30 2. TOPIC AK-2
v
C
2y
= v
C
2r
sin α = ω
2
R
2
sin α , (2.8b)
v
C
4y
= 0 , (2.8c)
v
C
5y
= v
C
5r
sin β =
1
ω
2
R
2
1
r
4
sinβ, (2.8d)
2
R
4
v
C
6y
= v
C
5y
. (2.8e)
Hence, the y component of the momentum of the entire system:
K
y
= – (2m
2
+ m
3
) ω
2
R
2
sin α +
1
(m
5
+ m
6
) ω
2
R
2
1
r
4
sin β
2
R
4
or
K
y
= ω
2
R
2
1
(m
5
+ m
6
) 1
r
4
sin β (2m
2
+ m
3
) sin α . (2.9)
2
R
4
e sum of the y components of the impulses of all external forces:
S
ext
=
Gt cos α +
t
Ndt . (2.10)
iy
0
Substituting the expressions (2.9) and (2.10) into Equation (2.3b) we will obtain:
ω
2
R
2
1
(m
5
+ m
6
) 1
r
4
sin β (2m
2
+ m
3
) sin α=
Gt cos α +
t
Ndt. (2.11)
2
R
4
0
From here:

t
Ndt = Gt cos α + ω
2
R
2
1
(m
5
+ m
6
) 1
r
4
sin β (2m
2
+ m
3
) sin α. (2.12)
0
2
R
4
Substituting the expression (2.12) in Equation (2.7) we obtain:
mx
̇
+ bx = ω
2
R
2
(2m
2
+ m
3
) (cos α + f sin α ) +
1
(m
5
+ m
6
) 1
r
4
(cos β f sin β) + Gt(sin α
f cos α) ,
2
R
4
(2.13)
where
ω
2
= ω
0
[1 – exp(–st)].
Dividing both sides of Equation (2.13) into m we obtain:
x
̇
+ ηx = h[1 – exp(–st)] – qt , (2.14)
where η =
b
,
m
h =
ω
0
R
2
(2m
2
+ m
3
)(cos α + f sin α ) + 1
1
(m
5
+ m
6
)1
r
4
(cos β f sin β) ,
2
m
R
4
q = g(f cos α sin α) .
e solution of Equation (2.14) consists of the general solution of the corresponding rst-order homogeneous equa-
tion x
̇
+ ηx = 0 and the particular solution of this equation:
x = x
1
+ x
2
. (2.15)
31
A general solution of the rst-order homogeneous equation is dened as:
x
1
= Cexp(ηt).
A particular solution of Equation (2.14):
x
2
= Q
1
exp(st) + Q
2
t + Q
3
.
Substituting the particular solution x
2
into Equation (2.14), we obtain:
Q
1
s exp(st) + Q
2
+ η[Q
1
exp(st) + Q
2
t + Q
3
] = h[1 exp(st)]qt .
Equating the coecients of the variable parameters exp(st) and t, as well as the other terms, we will obtain the
following equations:
Q
1
s + ηQ
1
= h ,
ηQ
2
= q ,
Q
2
+ ηQ
3
= h ,
from where:
Q
1
=
h
,
s η
Q
2
=
q
,
η
Q
3
=
h
+
q
.
η η
2
Hence,
x = x
1
+ x
2
= C exp(ηt) +
h
exp(st) +
h
+
q
q
t . (2.16)
sη η η
2
η
e constant C we will nd from the initial condition: at t = 0 x
0
= 0 .
Using this condition we can nd the coecient C :
C =
h
1
q
+ h .
sη
η
η
us, the equation of motion of the object 1 will be expressed as:
x =
h
[exp(st) exp(ηt)] +
1
q
+ h[1 exp(ηt)]
q
t . (2.17)
sη
η
η
η
e velocity of the object 1 :
v=x
̇
=
h
[ηexp(st) sexp(st)] +
q
+ h exp(ηt)
q
=
hs
[exp(ηt) exp(st)]
q
[1 exp(ηt)] . (2.18)
sη
η
η
sη
η
2.3 SOLUTION
32 2. TOPIC AK-2
e expression (2.18) reveals that the velocity of the object 1 after certain time interval will be equal to zero and
hence the object will stop. erefore, Equation (2.17) is valid only for this time of interval.
To study the motion of the given mechanical system we will apply the equation of the center of mass motion:
ma
C
= F
i
ext
, (2.19)
where F
i
ext
– is a geometrical sum of all external forces acting on the given system.
e dierential equations of the center of mass motion in algebraic form:
mx
̈
C
= F
ext
= F
ext
, (2.20a)
xi
x
my
̈
C
= F
ext
= F
ext
. (2.20b)
yi
y
e coordinates of the center of mass:
x
C
=
m
1
x
C
1
+ (2m
2
+ m
3
) x
C
23
+ m
4
x
C
4
+ m
5
x
C
5
+ m
6
x
C
6
,
(2.21a)
m
y
C =
m
1
y
C
1
+ (2m
2
+ m
3
) y
C
23
+ m
4
y
C
4
+ m
5
y
C
5
+ m
6
y
C
6
.
