References

  1. Abramov, Y.A. (ed.) (2016). Computational Pharmaceutical Solid State Chemistry, John Wiley & Sons, Inc.
  2. Akiyama, T. and I. Ojima (eds.) (2022). Catalytic Asymmetric Synthesis, 4th ed., Wiley.
  3. Alhalaweh, A., A. Alzghoul, D. Mahlin, and C. Bergstrom (2015). Physical stability of drugs after storage above and below the glass transition temperature: relationship to glass‐forming ability. Int. J. Pharm., 495, 312.
  4. Allegretti, J.E. and M. Midler (1967). Continuous freezing process for purifying dimethyl sulfoxide. U.S. Patent 3,358,037.
  5. Allegretti, J.E. and M. Midler (1970). Separation of stereoisomers by fluidized bed crystallization. AIChE Meeting, Cleveland, OH, November.
  6. Alsenz, J. and M. Kansy (2007). High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev., 59 (7), 546–567.
  7. Am Ende, D.J. and M. Am Ende (eds.) (2019). Chemical Engineering in the Pharmaceutical Industry, Active Pharmaceutical Ingredients, 2nd ed., Wiley.
  8. Am Ende, D., M. Birch, S. Brenek, and M. Malongy (2013). Development and application and laboratory tools to predict particle properties upon scale‐up in agitated filter‐dryer. Org. Process. Res. Dev., 17 (10), 1345.
  9. Am Ende, D., T.C. Crawford, and N.P. Weston (2003). Reactive crystallization method to improve particle size. U.S. Patent 6,558,436.
  10. Anderson, H.W., J.B. Carberry, H.F. Satunton, and B.C. Sutradhar (1995). Crystallization of adipic acid. U.S. Patent 5,471,001.
  11. Angus, J.C. and C.C. Hayman (1988). Low‐pressure, metastable growth of diamond and diamondlike phases. Science, 241, 913.
  12. Åslund, B.L. and A.C. Rasmuson (1992). Semibatch reaction crystallization of benzoic acid. AIChE J., 38 (3), 328–342.
  13. Balzhiser, R.E., M.R. Samuels, and J.D. Eliassen (1972). Chemical Engineering Thermodynamics, Prentice‐Hall, Englewood Cliffs, NJ.
  14. Baldyga, J. and J.R. Bourne (1999). Turbulent Mixing and Chemical Reactions, John Wiley & Sons, Chichester, UK.
  15. Bauer, J., S. Spanto, R. Henry, J. Quick, W. Dziki, W. Porter, and J. Morris (2001). Ritonavir: an extraordinary example of conformational polymorphism. Pharm. Res., 18 (6), 859.
  16. Benet, N., L. Falk, H. Muhr, and E. Plasari (1999). Experimental study of a two‐impinging‐jet mixing device for application in precipitation processes. Int. Symp. Ind. Cryst.14th (computer optical disc) 1007–1016, IChemE, Rugby, UK.
  17. Bennema, P. (1969). The influence of surface diffusion for crystal growth from solution. J. Cryst. Growth, 5, 29–43.
  18. Bhakay, A., M. Rahman, R. Dave, and E. Bilgili (2018). Biovaailability enhancement of poorly water‐soluble drugs via nanocomposites: formulation‐processing aspects and challenges. Pharmaceutics, 10, 86.
  19. Birch, M., S. Fussell, P.D. Higginson, N. McDowell, and I. Marzian (2005). Towards a PAT‐based strategy for crystallization development. Org. Process. Res. Dev., 9, 360–364.
  20. Bolzern, O. and J.R. Bourne (1985). Rapid chemical reactions in a centrifugal pump. Chem. Eng. Res. Des., 63, 275–282.
  21. Bourne, J.R. and J. Garcia‐Rosas (1986). Rotor stator mixers for rapid micromixing. Chem. Eng. Res. Des., 64, 11–17.
  22. Bonnet, P.E. K.J. Carpenter, and R.J. Davey (2002). A study into the phenomenon of oiling out. Proceedings of 15th International Symposium on Industrial Crystallization, p35.
