References

  1. 1 T. Holbrook, R. Clark, and B. Haney, Secrets of a superorganism, ASU – Ask a Biologist, Sept. 2009, http://askabiologist.asu.edu/explore/secrets‐superorganism.
  2. 2 V. Gazi and K.M. Passino, Swarm stability and optimization, Berlin: Springer‐Verlag, 2011.
  3. 3 M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks, Princeton, NJ: Princeton University Press, 2010.
  4. 4 W. Ren and Y. Cao, Distributed coordination of multi‐agent networks: emergent problems, models, and issues, London: Springer‐Verlag, 2011.
  5. 5 S. Martinez and F. Bullo, Optimal sensor placement and motion coordination for target tracking, Automatica, vol. 42, no. 3. pp. 661–668, 2006.
  6. 6 B.D.O. Anderson, C. Yu, B. Fidan, and J.M. Hendrickx, Rigid graph control architectures for autonomous formations, IEEE Contr. Syst. Mag., vol. 28, no. 6, pp. 48–63, 2008.
  7. 7 C. Yu, B.D.O. Anderson, S. Dasgupta, and B. Fidan, Control of minimally persistent formations in the plane, SIAM J. Contr. Optim., vol. 48, no. 1, pp. 206–233, 2009.
  8. 8 H.K. Khalil, Nonlinear systems, Englewood Cliffs, NJ: Prentice Hall, 2002.
  9. 9 M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and adaptive control design, New York, NY: John Wiley & Sons, 1995.
  10. 10 Y. Zhao, Z. Duan, G. Wen, and Y. Zhang, Distributed finite‐time tracking control for multi‐agent systems: An observer‐based approach, Syst. & Contr. Lett., vol. 62, pp. 22–28, 2013.
  11. 11 F.P. Beer, E.R. Johnston, and W.E. Clausen, Vector mechanics for engineers: Dynamics, New York, NY: McGraw Hill, 2007.
  12. 12 L. Euler, Opera postuma, vol. 1, pp. 494–496, 1862. (See: The Euler Archive, index number 819, http://eulerarchive.maa.org.)
  13. 13 B. Jackson, Notes on the rigidity of graphs, Notes of the Levico Conference, Levico Terme, Italy, 2007.
  14. 14 I. Izmestiev, Infinitesimal rigidity of frameworks and surfaces, Lectures on Infinitesimal Rigidity, Kyushu University, Japan, 2009.
  15. 15 L. Asimow and B. Roth, The rigidity of graphs II, J. Math. Anal. Appl., vol. 68, no. 1, pp. 171–190, 1979.
  16. 16 B. Servatius and H. Servatius, Generic and abstract rigidity, in Rigidity Theory and Applications, pp. 1–19, New York, NY: Springer‐Verlag, 2002.
  17. 17 J. Graver, B. Servatius, and H. Servatius, Combinatorial rigidity, Providence, RI: American Mathematical Society, 1993.
  18. 18 B. Roth, Rigid and flexible frameworks, The Amer. Math. Monthly, vol. 86, no. 1, pp. 6–21, 1981.
  19. 19 J.N. Franklin, Matrix theory, Englewood Cliffs, NJ: Prentice Hall, 1968.
  20. 20 B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput., vol. 21, no.1, pp. 65–84, 1992.
  21. 21 D. Moore, J. Leonard, D. Rus, and S. Teller, Robust distributed network localization with noisy range measurements, Proc. ACM Conf. Embedded Networked Sensor Syst., pp. 50–61, 2004.
  22. 22 J. Aspnes, J. Egen, D.K. Goldenberg, A.S. Morse, W. Whiteley, Y.R. Yang, B.D.O. Anderson, and P.N. Belhumeur, A theory of network localization, IEEE Trans. Mob. Comput., vol. 5, no. 12, pp. 1663–1678, 2006.
  23. 23 L. Krick, M.E. Broucke, and B.A. Francis, Stabilization of infinitesimally rigid formations of multi‐robot networks, Intl. J. Contr., vol. 83, no. 3, pp. 423–439, 2009.
