Reference

  1. 1 Niyato, D., Wang, P., Han, Z., and Hossain, E. (2011) Impact of packet loss on power demand estimation and power supply cost in smart grid, in Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pp. 2024–2029, doi:10.1109/WCNC.2011.5779440.
  2. 2 Amin, S.M. (2012) Smart grid security, privacy, and resilient architectures: Opportunities and challenges, in Power and Energy Society General Meeting, 2012 IEEE, IEEE, pp. 1–2.
  3. 3 Niyato, D., Dong, Q., Wang, P., and Hossain, E. (2013) Optimizations of power consumption and supply in the smart grid: Analysis of the impact of data communication reliability. Smart Grid, IEEE Transactions on, 4 (1), 21–35, doi:10.1109/TSG.2012.2224677.
  4. 4 Yan, Y., Qian, Y., Sharif, H., and Tipper, D. (2012) A survey on cyber security for smart grid communications. IEEE Communications Surveys Tutorials, 14 (4), 998–1010, doi:10.1109/SURV.2012.010912.00035.
  5. 5 Fang, X., Misra, S., Xue, G., and Yang, D. (2012) Smart grid–2014; the new and improved power grid: A survey. Communications Surveys Tutorials, IEEE, 14 (4), 944–980, doi:10.1109/SURV.2011.101911.00087.
  6. 6 Zhou, L., Rodrigues, J., and Oliveira, L. (2012) Qoe‐driven power scheduling in smart grid: architecture, strategy, and methodology. Communications Magazine, IEEE, 50 (5), 136–141, doi:10.1109/MCOM.2012.6194394.
  7. 7 Yan, Y., Qian, Y., Sharif, H., and Tipper, D. (2013) A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15 (1), 5–20, doi:10.1109/SURV.2012.021312.00034.
  8. 8 Zhou, L. and Rodrigues, J. (2013) Service‐oriented middleware for smart grid: Principle, infrastructure, and application. Communications Magazine, IEEE, 51 (1), 84–89, doi:10.1109/MCOM.2013.6400443.
  9. 9 Erol‐Kantarci, M. and Mouftah, H. (2015) Energy‐efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. Communications Surveys Tutorials, IEEE, 17 (1), 179–197, doi:10.1109/COMST.2014.2341600.
  10. 10 Ye, F., Qian, Y., and Hu, R. (2015) Energy efficient self‐sustaining wireless neighborhood area network design for smart grid. Smart Grid, IEEE Transactions on, 6 (1), 220–229, doi:10.1109/TSG.2014.2344659.
  11. 11 Smart grid., https://www.smartgrid.gov. [Online; accessed 8‐July‐2017].
  12. 12 Fossil Fuel Power Station, http://en.wikipedia.org/wiki/Fossil‐fuel_power_station. [Online; accessed 8‐June‐2015].
  13. 13 Ma, Z., Callaway, D., and Hiskens, I. (2010) Decentralized charging control for large populations of plug‐in electric vehicles, in Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 206–212, doi:10.1109/CDC.2010.5717547.
  14. 14 Fan, Z. (2012) A distributed demand response algorithm and its application to phev charging in smart grids. Smart Grid, IEEE Transactions on, 3 (3), 1280–1290, doi:10.1109/TSG.2012.2185075.
  15. 15 Salinas, S., Li, M., and Li, P. (2013) Privacy‐preserving energy theft detection in smart grids: A p2p computing approach. Selected Areas in Communications, IEEE Journal on, 31 (9), 257–267, doi:10.1109/JSAC.2013.SUP.0513023.
  16. 16 Jiang, R., Lu, R., Wang, Y., Luo, J., Shen, C., and Shen, X.S. (2014) Energy‐theft detection issues for advanced metering infrastructure in smart grid. Tsinghua Science and Technology, 19 (2), 105–120, doi:10.1109/TST.2014.6787363.
  17. 17 Gridwise Alliance, The future of the grid, https://www.smartgrid.gov/files/Future_of_the_Grid_web_final_v2.pdf. [Online; accessed 9‐July‐2017].
  18. 18 Erol‐Kantarci, M. and Mouftah, H. (2011) Wireless sensor networks for cost‐efficient residential energy management in the smart grid. Smart Grid, IEEE Transactions on, 2 (2), 314–325, doi:10.1109/TSG.2011.2114678.
  19. 19 McBee, K. and Simoes, M. (2012) Utilizing a smart grid monitoring system to improve voltage quality of customers. Smart Grid, IEEE Transactions on, 3 (2), 738–743, doi:10.1109/TSG.2012.2185857.
  20. 20 Qiu, M., Su, H., Chen, M., Ming, Z., and Yang, L. (2012) Balance of security strength and energy for a pmu monitoring system in smart grid. Communications Magazine, IEEE, 50 (5), 142–149, doi:10.1109/MCOM.2012.6194395.
  21. 21 Baki, A. (2014) Continuous monitoring of smart grid devices through multi protocol label switching. Smart Grid, IEEE Transactions on, 5 (3), 1210–1215, doi:10.1109/TSG.2014.2301723.
  22. 22 (2014), NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0, http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf. [Online; accessed 9‐July‐2017].
  23. 23 Güzelgöz, S., Arslan, H., Islam, A., and Domijan, A. (2011) A review of wireless and plc propagation channel characteristics for smart grid environments. JECE, 2011, 15:15–15:15, doi:10.1155/2011/154040. URL http://dx.doi.org/10.1155/2011/154040.
  24. 24 Galli, S., Scaglione, A., and Wang, Z. (2011) For the grid and through the grid: The role of power line communications in the smart grid. Proceedings of the IEEE, 99 (6), 998–1027, doi:10.1109/JPROC.2011.2109670.