  23. Brittan, H. (1999). Polymorphism in Pharmaceutical Solids, Marcel Dekker, New York.
  24. Brough, C. and R.R. Williams (2013). Amorphous solid dispersions and nano‐crystal technologies for poorly water‐soluble drug delivery. Int. J. Pharm., 453, 157.
  25. Burger, A. and R. Ramberger (1979). On the polymorphism of pharmaceuticals and other molecular crystals. II applicability of thermodynamic rules. Mikrochimica Acta, 259–316. Doi: 10.1007/BF01197380.
  26. Burton, W.K., N. Cabrera, and F.C. Frank (1951). The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans., A243, 299–358.
  27. Byrn, S.R. (1982). Solid‐State Chemistry of Drugs, Academic Press, New York.
  28. Chemical Engineering magazine staff (1965). Kirkpatrick chemical engineering achievement awards. Chem. Eng., 72 (23), 247.
  29. Carrasquillo‐Flores, R., S. Wisniewski, V. Daftary et al. (2021). Scalability and predictability of polymorph transformations under high shear. Org. Process. Res. Dev., 25, 1028–1035.
  30. Chakraborty, D., N. Sengupta, and D. Wales (2016). Conformational energy landscape of the Ritonavir molecule. J. Phys. Chem., 8, 4331–4340.
  31. Chen, C.‐C. and Y. Song (2004). Solubility modeling with a nonrandom two‐liquid segment activity coefficient model. Ind. Eng. Chem. Res., 43, 8354–8362.
  32. Chen, H.B., Y.W. Guo, C.G. Wang, J.N. Dun, and C.C. Sun (2019). Spherical cocrystallization – an enabling technology for the development of high dose direct compression tablets of poorly soluble drugs. Cryst. Growth Des., 19 (4), 2503.
  33. Chen, J. and B.L. Trout (2008). Computational study of solvent effects on the molecular self‐asseumbly of tetrolic acid in solution and implications for the polymorph formed from crystallization. J. Phys. Chem. B, 112, 7794–7802.
  34. Chernov, A.A. (1961). The spiral growth of crystals. Soviet Physics Uspekhi, 4, 116–148.
  35. Cherukuvada, S. and A. Nangia (2014). Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun., 50, 906.
  36. Chianese, A. and H.J. Kramer (eds.) (2012). Industrial Crystallization Process Monitoring and Control, Wiley‐VCH.
  37. Chiou, W.L. and S. Riegelman (1971). Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 60 (9), 1281.
  38. Choudhury, N.H., W.R. Penney, K. Meyers, and J.B. Fasano (1995). An experimental investigation of solids suspension at high solids loadings in mechanically agitated vessels. AIChE Symp. Ser., 305 (91), 131–138.
  39. Cise, M.D. and M.L. Roy (1979). Method of preparing a rapidly dissolving powder of crystalline cephalothin sodium for parenteral administration. U.S. Patent 4,132,848.
  40. Clas, S.D. (2003). The importance of characterizing the crystal form of the drug substance during drug development. Curr. Opin. Drug. Discov. Devel., 6, 550–560.
  41. Clontz, W.A. and W.L. McCabe (1971). Contact nucleation of MgSO4.7H20. Chem. Eng. Prog. Symp. Series, 110, 6–17.
  42. Condon, J. M. (2001). Investigation of impinging jet crystallization for a calcium oxalate model system. Ph.D. Dissertation, Rutgers University, New Brunswick, N.J.
  43. Connolly, M., P. Debenedetti, and H.H. Tung (1996). Freeze crystallization of imipenem. J. Pharm. Sci., 85, 174–177.
  44. Craig, D.Q.M. (2002). The mechanisms of drug release from solid dispersions in water‐soluble polymers. Int. J. Pharm., 231, 131.
  45. Crocker, L. and J. McCauley (1995). Comparison of the crystalllinity of imipenem samples by X‐ray diffraction of amorphous material. J. Pharm. Sci., 84, 226–227.
  46. Crocker, L.S. and J.A. McCauley (1997). Solubilities of losartan polymorph. Pharmazie, 52, 72.
  47. Dakkuri, A. and B. Ecanow (1976). Filtration rates of pharmaceutical suspension systems. J. Pharm. Sci., 65 (3), 420–423.