  24. 24 B. Xian, D.M. Dawson, M. de Queiroz, and J. Chen, A continuous asymptotic tracking control strategy for uncertain nonlinear systems, IEEE Trans. Autom. Contr., vol. 49, no.7, pp. 1206–1211, 2004.
  25. 25 L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc., vol. 245, pp. 279–289, 1978.
  26. 26 R. Connelly, Generic global rigidity, Discrete Comput. Geom., vol. 33, no.4, pp. 549–563, 2005.
  27. 27 R. Diestel, Graph theory, New York: Springer‐Verlag, 1997.
  28. 28 B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations of graphs, J. Comb. Theory, Series B, vol. 94, no. 1, pp. 1–29, 2005.
  29. 29 H. Maehara, Geometry of frameworks, Yokohama Math. J., vol. 47, pp. 41–65, 1999.
  30. 30 T. Eren, P.N. Belhumeur, and A.S. Morse, Closing ranks in vehicle formations based on rigidity, Proc. IEEE Conf. Dec. Contr., pp. 2959–2964, Las Vegas, NV, 2002.
  31. 31 J. Baillieul and A. Suri, Information patterns and hedging Brockett's theorem in controlling vehicle formations, Proc. IEEE Conf. Dec. Contr., pp. 556–563, Maui, HI, 2003.
  32. 32 J.P. Desai, J. Ostrowski, and V. Kumar, Controlling formations of multiple mobile robots, Proc. IEEE Intl. Conf. Rob. Autom., pp. 2864–2869, Leuven, Belgium, 1998.
  33. 33 J.A. Fax and R.M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Contr., vol. 49, no. 9, pp. 1465–1476, 2004.
  34. 34 R. Olfati‐Saber and R.M. Murray, Distributed cooperative control of multiple vehicle formations using structural potential functions, Presented at the 15th IFAC World Congress, Barcelona, Spain, 2002.
  35. 35 P. Tabuada, G.J. Pappas, and P. Lima, Feasible formations of multi‐agent systems, Proc. Amer. Contr. Conf., pp. 56–61, Arlington, VA, 2001.
  36. 36 V. Gazi, B. Fidan, R. Ordóñez, and M.I. Köksal, A target tracking approach for nonholonomic agents based on artificial potentials and sliding mode control, ASME J. Dyn. Syst., Meas., and Contr., vol. 134, no. 6, Paper 061004, 2012.
  37. 37 H. Bai, M. Arcak, and J. Wen, Cooperative control design: A systematic, passivity‐based approach, New York, NY: Springer, 2010.
  38. 38 Z. Qu, Cooperative control of dynamical systems: applications to autonomous vehicles, London: Springer‐Verlag, 2009.
  39. 39 W. Ren and R.W. Beard, Distributed consensus in multi‐vehicle cooperative control, London: Springer‐Verlag, 2008.
  40. 40 K.‐K. Oh, M.‐C. Park, and H.‐S. Ahn, A survey of multi‐agent formation control, Automatica, vol. 53, no. 3, pp. 424–440, 2015.
  41. 41 G. Campion, G. Bastin, and B. D'Andrea‐Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Rob. Autom., vol. 12, no.1, pp. 47–62, 1996.
  42. 42 D. Shevitz and B. Paden, Lyapunov stability of nonsmooth systems, IEEE Trans. Autom. Contr., vol. 39, no.9, pp. 1910–1914, 1994.
  43. 43 Z. Qu and J.X. Xu, Model‐based learning controls and their comparisons using Lyapunov direct method, Asian J. Contr., vol. 4, no. 1, pp. 99–110, 2002.
  44. 44 R. Kamalapurkar, J. Klotz, R. Downey, and W.E. Dixon, Supporting lemmas for RISE‐based control methods, arXiv:1306.3432 [cs.SY], 2013.
  45. 45 A. Ben‐Israel and T.N.E. Greville, Generalized inverses: Theory and applications, New York, NY: Springer‐Verlag, 2003.
  46. 46 D.V. Dimarogonas and K.H. Johansson, On the stability of distance‐based formation control, Proc. Conf. Dec. Contr., pp. 1200–1205, Cancun, Mexico, 2008.
