Index

    • a
    • accelerated aging (AA) 77
    • accelerated corrosion testing 52, 79, 81
    • accelerated degradation 1
    • accelerated durability testing (ADT) 4, 34–37, 50, 51, 54, 60, 62, 65, 66, 76, 77, 82–87, 92, 94, 96, 101, 102, 105–109, 113, 115, 120, 121, 124, 125, 136, 142, 143, 145, 146, 148, 155, 156, 165, 171, 178, 187, 189, 190, 193
    • accelerated laboratory testing 51
    • accelerated life testing (ALT) 76, 82
    • accelerated multiply environmental testing 85
    • accelerated reliability and durability testing (ART/ADT) 50, 76, 82–84
    • Accelerated Reliability and Durability Testing Technology 45
    • accelerated reliability testing (ART) 46, 50, 76, 82, 83
    • accelerated stress testing 78
    • accelerated testing (AT) , 46, 78
    • accurate definitions of successful reliability prediction 49–51
    • accurate information for successful reliability prediction 32
    • accurate physical simulation 46, 87
    • accurate prediction 10, 51
    • accurate reliability prediction 50, 51
    • accurate real‐world simulation 82
    • accurate simulation 46, 51, 87
    • accurate simulation of the field conditions 51
    • accurate simulation of the field corrosion 46, 51, 92
    • accurate simulation of the field input influences 48, 51
    • accurate system of reliability prediction 52
    • actual causes of the recalls 3
    • Adib, R. 34
    • advanced test methods 4
    • advantages of empirical prediction methods 11
    • advantages of physics of failure methods 14
    • advantages of standard‐based reliability prediction 8
    • ANSI/VITA 51.3 Qualification and Environmental Stress Screening in Support of Reliability Prediction 16
    • Arrhenius's Law 12
    • b
    • basic components of reliability prediction methodology 53
    • basic concepts of accelerated reliability and durability testing 83
    • basic concepts of reliability prediction 63
    • basic concepts of successful reliability prediction 63, 64
    • basic methodology for successful reliability prediction 52
    • basic problems of successful reliability prediction 31
    • Bayesian approach 22
    • The Bellcore hardware reliability prediction 2
    • Bellcore reliability prediction procedure 2, 11
    • Bellcore reliability prediction standard 11
    • Bellcore/Telcordia predictive method 11, 15
    • beneficial prediction 4
    • Black model for the electromigration 14
    • c
    • classes of reliability estimates 5
    • classical test theory 6
    • coefficients of recalculating 67, 68
    • combined effect 47
    • combined simulation 79
    • combined testing 7
    • common criteria for successful prediction 53
    • components accelerated reliability/durability testing 85
    • components reliability prediction 48, 49
    • corrosion in the field as result of interaction 82, 92
    • corrosion test chamber 93
    • corrosion testing 79
    • criteria of successful reliability prediction 53–63
    • d
    • degradation 46
    • degradation mechanism of the product 63
    • degradation process 1
    • different types of implementation 101
    • disadvantages of empirical prediction method 12
    • disadvantages of physics of failure methods 15
    • disadvantages of standard‐based reliability prediction 8
    • durability testing 50
    • e
    • empirical prediction standards 11
    • empirical reliability prediction methods 11
    • engineering culture 87, 88
    • evolution of reliability testing 77
    • Eyring model 12
    • f
    • failed reliability prediction 
    • failure rate 2
    • fatigue life prediction method 25
    • FavoWeb FRACAS analysis 4
    • FMEA (Failure Mode and Effects Analysis) 4
    • FMECA (Failure Mode, Effects and Critical Analysis) 4
    • four basic approaches to accelerated testing 76
    • FRACAS (Failure Reporting, Analysis and Corrective Action System) 4
    • g
    • general model of prediction 6
    • Gipper, J. 18
    • grapho‐analytical method 64, 65
    • h
    • HALT (highly accelerated life testing) 77
    • HASS (highly accelerated stress screen) 77
    • Hobbs, Gregg 77
    • hot carrier injection model of prediction 13
    • i
    • Illustration for the programs in reliability prediction 220–222
    • interaction (interconnection) real‐world input influences 47, 89
    • interaction of three basic groups of real world conditions 89
    • Interaction real world conditions 47
    • interconnection multi‐environmental group of input influences 90
    • j
    • Juran 46
    • k
    • Kamaz, Inc. 109, 110
    • Kanapady, R. 34
    • Klyatis criterion 58, 61
    • Kolmogorov criterion 55, 58
    • Kolmogorov distribution 55, 61
    • Kolmogorov divergence 61
    • m
    • mechanical degradation 64
    • mechanical reliability prediction 2, 3
    • methodological aspects of reliability prediction 53
    • methodology for successful reliability prediction 54–63
    • MIL‐HDBK‐217 predictive method 10
    • MIL‐HDBK‐2017F handbook 21
    • multi‐disciplinary team 35
    • multi‐environmental complex of field input influences 52
    • multiple‐environmental influences 89
    • n
    • narrow thinking 94
    • Nicholls, David 25, 26
    • normalized coefficient 67
    • null hypothesis 54
    • number of automobile recalls 
    • p
    • parallel‐forms method 7
    • parallel‐test model 7
    • periodic field testing 51
    • Phillip Coyle ,
    • physics of failure analysis 16
    • physics of failure approach 14
    • physics of failure methods 12, 14, 29
    • potential failure mode 5
    • practical reliability prediction 24, 61
    • prediction of reliability function 64
    • prediction reliability 
    • primary difference between ART and ADT 51
    • principles of accelerated reliability testing 176
    • published author's citations 184–186
    • published reviews to author's books 186–193
    • q
    • quantity 48
    • r
    • recalculated coefficients 66
    • recounting coefficients 66
    • reliability measures 1
    • reliability modeling 29
    • reliability prediction 1, 27–30
    • reliability prediction for mean time between failures 9
    • reliability prediction models 1
    • reliability prediction procedure 47, 49
    • reliability prediction programs 217, 218
    • reliability prediction reasons 1, 16
    • reliability prediction strategy 48, 49, 85, 86
    • role of accurate definitions 49
    • s
    • separate simulation of input influences 88, 90
    • simultaneous combination of different types of testing 64
    • single‐axis vibration testing 79
    • six‐axis (DOF) vibration test 95
    • Smirnov criterion 56, 58, 59
    • Smirnov distribution 56, 59–61
    • Smirnov function of distribution 60
    • The software prediction procedure 2
    • Standard EP‐456 “Test and Reliability Guidelines” 110, 111, 113, 114
    • steady‐state failure rate 2
    • step‐by‐step solution for practical successful reliability prediction 46
    • step‐stress testing 80
    • successful practical reliability prediction 43, 48, 49
    • successful prediction 167
    • successful reliability prediction methodology 53
    • successful reliability prediction strategy 48, 49
    • t
    • Telecordia reliability prediction procedure 21
    • test‐retest reliability method 7
    • three main categories of current prediction 10
    • trends in development ART and ADT 87
    • trends in development physical simulation 87
    • two basic aspects of testing 75, 76
    • v
    • Ventcel, E.S. 62
    • vibration of mobile test subject 81
    • vibration testing 52, 79, 81, 94, 95
    • virtual thinking 
    • w
    • Warren Buffet 106
    • Weibull analysis 15
    • Wong, K.L. 29, 34
    • y
    • Yakhya Abdulgalimov 105
    ..................Content has been hidden....................

    You can't read the all page of ebook, please click here login for view all page.
    Reset
    3.15.174.76