  48. Deneau, E. and G. Steele (2005). An in‐line study of oiling out and crystallization. Org. Process Res. Dev., 9, 943–950.
  49. Davey, R.J., S.L.M. Schroeder, and J.H. Ter Horst (2013). Nucleation of organic crystals – a molecular perspective. Angew. Chem. Int. Ed., 52, 2166–2179.
  50. Davey, R.J. and J. Garside (2000). From Molecules to Crystallizers: An introduction to Crystallization, Oxford University Press, New York.
  51. Davey, R.J., L.A. Polywka, and S.J. Maginn (1991). The control of morphology by additives: molecular recognition, kinetics and technology, in Advances in Industrial Crystallization, J. Garside, R.J. Davey, and A.G. Jones (eds.), Butterworth‐Heinemann, Oxford, 150–165.
  52. Davey, R.J., S.J. Jancie, and E.J. de Jong (eds.) (1982). The role of additives in precipitation processes. Industrial Crystallization 81 (8th Symposium, Budapest) 123–135, North‐Holland, Amsterdam.
  53. Debenedetti, P.G. (1995). Metastable Liquids – Concepts and Principles, Princeton University Press, Princeton, NJ.
  54. Deluca, P. and L. Lachman (1965). Lyophilization of pharmaceuticals I: effect of certain physical‐chemical properties. J. Pharm. Sci., 54, 617–624.
  55. Demyanovich, R.J. and J.R. Bourne (1989). Rapid micromixing by the impingement of thin liquid sheets. Ind. Eng. Chem. Res., 28, 825–830.
  56. Dolling, U.H., J. McCauley and R. Varsolona et al. (1999). Finasteride processes. U.S. Patent 5,886,184.
  57. Douroumis, D. (ed.) (2012). Hot‐Melt Extrusion; Pharmaceutical Applications, John Wiley & Sons, United Kingdom.
  58. Dunuwila, D.D. and K.A. Berglund (1997). ATR‐FTIR spectroscopy for in‐situ measurement of supersaturation. J. Cryst. Growth, 179, 185–193.
  59. Elder, J. (1988). The thermal behavior of lovastatin. Thermochim. Acta, 134, 41–47.
  60. Elder, J. (1990). A new accelerated oxidative stability test for glass‐forming organic compounds. Thermochim. Acta, 166, 199–206.
  61. Edwards, M.P.H. (1984). Chemical reaction engineering of polymer processing. ISCRE 8, Scotland, September.
  62. Estime, N., S. Teychene, J. Autret, and B. Biscans (2011). Impact of downstream processing on crystal quality during the precipitation of a pharmaceutical product. Powder Technol., 208, 337.
  63. Findlay, A., A.N. Campbell, and N.O. Smith (1951). The Phase Rule, 9th ed., Dover Publication, Inc., New York, 35–42.
  64. Frank, F.C. (1949). The influence of dislocations on crystal growth. Disc. Faraday Soc., 5, 48–54.
  65. Franks, F. (1990). Freeze drying: from empiricism to predictability. Cryo‐Letters, 11, 93–110.
  66. Fujiwara, M., Z.K. Nagy, J.W. Chew, and R.D. Braatz (2005). First‐principles and direct design approaches for the control of pharmaceutical crystallization. J. Process Control, 15, 493–504.
  67. Garside, J. (1971). The concept of effectiveness factors in crystal growth. Chem. Eng. Sci., 26, 1425–1431.
  68. Garside, J. and N.S. Tavare (1985). Mixing, reaction, and precipitation: limits of micromixing in an MSMPR crystallizer. Chem. Eng. Sci., 40, 1485–1493.
  69. Gawley, R.E. and J. Aube (2012). Principles of Asymmetric Synthesis, 2nd ed., Elsevier.
  70. Genck, W.J. (2003). Optimizing crystallizer scaleup. Chem. Eng. Prog., 99 (6), 36–44.
  71. Gilmer, G.H., R. Ghez, and N. Cabrera (1971). An analysis of combined surface and volume diffusion processes in crystal growth. J. Cryst. Growth, 8, 79–93.