  47. 47 K.‐K. Oh and H.‐S. Ahn, Formation control of mobile agents based on inter‐agent distance dynamics, Automatica, vol. 47, no. 10, pp. 2306–2312, 2011.
  48. 48 K.‐K. Oh and H.‐S. Ahn, Distance‐based undirected formations of single‐integrator and double‐integrator modeled agents in n‐dimensional space, Intl. J. Rob. Nonl. Contr., vol. 24, no. 12, pp. 1809–1820, 2014.
  49. 49 Z. Sun, S. Moub, B.D.O. Anderson, and M. Cao, Exponential stability for formation control systems with generalized controllers: A unified approach, Syst. Contr. Lett., vol. 93, no. 7, pp. 50–57, 2016.
  50. 50 S.‐M Kang, M.‐C. Park, B.‐H. Lee, and H.‐S. Ahn, Distance‐based formation control with a single moving leader, Proc. Amer. Contr. Conf., pp. 305–310, Portland, OR, 2014.
  51. 51 K.‐K. Oh and H.‐S. Ahn, Distance‐based control of cycle‐free persistent formations, Proc. IEEE Multi‐Conf. Syst. Contr., pp. 816–821, Denver, CO, 2011.
  52. 52 O. Rozenheck, S. Zhao, and D. Zelazo, A proportional‐integral controller for distance‐based formation tracking, Proc. Eur. Contr. Conf., pp. 1693–1698, Linz, Austria, 2015.
  53. 53 Z. Sun, M.‐C. Park, B.D.O. Anderson, and H.‐S. Ahn, Distributed stabilization control of rigid formations with prescribed orientation, Automatica, vol. 78, no. 4, pp. 250–257, 2017.
  54. 54 B.D.O. Anderson, Z. Sun, T. Sugie, S. Azuma, and K. Sakurama, Formation shape control with distance and area constraints, IFAC J. Syst. and Contr., vol. 1, pp. 2–12, 2017.
  55. 55 F. Dörfler and B. Francis, Geometric analysis of the formation problem for autonomous robots, IEEE Trans. Autom. Contr., vol. 55, no. 10, pp. 2379–2384, 2010.
  56. 56 K.‐K. Oh and H.‐S. Ahn, Formation control of mobile agents based on distributed position estimation, IEEE Trans. Autom. Contr., vol. 58, no. 3, pp. 737–742, 2013.
  57. 57 T.H. Summers, C. Yu, S. Dasgupta, and B.D.O. Anderson, Control of minimally persistent leader‐remote‐follower and coleader formations in the plane, IEEE Trans. Autom. Contr., vol. 56, no. 12, pp. 2778–2792, 2011.
  58. 58 S. Mou, M.‐A. Belabbas, A.S. Morse, Z. Sun, and B.D.O. Anderson, Undirected rigid formations are problematic, IEEE Trans. Autom. Contr., vol. 61, no. 10, pp. 2821–2836, 2016.
  59. 59 Z. Sun, S. Mou, B.D.O. Anderson, and A.S. Morse, Rigid motions of 3‐D undirected formations with mismatch between desired distances, IEEE Trans. Autom. Contr., vol. 62, no. 8, pp. 4151–4158, 2017.
  60. 60 H.G. de Marina, M. Cao, and B. Jayawardhana, Controlling rigid formations of mobile agents under inconsistent measurements, IEEE Trans. Rob., vol. 31, no. 1, pp. 31–39, 2015.
  61. 61 H.G. Tanner, G.J. Pappas, and V. Kumar, Input‐to‐state stability on formation graphs, Proc. Conf. Dec. Control, pp. 2439–2444, Las Vegas, NV, 2002.
  62. 62 T. Eren, W. Whiteley, B.D.O. Anderson, A.S. Morse, and P.N. Bellhumeur, Information structures to secure control of rigid formations with leader‐follower structure, Proc. Amer. Contr. Conf., pp. 2966–2971, Portland, OR, 2005.