  25. 25 Gomez‐Cuba, F., Asorey‐Cacheda, R., and Gonzalez‐Castano, F. (2013) Smart grid last‐mile communications model and its application to the study of leased broadband wired‐access. Smart Grid, IEEE Transactions on, 4 (1), 5–12, doi:10.1109/TSG.2012.2223765.
  26. 26 Pagani, G. and Aiello, M. (2013) Modeling the last mile of the smart grid, in Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES, pp. 1–6, doi:10.1109/ISGT.2013.6497816.
  27. 27 Ma, J., Deng, J., Song, L., and Han, Z. (2014) Incentive mechanism for demand side management in smart grid using auction. Smart Grid, IEEE Transactions on, 5 (3), 1379–1388, doi:10.1109/TSG.2014.2302915.
  28. 28 Soliman, H. and Leon‐Garcia, A. (2014) Game‐theoretic demand‐side management with storage devices for the future smart grid. Smart Grid, IEEE Transactions on, 5 (3), 1475–1485, doi:10.1109/TSG.2014.2302245.
  29. 29 Fadlullah, Z., Quan, D.M., Kato, N., and Stojmenovic, I. (2014) Gtes: An optimized game‐theoretic demand‐side management scheme for smart grid. Systems Journal, IEEE, 8 (2), 588–597, doi:10.1109/JSYST.2013.2260934.
  30. 30 Li, S., Zhang, D., Roget, A., and O'Neill, Z. (2014) Integrating home energy simulation and dynamic electricity price for demand response study. Smart Grid, IEEE Transactions on, 5 (2), 779–788, doi:10.1109/TSG.2013.2279110.
  31. 31 Fadlullah, Z., Fouda, M., Kato, N., Takeuchi, A., Iwasaki, N., and Nozaki, Y. (2011) Toward intelligent machine‐to‐machine communications in smart grid. Communications Magazine, IEEE, 49 (4), 60–65, doi:10.1109/MCOM.2011.5741147.
  32. 32 Niyato, D., Xiao, L., and Wang, P. (2011) Machine‐to‐machine communications for home energy management system in smart grid. Communications Magazine, IEEE, 49 (4), 53–59.
  33. 33 Liu, E., Chan, M., Huang, C., Wang, N., and Lu, C. (2010) Electricity grid operation and planning related benefits of advanced metering infrastructure, in Critical Infrastructure (CRIS), 2010 5th International Conference on, pp. 1–5, doi:10.1109/CRIS.2010.5617583.
  34. 34 Zhou, J., Hu, R., and Qian, Y. (2012) Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. Parallel and Distributed Systems, IEEE Transactions on, 23 (9), 1632–1642, doi:10.1109/TPDS.2012.53.
  35. 35 Gharavi, H. and Xu, C. (2012) Traffic scheduling technique for smart grid advanced metering applications. Communications, IEEE Transactions on, 60 (6), 1646–1658, doi:10.1109/TCOMM.2012.12.100620.
  36. 36 Ye, F., Qian, Y., Hu, R.Q., and Das, S.K. (2015) Reliable energy‐efficient uplink transmission for neighborhood area networks in smart grid. IEEE Transactions on Smart Grid, 6 (5), 2179–2188.
  37. 37 Bruce, A. (1998) Reliability analysis of electric utility scada systems. Power Systems, IEEE Transactions on, 13 (3), 844–849, doi:10.1109/59.708711.
  38. 38 Patel, M., Aivaliotis, S., Ellen, E. et al. (2010) Real‐time application of synchrophasors for improving reliability. NERC Report, Oct.
  39. 39 Xie, Z., Manimaran, G., Vittal, V., Phadke, A., and Centeno, V. (2002) An information architecture for future power systems and its reliability analysis. Power Systems, IEEE Transactions on, 17 (3), 857–863, doi:10.1109/TPWRS.2002.800971.
  40. 40 Wang, Y., Li, W., and Lu, J. (2010) Reliability analysis of wide‐area measurement system. Power Delivery, IEEE Transactions on, 25 (3), 1483–1491, doi:10.1109/TPWRD.2010.2041797.
  41. 41 Shahraeini, M., Javidi, M., and Ghazizadeh, M. (2011) Comparison between communication infrastructures of centralized and decentralized wide area measurement systems. Smart Grid, IEEE Transactions on, 2 (1), 206–211, doi:10.1109/TSG.2010.2091431.
  42. 42 Wang, Y., Wang, C., Li, W., Li, J., and Lin, F. (2014) Reliability‐based incremental pmu placement. Power Systems, IEEE Transactions on, 29 (6), 2744–2752, doi:10.1109/TPWRS.2014.2310182.
  43. 43 Ray, P., Harnoor, R., and Hentea, M. (2010) Smart power grid security: A unified risk management approach, in Security Technology (ICCST), 2010 IEEE International Carnahan Conference on, pp. 276–285, doi:10.1109/CCST.2010.5678681.
  44. 44 Komninos, N., Philippou, E., and Pitsillides, A. (2014) Survey in smart grid and smart home security: Issues, challenges and countermeasures. Communications Surveys Tutorials, IEEE, 16 (4), 1933–1954, doi:10.1109/COMST.2014.2320093.
  45. 45 Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., and Basar, T. (2013) Dependable demand response management in the smart grid: A stackelberg game approach. Smart Grid, IEEE Transactions on, 4 (1), 120–132, doi:10.1109/TSG.2012.2223766.