  72. Giron, D. (2000). Characterization of pharmaceuticals by thermal analysis. Amer. Pharm. Rev., 3, 53–61.
  73. Griffiths, H. (1925). Mechanical crystallization. J. Soc. Chem. Ind., 44, 7T–18T.
  74. Guo, M., X. Sun, J. Chen, and T. Cai (2021). Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B, 11 (8), 2537–2564.
  75. Gupta, R.B. (2006). Supercritical fluid technology for particle engineering, in Nanoparticle Technology for Drug Delivery, R.B. Gupta and U.B. Kompella (eds.), Informa Healthcare, New York, 53–84.
  76. Habgood, M. (2011). Form II Caffeine: a case study for confirming and predicting disorder in organic crystals. Cryst. Growth Des., 11, 3600.
  77. Hacherl, J.M. (2003). Investigation of impinging‐jet crystallization with a calcium oxalate model system. AIChE J., 49, 2352–2362.
  78. Haleblian, J. and W. McCrone (1969). Pharmaceutical applications of polymorphism. J. Pharm. Sci., 58, 911.
  79. Hancock, B. and G. Zografi (1997). Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 86, 1–12.
  80. Harrison, T., A. Owens, B. Williams et al. (2001). An orally active, water‐soluble neurokinin‐1 receptor antagonist suitable for both intravenous and oral clinical administration. J. Med. Chem., 44, 4296.
  81. Harnby, N., M.F. Edwards, and A.W. Nienow (eds.) (1992). Mixing in the Process Industries, 2nd ed., Butterworth, Stoneham, MA.
  82. Hem, S.L. (1967). The effects of ultrasonic vibrations on crystallization processes. Ultrasonics, 5, 202–207.
  83. Hilfiker, R. and M. Raumer (eds.) (2018). Polymorphism in the Pharmaceutical Industrry: Solid Form and Drug Development, 2nd ed., Wiley.
  84. Hobbs, D.M., P. Schubert, and H.H. Tung (1997). Applying solubility to the design of reaction systems. Ind. Eng. Chem. Res., 36, 302.
  85. Hoekstra, L., P. Vonk, and L.A. Hulshof (2006). Modeling the scale‐up of contact drying processes. Org. Process Res. Dev., 10, 409.
  86. Houcine, I., E. Plasari, R. David, and J. Villermaux (1997). Influence of mixing characteristics on the quality and size of precipitated calcium oxalate in a pilot scale reactor. Trans IChemE, 75 (Part A), 252–256.
  87. Ito, K., T. Akoshi, and S. Tatsumi (1966). Method of optically resolving racemic amino acids. U.S. Patent 3,260,744.
  88. Javadzadeh, Y., Z. Vazifehasi, S. Dizaj, and M. Mokhtarpour (2015). Chapter 4 – Spherical crystallization of drugs, in Advanced Topics in Crystallization, Y. Masti (ed.), Intehopen, 85–124.
  89. Jenkins, R. (2000). Use of X‐ray powder diffraction in the pharmaceutical industry. Am. Pharm. Rev., 3, 36–40.
  90. Jermain, S., C. Brough, and R. Williams (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water‐soluble drug delivery – an update. Int. J. Pharm., 535, 379.
  91. Jo, M.C., W.R. Penney, and J.B. Fasano (1994). Backmixing into reactor feed pipes caused by turbulence in an agitated vessel. AIChE Symp. Ser., 299 (90), 41–49.
  92. Johnson, B. K., C. Szeto, O.A. Davidson, and A.T. Andrews (1997). Optimization of pharmaceutical batch crystallization for filtration and scale‐up. AIChE Annual Meeting, November.
  93. Johnson, B.J. (2003). Flash nanopreciptation of organic actives via confined micromixing and block copolymer stabilization. Ph.D. Dissertation, Princeton University, Princeton, NJ.
  94. Johnson, B.J. and R.J. Prud'homme (2003). Chemical processing and micromixing in confined impinging jets. AIChE J., 49, 2264–2282.
  95. Jones, A.G. (1974). Optimal operation of a batch crystallizer. Chem. Eng. Sci., 29, 1075–1087.
  96. Jones, A.G. and J.W. Mullin (1974). Programmed cooling crystallization of potassium sulfate solutions. Chem. Eng. Sci., 29, 105–118.