  63. 63 J.M. Hendrickx, B.D.O. Anderson, J.‐C. Delvenne, and V.D. Blondel, Directed graphs for the analysis of rigidity and persistence in autonomous agent systems, Intl. J. Rob. Nonl. Contr., vol. 17, no. 10, pp. 960–981, 2007.
  64. 64 C. Yu, J.M. Hendrickx, B. Fidan, B.D.O. Anderson, and V.D. Blondel, Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence, Automatica, vol. 43, pp. 387–402, 2007.
  65. 65 B.D.O. Anderson, C. Yu, S. Dasgupta, and A.S. Morse, Control of a three‐coleader formation in the plane, Syst. Contr. Lett., vol. 56, pp. 573–578, 2007.
  66. 66 M. Cao, A.S. Morse, C. Yu, B.D.O. Anderson, and S. Dasgupta, Maintaining a directed, triangular formation of mobile autonomous agents, Commun. Inf. Syst., vol. 11, no. 1, pp. 1–16, 2011.
  67. 67 M.‐C. Park, Z. Sun, K.‐K. Oh, B.D.O. Anderson, and H.‐S. Ahn, Finite‐time convergence control for acyclic persistent formations, IEEE Intl. Symp. Intell. Contr., pp. 1608–1613, Antibes, France, 2014.
  68. 68 F. Xiao, L. Wang, J. Chen, and Y. Gao, Finite‐time formation control for multi‐agent systems, Automatica, vol. 45, no. 11, pp. 2605–2611, 2009.
  69. 69 Z. Lin, L. Wang, Z. Han, and M. Fu, Distributed formation control of multi‐agent systems using complex Laplacian, IEEE Trans. Autom. Contr., vol. 59, no. 7, pp. 1765–1777, 2014.
  70. 70 M. Basiri, A.N. Bishop, and P. Jensfelt, Distributed control of triangular formations with angle‐only constraints, Syst. Contr. Lett., vol. 59, pp. 147–154, 2010.
  71. 71 L. Wang, J. Markdahl, and X. Hu, Distributed attitude control of multi‐agent formations, Proc. IFAC World Congr., pp. 4513–4518, Milano, Italy, 2011.
  72. 72 H.G. de Marina, B. Jayawardhana, and M. Cao, Distributed rotational and translational maneuvering of rigid formations and their applications, IEEE Trans. Rob., vol. 32, no. 3, pp. 684–697, 2016.
  73. 73 X. Cai and M. de Queiroz, On the stabilization of planar multi‐agent formations, Proc. ASME Conf. Dyn. Syst. Contr., paper no. DSCC2012‐MOVIC2012‐8534, Ft. Lauderdale, FL, 2012.
  74. 74 X. Cai and M. de Queiroz, Formation maneuvering and target interception for multi‐agent systems via rigid graphs, Asian J. Contr., vol. 17, no. 4, pp. 1174–1186, 2015.
  75. 75 P. Zhang, M. de Queiroz, and X. Cai, 3D dynamic formation control of multi‐agent systems using rigid graphs, ASME J. Dyn. Syst. Measur. Contr., vol. 137, no. 11, Paper no. 111006, 2015.
  76. 76 C. Cao and W. Ren, Distributed coordinated tracking with reduced interaction via a variable structure approach, IEEE Trans. Autom. Contr., vol. 57, no. 1, pp 33–48, 2012.
  77. 77 J. Mei, W. Ren, and G. Ma, Distributed coordinated tracking with a dynamic leader for multiple Euler‐Lagrange systems, IEEE Trans. Autom. Contr., vol. 56, no. 6, pp. 1415–1421, 2011.
  78. 78 Z. Sun, B.D.O. Anderson, M. Deghat, and H.‐S. Ahn, Rigid formation control of double‐integrator systems, Intl. J. Contr., vol. 90, no. 7, pp. 1403–1419, 2017.
  79. 79 P. Ögren, E. Fiorelli, and N.E. Leonard, Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment, IEEE Trans. Autom. Contr., vol. 49, no. 8, pp. 1292–1302, 2004.