  46. 46 Ye, F., Qian, Y., and Hu, R. (2015 (early access)) A real‐time information based demand‐side management system in smart grid. Parallel and Distributed Systems, IEEE Transactions on, PP (99), 1–1, doi:10.1109/TPDS.2015.2403833.
  47. 47 Lasseter, R.H. (2002) Microgrids, in Power Engineering Society Winter Meeting, 2002. IEEE, vol. 1, IEEE, vol. 1, pp. 305–308.
  48. 48 Erol‐Kantarci, M., Kantarci, B., and Mouftah, H. (2011) Reliable overlay topology design for the smart microgrid network. Network, IEEE, 25 (5), 38–43, doi:10.1109/MNET.2011.6033034.
  49. 49 Liang, H., Choi, B.J., Abdrabou, A., Zhuang, W., and Shen, X. (2012) Decentralized economic dispatch in microgrids via heterogeneous wireless networks. Selected Areas in Communications, IEEE Journal on, 30 (6), 1061–1074, doi:10.1109/JSAC.2012.120705.
  50. 50 Kanabar, M., Adamiak, M., and Rodrigues, J. (2013) Optimizing wide area measurement system architectures with advancements in phasor data concentrators (pdcs), in Power and Energy Society General Meeting (PES), 2013 IEEE, pp. 1–5, doi:10.1109/PESMG.2013.6672987.
  51. 51 Chuang, C.L., Wang, Y.C., Lee, C.H., Liu, M.Y., Hsiao, Y.T., and Jiang, J.A. (2010) An adaptive routing algorithm over packet switching networks for operation monitoring of power transmission systems. Power Delivery, IEEE Transactions on, 25 (2), 882–890, doi:10.1109/TPWRD.2008.2008494.
  52. 52 Huang, J., Wang, H., Qian, Y., and Wang, C. (2013) Priority‐based traffic scheduling and utility optimization for cognitive radio communication infrastructure‐based smart grid. Smart Grid, IEEE Transactions on, 4 (1), 78–86, doi:10.1109/TSG.2012.2227282.
  53. 53 Ma, R., Meng, W., Chen, H.H., and Huang, Y.R. (2012) Coexistence of smart utility networks and wlan/zigbee in smart grid, in Smart Grid Communications (SmartGridComm), 2012 IEEE Third International Conference on, pp. 211–216, doi:10.1109/SmartGridComm.2012.6485985.
  54. 54 Chang, K.H. and Mason, B. (2012) The ieee 802.15.4g standard for smart metering utility networks, in Smart Grid Communications (SmartGridComm), 2012 IEEE Third International Conference on, pp. 476–480, doi:10.1109/SmartGridComm.2012.6486030.
  55. 55 Li, Z. and Liang, Q. (2013) Performance analysis of multiuser selection scheme in dynamic home area networks for smart grid communications. Smart Grid, IEEE Transactions on, 4 (1), 13–20, doi:10.1109/TSG.2012.2223242.
  56. 56 Hu, R. and Qian, Y., Recent advances in communication infrastructures for smart grid, http://icc2014.ieee‐icc.org/2014/private/Tutorial7.pdf. [Online; accessed 9‐July‐2017].
  57. 57 Nguyen, C. and Flueck, A. (2011) Modeling of communication latency in smart grid, in Power and Energy Society General Meeting, 2011 IEEE, pp. 1–7, doi:10.1109/PES.2011.6039815.
  58. 58 Kim, J., Kim, D., Lim, K.W., Ko, Y.B., and Lee, S.Y. (2012) Improving the reliability of ieee 802.11s based wireless mesh networks for smart grid systems. Communications and Networks, Journal of, 14 (6), 629–639, doi:10.1109/JCN.2012.00029.
  59. 59 Group, I.S..W. et al., Ieee standard for local and metropolitan area networks.
  60. 60 (2008), Wireless Connectivity for Electric Substations, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001016145. [Online; accessed 14‐Sept‐2017].
  61. 61 FCC Rules for Unlicensed Wireless Equipment operating in the ISM bands., http://www.afar.net/tutorials/fcc‐rules. [Online; accessed 6‐June‐2015].
  62. 62 Xu, Y. and Wang, W. (2013) Wireless mesh network in smart grid: Modeling and analysis for time critical communications. Wireless Communications, IEEE Transactions on, 12 (7), 3360–3371, doi:10.1109/TWC.2013.061713.121545.
  63. 63 Gharavi, H. and Hu, B. (2011) Multigate communication network for smart grid. Proceedings of the IEEE, 99 (6), 1028–1045, doi:10.1109/JPROC.2011.2123851.
  64. 64 Al‐Anbagi, I., Erol‐Kantarci, M., and Mouftah, H. (2013) A reliable ieee 802.15.4 model for cyber physical power grid monitoring systems. Emerging Topics in Computing, IEEE Transactions on, 1 (2), 258–272, doi:10.1109/TETC.2013.2281192.
  65. 65 Rajalingham, G., Ho, Q.D., and Le‐Ngoc, T. (2013) Attainable throughput, delay and scalability for geographic routing on smart grid neighbor area networks, in Wireless Communications and Networking Conference (WCNC), 2013 IEEE, pp. 1121–1126, doi:10.1109/WCNC.2013.6554721.
  66. 66 (2003), Communication networks and systems in substations–Part 5: Communication requirements for functions and device models, P‐IEC 61850‐5 ed1.0.
  67. 67 Chu, H.C., Siao, W.T., Wu, W.T., and Huang, S.C. (2011) Design and implementation an energy‐aware routing mechanism for solar wireless sensor networks, in High Performance Computing and Communications (HPCC), 2011 IEEE 13th International Conference on, pp. 881–886, doi:10.1109/HPCC.2011.126.