  97. Jung, J. and M. Perrut (2001). Particle design using supercritical fluids: literature and patent survey. J. Supercritical Fluids, 20, 179–219.
  98. Kamahara, A., M. Takasuga, H.H. Tung, K. Hanaki, T. Fukunada, B. Isso, J. Nakada, Y. Yabuki, and Y. Kato (2007). Generation of fine pharmaceutical particles via controlled secondary nucleation under high shear environment during crystallization – process development and scale‐up. Org. Process Res. Dev., 11, 699–703.
  99. Kaneniwa, N. and A. Ikekawa (1975). Solubilization of water‐insoluble organic powder by ball‐milling in the presence of polyvinylpyrrolidone. Chem. Pharm. Bull., 23, p2973.
  100. Kawabata, Y., K. Wada, M. Nakatani, S. Yamada, and S. Onoue (2011). Formulation design for poorly water‐soluble drugs based on biopharmaceutics classification system; basic approaches and practical application. Int. J. Pharm., 420, 1.
  101. Kendrick, J., F.J.J. Leusen, M.A. Neumann, and J. Van de Streek (2011). Progress in crystal structure prediction. Chem. Enr. J., 17, 10736–10744.
  102. Kim, S., B. Lotz, M. Lindrud et al. (2005). Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev., 9, 894–901.
  103. Kim, K.J. and A. Mersmann (2001). Estimation of metastable zone width in different nucleation proceses. Chem. Eng. Sci., 56, 2315–2324.
  104. Khankari, R.K. and D.J.W. Grant (1995). Pharmaceutical hydrates. Thermochim. Acta, 248, 62–79.
  105. Klink, A., M. Midler, and J.E. Allegretti (1971). A study of crystal cleavage by sonifier action. Chem. Eng. Progress Symp. Ser., 67 (109). (Sonochemical Engineering), 74–80.
  106. Krieger, K.H., J. Lago, and J.A. Wantuck (1968). Process for resolving racemic mixtures of optically‐active enantiomorphs. U.S. Patent 3,405,159.
  107. Kuhnert‐Brandstater, M. (1971). Thermomicroscopy in the Analysis of Pharmaceuticals, Pergamon Press, New York, 42.
  108. Kukura, J., B. Izzo, and C. Orella (2005). Scale‐up of a granulation phenomenon. Pharm. Technol., 29 (10). https://www.pharmtech.com/view/scale‐granulation‐phenomenon.
  109. Kyeremateng, S., M. Pudlas, and G. Woehrle (2014). A fast and reliable empirical approach for estimating solubility of crystalline drugs in polymers for hot‐melt extrusion formulations. J. Pharm. Sci., 103 (9), 2847.
  110. Lafferrere, L., C. Hoff, and S. Veesler (2002). Polymorphism and liquid‐liquid phase separation of pharmaceutical compounds. Proc. 15th Int. Symp. on Industrial Crystallization, p. 819.
  111. Lago, J., K.H. Krieger, and J.A. Wantuck (1966). Development and design of a process for the resolution of dl‐alpha‐methyl‐3,4‐dihydroxyphenylaniline. AIChE Meeting, Columbus, OH, November.
  112. Law, D., W. Wang, E. Schmitt, Y. Qiu, S. Krill, and J. Fort (2003). Propertiees of rapidly dissolving eutectic mixtures of poly(ethylene glycol) and fenofibrate: the eutectic microstructure. J. Pharm. Sci., 92, 505.
  113. Lee, L.J., J.M. Ottino, W.E. Ranz, and C.W. Macosko (1980). Impingement mixing in reaction injection molding. Polym. Eng. Sci., 20 (13), 868–874.
  114. Leuner, C. and J. Dressman (2000). Improving drug solubility for oral delivery using solid dispersion. Euro. J. Pharm. BioPharm., 50, 47–60.
  115. Levenspiel, O. (1972). Chemical Reaction Engineering, John Wiley & Sons, New York.
  116. Li, T. and A. Mattei (eds.) (2018). Pharmaceutical Crystals, Science and Engineering, Wiley.
  117. Liu, X., D. Hatziavramidis, H. Arastoopour, and A. Myerson (2006). CFD simulations for analysis and scale‐up of anti‐solvent crystallization. AIChE J., 52, 3621–3625.