  80. 80 X. Dong, B. Yu, Z. Shi, and Y. Zhong, Time‐varying formation control for unmanned aerial vehicles: Theories and applications, IEEE Trans. Contr. Syst. Tech., vol. 23, no. 1, pp. 340–348, 2015.
  81. 81 H. Bai, M. Arcak, and J. T. Wen, Using orientation agreement to achieve planar rigid formation, Proc. Amer. Contr. Conf., pp. 753–758, Seattle, WA, 2008.
  82. 82 D. Sun, C. Wang, W. Shang, and G. Feng, A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time‐varying formations, IEEE Trans. Rob., vol. 25, no. 5, pp. 1074–1086, 2009.
  83. 83 Z. Han, L. Wang, Z. Lin, and R. Zheng, Formation control with size scaling via a complex Laplacian‐based approach, IEEE Trans. Cybern.. vol. 46, no. 1, pp. 2348–2359, 2016.
  84. 84 Z. Sun, S. Mou, M. Deghat, and B.D.O. Anderson, Finite time distributed distance‐constrained shape stabilization and flocking control for d‐dimensional undirected rigid formations, Intl. J. Rob. Nonl. Contr., vol. 26, no. 13, pp. 2824–2844, 2016.
  85. 85 M. Deghat, B.D.O. Anderson, and Z. Lin, Combined flocking and distance‐based shape control of multi‐agent formations, IEEE Trans. Autom. Contr., vol. 61, no. 7, pp. 1824–1837, 2016.
  86. 86 Y. Cao, D. Stuart, W. Ren, and Z. Meng, Distributed containment control for multiple autonomous vehicles with double‐integrator dynamics: algorithms and experiments, IEEE Trans. Contr. Syst. Tech., vol. 19, no. 4, pp. 929–938, 2011.
  87. 87 Y.‐Y. Chen and Y.‐P. Tian, A backstepping design for directed formation control of three‐coleader agents in the plane, Intl. J. Rob. Nonl. Contr., vol. 19, no. 7, pp. 729–745, 2009.
  88. 88 S. Coogan and M. Arcak, Scaling the size of a formation using relative position feedback, Automatica, vol. 48, no. 10, pp. 2677–2685, 2012.
  89. 89 H.G. de Marina, B. Jayawardhana, and M. Cao, Taming mismatches in inter‐agent distances for the formation‐motion control of second‐order agents, IEEE Trans. Autom. Contr., vol. 63, no. 2, pp. 449–462, 2018.
  90. 90 X. Cai and M. de Queiroz, Multi‐agent formation maneuvering and target interception with double‐integrator model, Proc. Amer. Contr. Conf., pp. 287–292, Portland, OR, 2014.
  91. 91 X. Cai and M. de Queiroz, Rigidity‐based stabilization of multi‐agent formations, ASME J. Dyn. Syst. Measur. Contr., vol. 136, no. 1, Paper 014502, 2014.
  92. 92 W.E. Dixon, D.M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear control of wheeled mobile robots, London: Springer, 2001.
  93. 93 Y. Fang, E. Zergeroglu, M.S. de Queiroz, and D.M. Dawson, Global output feedback control of dynamically positioned surface vessels: An adaptive control approach, Mechatronics, vol. 14, no. 4, pp. 341–356, 2004.
  94. 94 A. De Luca and G. Oriolo, Modelling and control of nonholonomic mechanical systems, in J. Angeles, A. Kecskemethy (eds.) Kinematics and Dynamics of Multi‐Body Systems, CISM Courses and Lectures, Vol. 360, pp. 277–342, Wien, Germany: Springer‐Verlag, 1995.
  95. 95 R.W. Brockett, Asymptotic stability and feedback stabilization, in R.W. Brockett, R.S. Millman, and H.J. Sussmann (eds.) Differential Geometric Control Theory, pp. 181–191, Boston, MA: Birkhauser, 1983.
  96. 96 S. Mastellone, D.M. Stipanovic, C.R. Graunke, K.A. Intlekofer, and M.W. Spong, Formation control and collision avoidance for multi‐agent non‐holonomic systems: Theory and experiments, Intl. J. Robotics Res., vol. 27, no. 1, pp. 107–125, 2008.