  68. 68 Aksanli, B. and Rosing, T. (2013) Optimal battery configuration in a residential home with time‐of‐use pricing, in Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on, pp. 157–162, doi:10.1109/SmartGridComm.2013.6687950.
  69. 69 (2015), How to Prolong Lithium‐based Batteries., http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries. [Online; accessed 6‐June‐2015].
  70. 70 NIST Priority Action Plan 2, Guidelines for Assessing Wireless Standards for Smart Grid Applications., http://ftp.tiaonline.org/TR‐45/TR‐45.5/Incoming/TR‐455‐20110124__Seattle/500‐11012403__NIST_PAP2_Guidelines_for_Assessing_Wireless_Stds_for_Smart_Grid_Appl_1.0.pdf. [Online; accessed 6‐June‐2015].
  71. 71 Markkula, J. and Haapola, J. (2013) Lte and hybrid sensor‐lte network performances in smart grid demand response scenarios, in Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on, pp. 187–192, doi:10.1109/SmartGridComm.2013.6687955.
  72. 72 Goodman, D. and Mandayam, N. (1999) Power control for wireless data, in Mobile Multimedia Communications, 1999. (MoMuC '99) 1999 IEEE International Workshop on, pp. 55–63, doi:10.1109/MOMUC.1999.819473.
  73. 73 Meshkati, F., Chiang, M., Poor, H., and Schwartz, S. (2006) A game‐theoretic approach to energy‐efficient power control in multicarrier cdma systems. Selected Areas in Communications, IEEE Journal on, 24 (6), 1115–1129, doi:10.1109/JSAC.2005.864028.
  74. 74 Lasaulce, S., Hayel, Y., El Azouzi, R., and Debbah, M. (2009) Introducing hierarchy in energy games. Wireless Communications, IEEE Transactions on, 8 (7), 3833–3843, doi:10.1109/TWC.2009.081443.
  75. 75 Meshkati, F., Poor, H., Schwartz, S., and Mandayam, N.B. (2005) An energy‐efficient approach to power control and receiver design in wireless data networks. Communications, IEEE Transactions on, 53 (11), 1885–1894, doi:10.1109/TCOMM.2005.858695.
  76. 76 Rodriguez, V. (2003) An analytical foundation for resource management in wireless communication, in Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE, vol. 2, pp. 898–902 Vol. 2, doi:10.1109/GLOCOM.2003.1258369.
  77. 77 Strassen algorithm, http://en.wikipedia.org/wiki/Strassen_algorithm.
  78. 78 Danahy, J. (2009), The Coming Smart Grid Data Surge, http://www.smartgridnews.com/story/coming‐smart‐grid‐data‐surge/2009‐10‐05. [Online; accessed 6‐June‐2015].
  79. 79 Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L., and Walke, B. (2010) IEEE 802.11 s: the WLAN mesh standard. Wireless Communications, IEEE, 17 (1), 104–111.
  80. 80 Gharavi, H. and Xu, C. (2012) Traffic scheduling technique for smart grid advanced metering applications. Communications, IEEE Transactions on, 60 (6), 1646–1658, doi:10.1109/TCOMM.2012.12.100620.
  81. 81 Miao, G., Himayat, N., Li, G., Koc, A., and Talwar, S. (2009) Interference‐aware energy‐efficient power optimization, in Communications, 2009. ICC '09. IEEE International Conference on, pp. 1–5, doi:10.1109/ICC.2009.5199096.
  82. 82 Kayastha, N., Niyato, D., Hossain, E., and Han, Z. (2014) Smart grid sensor data collection, communication, and networking: a tutorial. Wireless communications and mobile computing, 14 (11), 1055–1087.
  83. 83 Wang, Y., Saad, W., Han, Z., Poor, H., and Basar, T. (2014) A game‐theoretic approach to energy trading in the smart grid. Smart Grid, IEEE Transactions on, 5 (3), 1439–1450, doi:10.1109/TSG.2013.2284664.
  84. 84 Ma, R., Chen, H.H., Huang, Y.R., and Meng, W. (2013) Smart grid communication: Its challenges and opportunities. Smart Grid, IEEE Transactions on, 4 (1), 36–46, doi:10.1109/TSG.2012.2225851.
  85. 85 Nishimura, F., Cicarelli, L., Arellano, R., and Soares, M. (2006) Opgw installation in energized transmission line, in Transmission Distribution Conference and Exposition: Latin America, 2006. TDC '06. IEEE/PES, pp. 1–8, doi:10.1109/TDCLA.2006.311398.
  86. 86 Ali, S., Alvi, B., and Asif, M. (2008) Opgw ‐ our experience in kesc, in Electric Power Conference, 2008. EPEC 2008. IEEE Canada, pp. 1–6, doi:10.1109/EPC.2008.4763296.
  87. 87 Guo, Z., Ye, F., Guo, J., Liang, Y., Xu, G., Zhang, X., and Qian, Y. (2014) A wireless sensor network for monitoring smart grid transmission lines, in Computer Communication and Networks (ICCCN), 2014 23rd International Conference on, pp. 1–6, doi:10.1109/ICCCN.2014.6911790.
  88. 88 Cataliotti, A., Di Cara, D., Emanuel, A., and Nuccio, S. (2008) Characterization of current transformers in the presence of harmonic distortion, in Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE, pp. 2074–2078, doi:10.1109/IMTC.2008.4547390.
  89. 89 Cataliotti, A., Di Cara, D., Di Franco, P., Emanuel, A., and Nuccio, S. (2008) Frequency response of measurement current transformers, in Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE, pp. 1254–1258, doi:10.1109/IMTC.2008.4547234.