  118. Lindberg, M. and A.C. Rasmuson (2000). Supersaturation generation at the feed point in reaction crystallization of a molecular compound. Chem. Eng. Sci., 55, 1735–1746.
  119. Lindrud, M.D., S. Kim, and C. Wei (2001). Sonic impinging jet crystallization apparatus and process. U.S. Patent 6,302,958.
  120. Lister, J. (2016). Design and Processing of Particulate Product, Cambridge University Press.
  121. Lipinski, C.A., F. Lombardo, B.W. Dominy, and P.J. Feeney (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46, 3–26.
  122. Liu, W.J., C.Y. Ma, and X.Z. Wang (2015). Novel impinging jet and continuous crystallizer design for rapid reactive crystallization of pharmaceuticals. Procedia Eng., 12, 449.
  123. Lo, E., E. Mattas, C. Wei, D. Kacsur, and C.‐K. Chen (2012). Simultaneous API particle size reduction and polymorph transformation using high shear. Org. Process. Res. Dev., 16, 102–106.
  124. Lowinger, M., H.H. Tung, H.C. McKelvey, Z. Liu, and W. Wu (2007). Investigating molecular interactions between drug and polymer molecules in solid amorphous dispersions. Colloid And Surface Science 81st Symposium, Newark, Delaware, June.
  125. Lovette, M.A., M. Muratore, and M. Doherty (2011). Crystal shape modification through cycles of dissolution and growth: attainable regions and experimental validation. AIChE J., 58, 1465–1474.
  126. MacKenzie, A.P. (1965). Factors affecting the mechanism of transofrmation of ice into water vapor in the freeze‐drying. Ann. NY Acad. Sci., 125, 522–547.
  127. MacKenzie, A.P. (1977). The physico‐chemical basis for the freeze‐drying process. Dev. Biol. Stand., 36, 51–67.
  128. MacKenzie, A.P. (1985). Refrigeration Science and Technology, International Institute of Refrigeration, Paris, 21–34–155–163.
  129. Mahajan, A.J. and D.J. Kirwan (1996). Micromixing effects in a two‐impinging‐jet precipitator. AIChE J., 42, 1801–1814.
  130. Mahdi, F.M. and R. Holdich (2013). Laboratory cake filtration testing using constant rate. Chem. Eng. Res. Des., 91, 1145.
  131. Manth, T., D. Mignon, and H. Offermann (1996). Experimental investigation of precipitation reactions under homogeneous mixing conditions. Chem. Eng. Sci., 51, 2571–2576.
  132. Marcant, B.N. and R. David (1991). Experimental evidence for and prediction of micromixing effects in precipitation. AIChE J., 37, 1698–1710.
  133. Marsac, P.J., T. Li, and L.S. Taylor (2009). Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res., 26, 139–151.
  134. Martin, P., E.J. Phillips, and C.J. Price (1993). Power ultrasound – a new tool for controlling crystallization. Proc. 1993 IChemE Research Event, 6–7 January 1993, Birmingham University, Birmingham, UK.
  135. McCabe, W.L., J. Smith, and P. Harriott (2017). Unit Operations of Chemical Engineering, 7th ed., McGraw Hill.
  136. McCabe, W.L. (1929). Crystal growth in aqueous solutions. Ind. Eng. Chem., 21, 30–33–112–119.
  137. McCauley, J.A. (1991). Particle design via crystallizaiton. AIChE Symp. Ser., 87, 58.
  138. McCauley, J.A., R.J. Varsolona, and D.A. Levorse (1993). The effect of polymorphism and metastability on the characterization and isolation of two pharmaceutical compounds. J. Phys. D. Appl. Phys., 26, 85.
  139. McCausland, L.J., P.W. Cains, and P.D. Martin (2001). Use the power of sonocrystallization for improved properties. Chem. Eng. Prog., 97, 56.
  140. Meng, W., E. Sirota, H. Feng et al. (2020). Effective control of crystal size via an integrated crystallizatiob, wet milling and annealing recirculation system. Org. Process. Res. Dev., 24 (11), 2639–2650.