  97. 97 D. Kostic, S. Adinandra, J. Caarls, N. van de Wouw, and H. Nijmeijer, Saturated control of time‐varying formations and trajectory tracking for unicycle multi‐agent systems, Proc. IEEE Conf. Dec. Contr., pp. 4054–4059, Atlanta, GA, 2010.
  98. 98 A. Sadowska, D. Kostic, N. van de Wouw, H. Huijberts, and H. Nijmeijer, Distributed formation control of unicycle robots, Proc. IEEE Intl. Conf. Rob. Autom., pp. 1564–1569, Saint Paul, MN, 2012.
  99. 99 N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, Vision‐based, distributed control laws for motion coordination of nonholonomic robots, IEEE Trans. Rob., vol. 25, no. 4, pp. 851–860, 2009.
  100. 100 M. Khaledyan and M. de Queiroz, Formation maneuvering control of nonholonomic multi‐agent systems, Proc. ASME Dyn. Syst. Contr. Conf., Paper No. DSCC2016‐9616, Minneapolis, MN, 2016.
  101. 101 B.‐H. Lee, S.‐J. Lee, M.‐C. Park, K.‐K. Oh, and H.‐S. Ahn, Nonholonomic control of distance‐based cyclic polygon formation, Proc. Asian Contr. Conf., pp. 1–4, Istanbul, Turkey, 2013.
  102. 102 D.V. Dimarogonas and K.J. Kyriakopoulos, On the rendevous problem for mulitple nonholonomic agents, IEEE Trans. Autom. Contr., vol. 52, no. 5, pp. 916–922, 2007.
  103. 103 D.V. Dimarogonas and K.J. Kyriakopoulos, A connection between formation infeasibility and velocity alignment in kinematic multi‐agent systems, Automatica, vol. 44, no. 10, pp. 2648–2654, 2009.
  104. 104 Y. Liang and H.‐H Lee, Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints, Proc. Amer. Contr. Conf., pp. 5596–5601, Minneapolis, MN, 2006.
  105. 105 J. Zhu, J. Lü, and X. Yu, Flocking of multi‐agent non‐holonomic systems with proximity graphs, IEEE Trans. Circ. Syst. I, vol. 60, no. 1, pp. 199–210, 2013.
  106. 106 J. Chen, D. Sun, J. Yang, and H. Chen, Leader‐follower formation control of multiple non‐holonomic mobile robots incorporating a receding‐horizon scheme, Intl. J. Rob. Res., vol. 29, no. 6, pp. 727–747, 2010.
  107. 107 S.‐J. Chung and J.‐J. Slotine, Cooperative robot control and concurrent synchronization of Lagrangian systems, IEEE Trans. Rob., vol. 25, no. 3, pp. 686–700, 2009.
  108. 108 S. Khoo, L. Xie, and Z. Man, Robust finite‐time consensus tracking algorithm for multirobot systems, IEEE/ASME Trans. Mechatr., vol. 14. no. 2, pp. 219–228, 2009.
  109. 109 A.R. Pereira, L. Hsu, and R. Ortega, Globally stable adaptive formation control of Euler–Lagrange agents via potential functions, Proc. Amer. Contr. Conf., pp. 2606–2611, St. Louis, MO, 2009.
  110. 110 G. Chen and F.L. Lewis, Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems, IEEE Trans. Syst. Man Cybern. – Part B, vol. 41, no. 3, pp. 805–816, 2011.
  111. 111 D. Lee and P.Y. Li, Passive decomposition approach to formation and maneuver control of multiple rigid‐bodies, ASME J. Dyn. Syst. Measur. Contr., vol. 129, no. 5, pp. 662–677, 2007.
  112. 112 Z. Peng, D. Wang, Z. Chen, X. Hu, and W. Lan, Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics, IEEE Trans. Contr. Syst. Tech., vol. 21, no. 2, pp. 513–520, 2013.