  90. 90 Lijia, R., Hong, L., and Yan, L. (2012) On‐line monitoring and prediction for transmission line sag, in Condition Monitoring and Diagnosis (CMD), 2012 International Conference on, pp. 813–817, doi:10.1109/CMD.2012.6416272.
  91. 91 Sun, X., Lui, K., Wong, K., Lee, W., Hou, Y., Huang, Q., and Pong, P. (2011) Novel application of magnetoresistive sensors for high‐voltage transmission‐line monitoring. Magnetics, IEEE Transactions on, 47 (10), 2608–2611, doi:10.1109/TMAG.2011.2158085.
  92. 92 Huang, X. and Wei, X. (2012) A new on‐line monitoring technology of transmission line conductor icing, in Condition Monitoring and Diagnosis (CMD), 2012 International Conference on, pp. 581–585, doi:10.1109/CMD.2012.6416211.
  93. 93 Xiao, S. (2009) Consideration of technology for constructing chinese smart grid. Automation of Electric Power Systems, 8 (1), 18–28.
  94. 94 Li, J. (2011) Analysis on strategic significance of construction and development of smart grid in china. Journal of Changjiang Engineering Vocational College, 8 (1), 18–28.
  95. 95 Zhang, K. and Li, H. (2011) The transmission strategy for energy harvesting wireless transmitters, in Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, doi:10.1109/GLOCOM.2011.6134169.
  96. 96 Bu, S., Yu, F., Cai, Y., and Liu, X. (2012) When the smart grid meets energy‐efficient communications: Green wireless cellular networks powered by the smart grid. Wireless Communications, IEEE Transactions on, 11 (8), 3014–3024, doi:10.1109/TWC.2012.052512.111766.
  97. 97 Lin, J., Zhu, B., Zeng, P., Liang, W., Yu, H., and Xiao, Y. (2014) Monitoring power transmission lines using a wireless sensor network. Wirel. Commun. Mob. Comput., doi:10.1002/wcm.2458.
  98. 98 Wijaya, T., Larson, K., and Aberer, K. (2013) Matching demand with supply in the smart grid using agent‐based multiunit auction, in Communication Systems and Networks (COMSNETS), 2013 Fifth International Conference on, pp. 1–6, doi:10.1109/COMSNETS.2013.6465595.
  99. 99 Mohsenian‐Rad, A.H., Wong, V., Jatskevich, J., Schober, R., and Leon‐Garcia, A. (2010) Autonomous demand‐side management based on game‐theoretic energy consumption scheduling for the future smart grid. Smart Grid, IEEE Transactions on, 1 (3), 320–331, doi:10.1109/TSG.2010.2089069.
  100. 100 Bu, S. and Yu, F. (2013) A game‐theoretical scheme in the smart grid with demand‐side management: Towards a smart cyber‐physical power infrastructure. Emerging Topics in Computing, IEEE Transactions on, 1 (1), 22–32, doi:10.1109/TETC.2013.2273457.
  101. 101 Zhu, Q., Han, Z., and Basar, T. (2012) A differential game approach to distributed demand side management in smart grid, in Communications (ICC), 2012 IEEE International Conference on, pp. 3345–3350, doi:10.1109/ICC.2012.6364562.
  102. 102 Salehfar, H. and Patton, A. (1989) Modeling and evaluation of the system reliability effects of direct load control. Power Systems, IEEE Transactions on, 4 (3), 1024–1030, doi:10.1109/59.32594.
  103. 103 Kondoh, J. (2011) Direct load control for wind power integration, in Power and Energy Society General Meeting, 2011 IEEE, pp. 1–8, doi:10.1109/PES.2011.6039480.
  104. 104 Nguyen, H.K., Song, J., and Han, Z. (2012) Demand side management to reduce peak‐to‐average ratio using game theory in smart grid, in Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pp. 91–96, doi:10.1109/INFCOMW.2012.6193526.
  105. 105 Ramachandran, B., Srivastava, S.K., Edrington, C.S., and Cartes, D.A. (2011) An intelligent auction scheme for smart grid market using a hybrid immune algorithm. Industrial Electronics, IEEE Transactions on, 58 (10), 4603–4612.
  106. 106 Li, D., Jayaweera, S.K., and Naseri, A. (2011) Auctioning game based demand response scheduling in smart grid, in Online Conference on Green Communications (GreenCom), 2011 IEEE, IEEE, pp. 58–63.
  107. 107 (2014), Retail Sales of Electricity to Ultimate Customers, http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_01. [Online; accessed 6‐June‐2015].
  108. 108 (2014), Net Generation by Energy Source: Total (All Sectors), 2003 ‐ 2013, http://www.eia.gov/electricity/annual/html/epa_03_01_a.html. [Online; accessed 6‐June‐2015].
  109. 109 (2014), Renewable Energy Cost Database, http://www.epa.gov/cleanenergy/energy‐resources/renewabledatabase.html. [Online; accessed 6‐June‐2015].
  110. 110 Your guide to renewable energy, http://www.epa.gov/cleanenergy/energy‐resources/renewabledatabase.html. [Online; accessed 6‐June‐2015].
  111. 111 Carbon tax center, http://www.carbontax.org. [Online; accessed 6‐June‐2015].
  112. 112 (2014), Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014, http://www.eia.gov/forecasts/aeo/electricity_generation.cfm. [Online; accessed 6‐June‐2015].
  113. 113 Stephen Boyd, L.V. (2004) Convex Optimization, Cambridge University Press.
  114. 114 Rosen, J.B. (1965) Existence and uniqueness of equilibrium points for concave n‐person games. Econometrica: Journal of the Econometric Society, pp. 520–534.
