx)21+sinx1sinx=(secx+tanx)2

  30. 30. sec4s-tan2s=tan4s+sec2ssec4stan2s=tan4s+sec2s

  31. 31. Verify the product-to-sum identities (3) and (4) using the sine sum and difference identities.

  32. 32. Verify the sum-to-product identities (5)–(8) using the product-to-sum identities (1)–(4).

Use the product-to-sum identities and the sum-to-product identities to find identities for each of the following.

  1. 33. sin3θ-sin5θsin3θsin5θ

  2. 34. sin7x-sin4xsin7xsin4x

  3. 35. sin8θ+sin5θsin8θ+sin5θ

  4. 36. cosθ-cos7θcosθcos7θ

  5. 37. sin7usin5usin7usin5u

  6. 38. 2sin7θcos3θ2sin7θcos3θ

  7. 39. 7cosθsin7θ7cosθsin7θ

  8. 40. cos2tsintcos2tsint

  9. 41. cos55°sin25°cos55°sin25°

  10. 42. 7cos5θcos7θ7cos5θcos7θ

Use the product-to-sum identities and the sum-to-product identities to prove each of the following.

  1. 43. sin4θ+sin6θ=cotθ(cos4θ-cos6θ)

  2. 44. tan2x(cosx+cos3x)=sinx+sin3x

  3. 45. cot4x(sinx+sin4x+sin7x)=cosx+cos4x+cos7x

  4. 46. tanx+y2=sinx+sinycosx+cosy

  5. 47. cotx+y2=siny-sinxcosx-cosy

  6. 48. tanθ+ϕ2tanϕ-θ2=cosθ-cosϕcosθ+cosϕ

  7. 49. tanθ+ϕ2(sinθ-sinϕ)

    =tanθ-ϕ2(sinθ+sinϕ)

  8. 50. sin2θ+sin4θ+sin6θ=4cosθcos2θsin3θ

Skill Maintenance

For each function:

  1. a) Graph the function.

  2. b) Determine whether the function is one-to-one.

  3. c) If the function is one-to-one, find an equation for its inverse.

  4. d) Graph the inverse of the function. [5.1]

  1. 51. f(x)=3x-2

  2. 52. f(x)=x3+1

  3. 53. f(x)=x2-4,x0

  4. 54. f(x)=x+2

Solve.

  1. 55. 2x2=5x [3.2]

  2. 56. 3x2+5x-10=18 [3.2]

  3. 57. x4+5x2-36=0 [3.2]

  4. 58. x2-10x+1=0 [3.2]

  5. 59. x-2=5 [3.4]

  6. 60. x=x+7+5 [3.4]

Synthesis

Prove the identity.

  1. 61. ln|tanx|=-ln|cotx|

  2. 62. ln|secθ+tanθ|=-ln|secθ-tanθ|

  3. 63. log(cosx-sinx)+log(cosx+sinx)=logcos2x

  4. 64. Mechanics. The following equation occurs in the study of mechanics:

    sinθ=I1cosϕ(I1cosϕ)2+(I2sinϕ)2.

    It can happen that I1=I2. Assuming that this happens, simplify the equation.

  5. 65. Alternating Current. In the theory of alternating current, the following equation occurs:

    R=1ωC(tanθ+tanϕ).

    Show that this equation is equivalent to

    R=cosθcosϕωCsin(θ+ϕ).
  6. 66. Electrical Theory. In electrical theory, the following equations occur:

    E1=2Etcos(θ+πP)

    and

    E2=2Etcos(θ-πP).

    Assuming that these equations hold, show that

    E1+E22=2EtcosθcosπP

    and

    E1-E22=-2EtsinθsinπP.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.118.45.162