  141. Mersmann, A. and M. Kind (1988). Chemical engineering aspects of precipitation from solution. Chem. Eng. Technol., 11, 264–276.
  142. Mersmann, A. (2001). Crystallization Technology Handbook, 2nd ed., Marcel Dekker, New York, Basel.
  143. Midler, M. (1970). Production of crystals in a fluidized bed with ultrasonic vibrations. U.S. Patent 3,510,266.
  144. Midler, M. (1975). Process for production of crystals in fluidized bed crystallizers. U.S. Patent 3,892,539.
  145. Midler, M. (1976). Crystallization system and method using crystal fracturing external to a crystallizer column. U.S. Patent 3,996,018.
  146. Midler, M., E. Paul, E. Whittington, M. Futran, P. Liu, J. Hsu, and S. Pan (1994). Crystallization method to improve crystal structure and size. U.S. Patent 5,314,506.
  147. Moseson, D.E., I. Corum, A. Lust, K. Altman, T. Hiew, A. Eren, Z. Nagy, and L. Tayler (2021). Amorphous solid dispersions containing residual crystallinity: competition between dissolution and matrix crystallization. AAPS J., 23, 69.
  148. Mullin, J.W. (1993). Crystallization, 3rd ed., Butterworth‐Heinemann, Oxford.
  149. Mullin, J.W. (2001). Crystallization, 4th ed., Butterworth‐Heinemann, Oxford.
  150. Mullin, J.W. and J. Nyvlt (1971). Programmed cooling of batch crystallizers. Chem. Eng. Sci., 26, 369–377.
  151. Myerson, A.S. (1999). Molecular Modelling Applications in Crystallization, Cambridge University Press.
  152. Myerson, A.S. (ed.) (2002). Handbook of Industrial Crystallization, 2nd ed., Butterworth‐Heinemann, Newton, MA.
  153. Myerson, A.S., D. Edremir, and A. Lee (eds.) (2019). Handbook Industrial Crystallization, 3rd ed., Cambridge University Press.
  154. Nag, A. (ed.) (2018). Asymmetric Synthesis of Drugs and Natural Products, CRC Press.
  155. Nagy, Z.K., M. Fujiwara, R.D. Braatz (2007). Recent advances in the modeling and control of cooling and antisolvent crystallization of pharmaceuticals. 8th International IFAC Symposium on Dynamics and Control of Process Systems, 2, 29.
  156. Ness, J.N. and E.T. White (1976). Collision nucleation in an agitated crystallizer. AIChE Symp. Ser., 72 (153), 64–73.
  157. Newa, M., K. Bhandari, D. Li, T. Kwon, J. Kim, B. Yoo, J. Woo, W. Lyoo, C. Yong, and H. Choi (2007). Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersion with poloxamer. Int. J. Pharm., 343, 228.
  158. Nie, H., W. Xu, L. Taylor, P. Marsac, and S. Byrn (2017). Crystalline solid dispersion – a strategy to slowdown salt disproportionation in solid state formulations during storage and wet granulation. Int. J. Pharm., 517, 203.
  159. Nielsen, A.E. (1964). Kinetics of Precipitation, Pergamon Press, New York.
  160. Nienow, A.W. (1976). The effect of agitation and scale‐up on crystal growth rates and on secondary nucleation. Trans. Inst. Chem. Eng., 54, 205.
  161. Nienow, A.W. and K. Inoue (1993). A study of precipitation micromixing, macromixing, size distribution, and morphology. Paper 9.4, CHISA, Prague, Czech Republic.
  162. Neumann, M.A., F.J.L. Leusen, and J. Kendrick (2008). A major advance in crystal structure prediction. Angew. Chem. Int. En., 47, 2427–2430.
  163. Newman, A. (ed.) (2015). Pharmaceutical Amorphous Solid Dispersions, John Wiley & Sons, Hoboken, NJ.
  164. Nyman, J. and G.M. Day (2015). Static and lattice vibrational energy differences between polymorphs. CrystEngComm, 17, 5154.
  165. Nyvlt, J. (1971). Industrial Crystallization from Solution, Butterworth, London.
  166. Nyvlt, J., H. Kocova, and M. Cerny (1973). Size distribution of crystals from a batch crystallizer. Collect. Czech. chem. Comm., 38, 3199–3209.