(2.21b)
m
Dierentiating the expressions (2.21a) and (2.21b) twice by time, and considering the following:
x
̈
C
1
= x
̈
, x
̈
C
23
= x
̈
C
2
, x
̈
C
6
= x
̈
C
5
, y
̈̈
C
1
= y
̈̈
1
= 0, y
̈̈
C
23
= y
̈̈
C
2
, y
̈̈
C
6
= y
̈̈
C
5
,
we will obtain:
x
̈
C
=
m
1
x
̈
+ (2m
2
+ m
3
)x
̈
C
2
+ m
4
x
̈
C
4
+(m
5
+ m
6
)x
̈
C
5
,
(2.22a)
m
y
̈
C
=
(2m
2
+ m
3
)y
̈
C
2
+ m
4
y
̈
C
4
+(m
5
+ m
6
)y
̈̈
C
5
.
(2.22b)
m
Using the x and y components of the velocities of the mass centers provided in Equations 2.25a and 2.25b and 2.8a
2.8d, we can determine the x and y components of the mass centers of the objects:
ẍ
C
2
=
dv
C
2
x
= ẍ
dω
2
R
2
cos α ,
(2.23a)
dt
dt
ẍ
C
4
=
dv
C
4
x
= ẍ ,
(2.23b)
dt
ẍ
C
5
=
dv
C
5
x
= ẍ
1
dω
2
R
2
1
r
4
cos α
,
(2.23c) dt
2 dt
R
4
33
ÿ
C
2
=
dv
C
5
y
= ẍ
dω
2
R
2
sin α
,
(2.23d)
dt
dt
y
̈̈
C
4
= 0 , (2.23e)
ÿ
C
5
=
dv
C
5
Y
=
1
R
2
dω
2
1
r
4
cos α
,
(2.23f) dt
2 dt
R
4
Substituting the expressions (2.23a 2.23f) in Equations (2.22a) and (2.22b):
ẍ
C
=
(m
1
x
̈
+ 2m
2
+ m
3
)x
̈
2
R
2
sin α + m
4
x
̈
+ (m
5
+ m
6
)x
̈
1
2
R
2
1
r
4
cos β , (2.24a)
m
y
̈
C
=
–(2m
2
+ m
3
)
2
R
2
sin α + (m
5
+ m
6
)
1
R
2
2
1
r
4
sin β , (2.24b)
m
or
ẍ
C
=
mx
̈
R
2
2
(2m
2
+ m
3
) cos α +
1
(m
5
+ m
6
)1
r
4
cos β ,
m
y
̈
C
=
R
2
2
1
(m
5
+ m
6
) (1
r
4
sin β
(2m
2
+ m
3
) sin α .
m
e x and y components of the resultant vector of all external forces acting on the system:
F
ext
= F
ext
= G sin α
bx
̇
F
fr
, (2.25a)
x
xi
F
ext
= F
ext
= G cos α + N . (2.25b)
y
yi
Substituting the expressions (2.24a), (2.24b), (2.25a), and (2.25b) into the dierential Equations (2.20a) and (2.20b)
of the motion of the mass center of the system, we will obtain:
mx
̈
R
2
2
(2m
2
+ m
3
) cos α +
1
(m
5
+ m
6
)1
r
4
cos β = G sin α bx
̇
fN
dt
2 R
4
or
mx
̈
+ bx
̇
= R
2
2
(2m
2
+ m
3
) cos α +
1
(m
5
+ m
6
)1
r
4
cos β + G sin α fN (2.26a)
dt
2 R
4
and
2
R
2
1
(m
5
+ m
6
)1
r
4
sin β (2m
2
+ m
3
) sin α = G cos α + N ] . (2.26b)
dt
2 R
4
Considering that the angular acceleration of the wheels 2 are equal:
ε
2
=
2
= ω
0
s exp(st) ,
dt
dt
dt
dt
dt
dt 2
2
2
R
4
R
4
R
4
R
4
2 dt
2.3 SOLUTION
34 2. TOPIC AK-2
from Equation (2.26b) we can nd the normal reaction force N :
N = ω
0
s exp(st) R
2
1
(
m
5
+ m
6
)1
r
4
sin β (2m
2
+ m
3
) sin α + G cos α. (2.27)
2 R
4
Substituting the expression (2.27) into Equation (2.26a) we will obtain the dierential equation of the motion of
the object 1:
x
̈̈
+ ηx
̇
= hs exp(st) q , (2.28)
where η =
b
,
m
h =
ω
0
R
2
(2m
2
+ m
3
)(cos α + f sin α) +
1
(m
5
+ m
6
)1
r
4
(cos β f sin β) ,
m
q = g(f cos α sin α) .
e general solution of the dierential equation (2.28) will be:
x = x
1
+ x
2
, (2.29)
where x
1
= C
1
+ C
2
exp(ηt) – is the general solution of the homogeneous equation:
x
̈̈
+ ηx
̇
= 0 .
e particular solution x
2
will be dened as:
x
2
= Q
1
exp(st) + Q
2
t .
Substituting the particular solution x
2
into Equation (2.28) we can nd Q
1
and Q
2
:
Q
1
s
2
exp(st) ηsQ
1
exp(st) + ηQ
2
= hs exp(st) q .
Equating the coecients of the exp(-st) and the constant terms:
Q
1
(s η) = h ,
ηQ
2
= q ,
we will obtain:
Q
1
=
h
,
s η
Q
2
=
q
.
η
en the general solution of the dierential equation (2.28) will be:
x = x
1
+ x
2
= C
1
+ C
2
exp(ηt) +
h
exp(st)
q
t . (2.30)
s η
η
x
̇
=
dx
= ηC
2
exp(ηt)
hs
exp(st)
q
. (2.31)
dt
s η
η
2
R
4
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.83.150