  115. 115 Bahrami, S. and Parniani, M. (2014) Game theoretic based charging strategy for plug‐in hybrid electric vehicles. Smart Grid, IEEE Transactions on, 5 (5), 2368–2375, doi:10.1109/TSG.2014.2317523.
  116. 116 Feng, B., Yu, R., and Lai, Y. (2013) Efficient and fair scheduling of phev charging with neuro dynamic programming, in Communications and Networking in China (CHINACOM), 2013 8th International ICST Conference on, pp. 930–935, doi:10.1109/ChinaCom.2013.6694728.
  117. 117 Yang, Z., Xu, W., and Yu, X. (2013) Optimal phev charge scheduling for additional power loss ratio and charging cost minimizations, in Electrical Machines and Systems (ICEMS), 2013 International Conference on, pp. 465–469, doi:10.1109/ICEMS.2013.6754568.
  118. 118 Ye, F., Qian, Y., and Hu, R.Q. (2017) Incentive load scheduling schemes for phev battery exchange stations in smart grid. IEEE Systems Journal, 11 (2), 922–930.
  119. 119 Huang, J., Gupta, V., and Huang, Y.F. (2012) Scheduling algorithms for phev charging in shared parking lots, in American Control Conference (ACC), 2012, pp. 276–281, doi:10.1109/ACC.2012.6314939.
  120. 120 Wu, C., Mohsenian‐Rad, H., and Huang, J. (2012) Vehicle‐to‐aggregator interaction game. Smart Grid, IEEE Transactions on, 3 (1), 434–442, doi:10.1109/TSG.2011.2166414.
  121. 121 Liu, C., Wang, J., Botterud, A., Zhou, Y., and Vyas, A. (2012) Assessment of impacts of phev charging patterns on wind‐thermal scheduling by stochastic unit commitment. Smart Grid, IEEE Transactions on, 3 (2), 675–683, doi:10.1109/TSG.2012.2187687.
  122. 122 Moeini‐Aghtaie, M., Abbaspour, A., and Fotuhi‐Firuzabad, M. (2014) Online multicriteria framework for charging management of phevs. Vehicular Technology, IEEE Transactions on, 63 (7), 3028–3037, doi:10.1109/TVT.2014.2320963.
  123. 123 Dong, Q., Niyato, D., Wang, P., and Han, Z. (2013) An adaptive scheduling of phev charging: Analysis under imperfect data communication, in Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on, pp. 205–210, doi:10.1109/SmartGridComm.2013.6687958.
  124. 124 Zhou, K. and Cai, L. (2014) Randomized phev charging under distribution grid constraints. Smart Grid, IEEE Transactions on, 5 (2), 879–887, doi:10.1109/TSG.2013.2293733.
  125. 125 Scacchioli, A., Rizzoni, G., Salman, M., Li, W., Onori, S., and Zhang, X. (2014) Model‐based diagnosis of an automotive electric power generation and storage system. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 44 (1), 72–85, doi:10.1109/TSMCC.2012.2235951.
  126. 126 Yukita, K., Ichiyanagi, K., Goto, Y., and Hirose, K. (2007) A study of electric power quality using storage system in distributed generation, in Electrical Power Quality and Utilisation, 2007. EPQU 2007. 9th International Conference on, pp. 1–4, doi:10.1109/EPQU.2007.4424142.
  127. 127 Shao, S., Pipattanasomporn, M., and Rahman, S. (2012) Grid integration of electric vehicles and demand response with customer choice. Smart Grid, IEEE Transactions on, 3 (1), 543–550, doi:10.1109/TSG.2011.2164949.
  128. 128 Lee, T.K., Bareket, Z., Gordon, T., and Filipi, Z. (2012) Stochastic modeling for studies of real‐world phev usage: Driving schedule and daily temporal distributions. Vehicular Technology, IEEE Transactions on, 61 (4), 1493–1502, doi:10.1109/TVT.2011.2181191.
  129. 129 Wikipedia, Big data, https://en.wikipedia.org/wiki/Big_data. [Online; accessed 23‐July‐2017].
  130. 130 Hilbert, M. and López, P. (2011) The world?s technological capacity to store, communicate, and compute information. science, 332 (6025), 60–65.
  131. 131 Kezunovic, M. (2017), Big data applications in smart grids: benefits and challenges, IEEE Smartgrid.
  132. 132 Mahmoud Daneshman, K.J.L. (2017), Big challenges for big data in the smart grid era, https://www.ecnmag.com/blog/2017/04/big‐challenges‐big‐data‐smart‐grid‐era. [Online; accessed 23‐July‐2017].
  133. 133 Simmhan, Y., Aman, S., Kumbhare, A., Liu, R., Stevens, S., Zhou, Q., and Prasanna, V. (2013) Cloud‐based software platform for big data analytics in smart grids. Computing in Science Engineering, 15 (4), 38–47, doi:10.1109/MCSE.2013.39.
  134. 134 Cheung, J., Czaszejko, T., and Morton, A. (2007) Transmission loss evaluation in an open electricity market using an incremental method. Generation, Transmission Distribution, IET, 1 (1), 189–196, doi:10.1049/iet‐gtd:20050332.
  135. 135 Aman, S., Simmhan, Y., and Prasanna, V. (2011) Improving energy use forecast for campus micro‐grids using indirect indicators, in Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pp. 389–397, doi:10.1109/ICDMW.2011.95.
  136. 136 Tan, W., Blake, M., Saleh, I., and Dustdar, S. (2013) Social‐network‐sourced big data analytics. Internet Computing, IEEE, 17 (5), 62–69, doi:10.1109/MIC.2013.100.