  113. 113 R. Skjetne, S. Moi, and T.I. Fossen, Nonlinear formation control of marine craft, Proc. IEEE Conf. Dec. Contr., pp. 1699–1704, Las Vegas, NV, 2002.
  114. 114 T. Dierks and S. Jagannathan, Control of nonholonomic mobile robot formations: backstepping kinematics into dynamics, Proc. Intl. Conf. Contr. Appl., pp. 94–99, Singapore, 2007.
  115. 115 K.D. Do and J. Pan, Nonlinear formation control of unicycle‐type mobile robots, Robot. Autonom. Syst., vol. 55, pp. 191–204, 2007.
  116. 116 W. Dong and J.A. Farrell, Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty, Automatica, vol. 45, no. 3, pp. 706–710, 2009.
  117. 117 C.F.L. Thorvaldsen and R. Skjetne, Formation control of fully‐actuated marine vessels using group agreement protocols, Proc. IEEE Conf. Dec. Contr., pp. 4132–4139, Orlando, FL, 2011.
  118. 118 J. Yao, R. Ordóñez, and V. Gazi, Swarm tracking using artificial potentials and sliding mode control, ASME J. Dyn. Syst., Meas., Control, vol. 129, no. 5, pp. 749–754, 2007.
  119. 119 X. Cai and M. de Queiroz, Adaptive rigidity‐based formation control for multi‐robotic vehicles with dynamics, IEEE Trans. Contr. Syst. Tech., vol. 23, no. 1, pp. 389–396, 2015.
  120. 120 M. Khaledyan and M. de Queiroz, Translational maneuvering control of nonholonomic kinematic formations: Theory and experiments, Proc. Amer. Contr. Conf., pp. 2910–2915, Milwaukee, WI, 2018.
  121. 121 A. De Luca, G. Oriolo, and C. Samson, Feedback control of a nonholonomic car‐like robot, in J.‐P. Laumond (ed.), Robot Motion Planning and Control, Lectures Notes in Control and Information Sciences, Vol. 229, pp. 171–253, Berlin: Springer‐Verlag, 1998.
  122. 122 E. Moret, Dynamic modeling and control of a car‐like robot, Master thesis, Virginia Polytechnic Institute, 2003.
  123. 123 Z. Cai, M.S. de Queiroz, and D.M. Dawson, A Sufficiently Smooth Projection Operator,textquotedblright IEEE Trans. Autom. Contr., vol. 51, no. 1, pp. 135–139, Jan. 2006.
  124. 124 K.S. Narendra and A.M. Annaswamy, Stable adaptive systems. Mineola, NY: Dover, 2005.
  125. 125 P.R. Halmos, Finite‐dimensional vector spaces, New York, NY: Springer‐Verlag, 1974.
  126. 126 R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge, UK: Cambridge University Press, 1985.
  127. 127 R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc., vol. 51, pp. 406–413, 1955.
  128. 128 D.M. Dawson, J. Hu, and T.C. Burg, Nonlinear control of electric machinery, New York, NY: Marcel Dekker, 1998.
  129. 129 C.A. Desoer and M. Vidyasagar, Feedback systems: Input‐output properties, New York, NY: Academic Press, 1975.
  130. 130 F. Golnaraghi and B.C. Kuo, Automatic control systems, New York, NY: McGraw‐Hill Education, 2017.
  131. 131 S. Sastry, Nonlinear systems: analysis, stability, and control, New York, NY: Springer, 1999.
  132. 132 J.‐J.E. Slotine and W. Li, Applied nonlinear control, Englewood Cliffs, NJ: Prentice Hall, 1991.
  133. 133 Khalil, H. K., Nonlinear control, Harlow, England: Pearson Education Limited, 2015.
  134. 134 J.H. Marquez, Nonlinear control systems analysis and design, Hoboken, NY: John Wiley & Sons, 2003.
  135. 135 A.F. Filippov, Differential equations with discontinuous righthand sides, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2010.
  136. 136 Z. Guo and L. Huang, Generalized Lyapunov method for discontinuous systems, Nonl. Anal., vol. 71, pp. 3083–3092, 2009.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.15.186.79