  137. 137 Hu, H., Wen, Y., Chua, T.S., and Li, X. (2014) Toward scalable systems for big data analytics: A technology tutorial. Access, IEEE, 2, 652–687, doi:10.1109/ACCESS.2014.2332453.
  138. 138 (2013), Smart data set for sustainability, http://traces.cs.umass.edu/index.php/Smart/Smart. [Online; accessed 6‐July‐2015].
  139. 139 Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., and Albrecht, J. (2012) Smart⋆: An open data set and tools for enabling research in sustainable homes. SustKDD, August.
  140. 140 Ford, V., Siraj, A., and Eberle, W. (2014) Smart grid energy fraud detection using artificial neural networks, in Computational Intelligence Applications in Smart Grid (CIASG), 2014 IEEE Symposium on, pp. 1–6, doi:10.1109/CIASG.2014.7011557.
  141. 141 Liu, Y., Ning, P., and Reiter, M.K. (2011) False data injection attacks against state estimation in electric power grids. ACM Transactions on Information and System Security (TISSEC), 14 (1), 13.
  142. 142 Ozay, M., Esnaola, I., Yarman Vural, F.T., Kulkarni, S.R., and Poor, H.V. (2015) Machine learning methods for attack detection in the smart grid.
  143. 143 Fabris, F., Margoto, L., and Varejao, F. (2009) Novel approaches for detecting frauds in energy consumption, in Network and System Security, 2009. NSS '09. Third International Conference on, pp. 546–551, doi:10.1109/NSS.2009.17.
  144. 144 (2011), The nist definition of cloud computing, http://csrc.nist.gov/publications/nistpubs/800‐145/SP800‐145.pdf. [Online; accessed 6‐June‐2015].
  145. 145 Silverstone, R. and Haddon, L. (1996) Design and the domestication of information and communication technologies: Technical change and everyday life.
  146. 146 Chen, M., Mao, S., and Liu, Y. (2014) Big data: A survey. Mobile Networks and Applications, 19 (2), 171–209.
  147. 147 Xu, S., Qian, Y., and Hu, R.Q. (2016) A secure data learning scheme in big data applications, in Computer Communication and Networks (ICCCN), 2016 25th International Conference on, IEEE, pp. 1–9.
  148. 148 Xu, L., Jiang, C., Wang, J., Yuan, J., and Ren, Y. (2014) Information security in big data: privacy and data mining. IEEE Access, 2, 1149–1176.
  149. 149 Du, W., Han, Y.S., and Chen, S. (2004) Privacy‐preserving multivariate statistical analysis: Linear regression and classification, in Proceedings of the 2004 SIAM international conference on data mining, SIAM, pp. 222–233.
  150. 150 Shokri, R. and Shmatikov, V. (2015) Privacy‐preserving deep learning, in Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, ACM, pp. 1310–1321.
  151. 151 Lindell, Y. and Pinkas, B. (2009) Secure multiparty computation for privacy‐preserving data mining. Journal of Privacy and Confidentiality, 1 (1), 5.
  152. 152 Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., and Zhu, M.Y. (2002) Tools for privacy preserving distributed data mining. ACM Sigkdd Explorations Newsletter, 4 (2), 28–34.
  153. 153 Brickell, J. and Shmatikov, V. (2009) Privacy‐preserving classifier learning., in Financial Cryptography, Springer, pp. 128–147.
  154. 154 Vaidya, J., Shafiq, B., Basu, A., and Hong, Y. (2013) Differentially private naive bayes classification, in Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)‐Volume 01, IEEE Computer Society, pp. 571–576.
  155. 155 Vapnik, V. (2013) The nature of statistical learning theory, Springer science & business media.
  156. 156 Bishop, C.M. (2006) Pattern recognition and machine learning, springer.
  157. 157 Boyd, S. and Vandenberghe, L. (2004) Convex optimization, Cambridge university press.
  158. 158 James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013) An introduction to statistical learning, vol. 112, Springer.
  159. 159 Ng, A.Y. (2004) Feature selection, l 1 vs. l 2 regularization, and rotational invariance, in Proceedings of the twenty‐first international conference on Machine learning, ACM, p. 78.
  160. 160 Bottou, L. (2010) Large‐scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT'2010, Springer, pp. 177–186.
  161. 161 Chaum, D., Crépeau, C., and Damgard, I. (1988) Multiparty unconditionally secure protocols, in Proceedings of the twentieth annual ACM symposium on Theory of computing, ACM, pp. 11–19.
  162. 162 Blum, M., Feldman, P., and Micali, S. (1988) Non‐interactive zero‐knowledge and its applications, in Proceedings of the twentieth annual ACM symposium on Theory of computing, ACM, pp. 103–112.
  163. 163 Repository, Smart‐UMass Trace Repository, http://traces.cs.umass.edu/. [Online; accessed 11‐5‐2017].
  164. 164 Ye, F. and Qian, Y. (2015) Big data and cloud computing based demand‐side management for electric vehicles in smart grid. E‐LETTER.
  165. 165 Xu, S. and Qian, Y. (2015) Quantitative study of reliable communication infrastructure in smart grid nan, in Design of Reliable Communication Networks (DRCN), 2015 11th International Conference on the, IEEE, pp. 93–94.
  166. 166 Xu, S., Qian, Y., and Hu, R.Q. (2015) On reliability of smart grid neighborhood area networks. IEEE Access, 3, 2352–2365.
  167. 167 Ye, F. and Qian, Y. (2015) Secure communication networks in the advanced metering infrastructure of smart grid. ZTE Commun., 13 (3), 13–20.
  168. 168 Xu, S., Qian, Y., and Hu, R.Q. (2017) A data‐driven preprocessing scheme on anomaly detection in big data applications, in IEEE INFOCOM 2017 BigSecurity Workshop, IEEE.
  169. 169 Ye, F., Qian, Y., and Hu, R.Q. (2015) Energy efficient self‐sustaining wireless neighborhood area network design for smart grid. IEEE Transactions on Smart Grid, 6 (1), 220–229.
  170. 170 Xu, S., Qian, Y., and Hu, R.Q. (2017) A study on communication network reliability for advanced metering infrastructure in smart grid, in 2017 IEEE Cyber Science and Technology Congress (CyberSciTech 2017), IEEE.
  171. 171 Ye, F., Qian, Y., and Hu, R. (2014) A security protocol for advanced metering infrastructure in smart grid, in Global Communications Conference (GLOBECOM), 2014 IEEE, pp. 649–654, doi:10.1109/GLOCOM.2014.7036881.
  172. 172 Guidelines for smart grid cyber security., http://dx.doi.org/10.6028/NIST.IR.7628r1. [Online; accessed 23‐July‐2017].
  173. 173 Wikipedia, Stuxnet, https://en.wikipedia.org/wiki/Stuxnet. [Online; accessed 21‐July‐2017].
  174. 174 Morris, T.H., Pan, S., and Adhikari, U. (2012) Cyber security recommendations for wide area monitoring, protection, and control systems, in 2012 IEEE Power and Energy Society General Meeting, pp. 1–6, doi:10.1109/PESGM.2012.6345127.
  175. 175 Zhang, Z., Gong, S., Dimitrovski, A.D., and Li, H. (2013) Time synchronization attack in smart grid: Impact and analysis. IEEE Transactions on Smart Grid, 4 (1), 87–98, doi:10.1109/TSG.2012.2227342.
  176. 176 Jokar, P., Nicanfar, H., and Leung, V.C.M. (2011) Specification‐based intrusion detection for home area networks in smart grids, in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 208–213, doi:10.1109/SmartGridComm.2011.6102320.
  177. 177 Hu, B. and Gharavi, H. (2014) Smart grid mesh network security using dynamic key distribution with merkle tree 4‐way handshaking. IEEE Transactions on Smart Grid, 5 (2), 550–558, doi:10.1109/TSG.2013.2277963.
  178. 178 Lin, H.Y., Shen, S.T., and Lin, B.S.P. (2012) A privacy preserving smart metering system supporting multiple time granularities, in 2012 IEEE Sixth International Conference on Software Security and Reliability Companion, pp. 119–126, doi:10.1109/SERE‐C.2012.22.
  179. 179 Finster, S. (2013) Smart meter speed dating, short‐term relationships for improved privacy in smart metering, in 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 426–431, doi:10.1109/SmartGridComm.2013.6687995.
  180. 180 Ukil, A. and Zivanovic, R. (2014) Automated analysis of power systems disturbance records: Smart grid big data perspective, in Innovative Smart Grid Technologies ‐ Asia (ISGT Asia), 2014 IEEE, pp. 126–131, doi:10.1109/ISGT‐Asia.2014.6873776.
  181. 181 Bitzer, B. and Gebretsadik, E. (2013) Cloud computing framework for smart grid applications, in Power Engineering Conference (UPEC), 2013 48th International Universities', pp. 1–5, doi:10.1109/UPEC.2013.6714855.
  182. 182 Baek, J., Vu, Q., Liu, J., Huang, X., and Xiang, Y. (2014 (early access)) A secure cloud computing based framework for big data information management of smart grid. Cloud Computing, IEEE Transactions on, pp. 1–1, doi:10.1109/TCC.2014.2359460.
  183. 183 Waters, B. (2005) Efficient identity‐based encryption without random oracles, in Advances in Cryptology–EUROCRYPT 2005, Springer, pp. 114–127.
  184. 184 Libert, B. and Quisquater, J.J. (2004) The exact security of an identity based signature and its applications. IACR Cryptology ePrint Archive, 2004, 102.
  185. 185 Ye, F., Qian, Y., and Hu, R.Q. (2015) HIBaSS: hierarchical identity‐based signature scheme for AMI downlink transmission. Security and Communication Networks, 8 (16), 2901–2908.
  186. 186 IEEE Std 2030 (2011), Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), and End‐Use Applications and Loads, IEEE Standards Association.
  187. 187 Burnett, S. and Paine, S. (2001) The RSA Security's Official Guide to Cryptography, McGraw‐Hill, Inc.
  188. 188 Boneh, D. and Franklin, M. (2003) Identity‐based encryption from the weil pairing. SIAM Journal on Computing, 32 (3), 586–615.
  189. 189 Rusitschka, S., Eger, K., and Gerdes, C. (2010) Smart grid data cloud: A model for utilizing cloud computing in the smart grid domain, in Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, pp. 483–488, doi:10.1109/SMARTGRID.2010.5622089.
  190. 190 Zheng, L., Hu, Y., and Yang, C. (2011) Design and research on private cloud computing architecture to support smart grid, in Intelligent Human‐Machine Systems and Cybernetics (IHMSC), 2011 International Conference on, vol. 2, vol. 2, pp. 159–161, doi:10.1109/IHMSC.2011.109.
  191. 191 Park, C.M., Kim, M.H., and Yung, M. (2005) A remark on implementing the weil pairing, in Information Security and Cryptology, Springer, pp. 313–323.
  192. 192 Joux, A. and Nguyen, K. (2003) Separating decision diffie–hellman from computational diffie–hellman in cryptographic groups. Journal of cryptology, 16 (4), 239–247.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.137.164.241