  167. Nyvlt, J., O. Söhnel, M. Matuchová, and M. Broul (1985). The kinetics of Industrial Crystallization, Academia, Prague.
  168. Ohara, M. and R.C. Reid (1973). Modeling Crystal Growth Rates from Solution, Prentice‐Hall, Inc., Englewood Cliffs, NJ.
  169. O'Sullivan, B. and B. Glennon (2006). Application of in‐situ FBRM and ATR‐FTIR to the monitoring of the polymorphic transformation of D‐mannitol. Org. Process Res. Dev., 9, 884–889.
  170. Ostwald, W. (1897). Studien uber die Bildung und Umwandlung fester Korper. Z. physik. Chem., 22, 289.
  171. Pantelides, C.C., C.S. Adjiman, and A.V. Kazantsev (2014). General computational algorithms for ab initio crystal structure prediciton for organic molecules. Top. Curr. Chem., 345, 25–58.
  172. Parikh, D.M. (ed.) (2021). Handbook of Pharmaceutical Granulation Technology, 4th ed., CRC Press.
  173. Parks, C., A. Koswara, F. DeVilbiss, H.H. Tung, N. Nere, S. Bordawekar, Z. Nagy, and D. Ramkrishna (2017). Solubility curves and nucleation rates from molecular dynamics for polymorph prediction. Phys. Chem. Chem. Phys., 19, 5285.
  174. Paul, E.L. (1990). Reaction systems for bulk pharmaceutical production. Chem. Ind., 21, 320–325.
  175. Paul, E.L., H.H. Tung, and M. Midler (2006). Organic crystallization process. Powder Technol., 150, 133–143.
  176. Paul, E.L., V. Atiemo‐Obeng, and S.M. Kresta (eds.) (2003). Handbook of Industrial Mixing: Science and Practice, John Wiley & Sons, New York.
  177. Pessler, R. (1997). Batch crystallization. Pharm. Eng., 17, 42–46.
  178. Pellissier, H. (2022). Organocatalytic dyamic kinetic resolution: an update. EurJOC, 2022 (7), 120–169.
  179. Pellissier, H. (2008). Recent developments in dyamic kinetic resolution. Tetrahydron, 63, 1563.
  180. Phillips, R., S. Rohani, and J. Baldgya (1999). Micromixing in a single‐feed semi‐batch precipitation process. AIChE J., 45, 82–92.
  181. Podkulski, D.E. (1997). How do new process analyzers measure up. Chem. Eng. Prog., 93 (10), 33–46.
  182. Price, C.J. (1997a). Ultrasound – the key to better crystals for the pharmaceutical industry. Pharm. Technol. Eur., 9 (10), 78.
  183. Price, C.J. (1997b). Take some solid steps to improve crystallization. Chem. Eng. Prog., 93 (9), 34.
  184. Price, S. (2013). Why don’t we find more polymorphs? Acta Cryst., B69, 313.
  185. Price, S. (2014). Prediction crystal structures of organic compounds. Chem. Soc. Rev., 43, 2098.
  186. Price, S. (2018). Control and prediction of the organic solid state: a challenge to theory and experiment. Proc. R. Soc. A, 474, 0351.
  187. Pudipeddi, M. and A. Serajuddin (2005). Trends in solubility of polymorphs. J. Pharm. Sci., 94 (5), 929.
  188. Qian, F., J. Huang, and M.A. Hussain (2010a). Drug‐polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci., 99 (7), 2941.
  189. Qian, F., J. Huang, Q. Zhu, R. Jaddadin, J. Gawel, R. Garmise, and M. Hussain (2010b). Is a distinctive single Tg a reliable indicator for the homogeneity of amrophous solid dispersion. Int. J. Pharm., 395, 232–235.
  190. Qiu, J. and J.M. Stevens (2020). High‐throughput classical chiral resolution screening of synthetic interediates: effects of resolving agents, crystallization solvents, and other factors. Org. Process. Res. Dev., 24, 1725–1734.
  191. Rahman, M., F. Arevalo, A. Coelho, and E. Bilgili (2019). Hybrid nanocrystal‐amorphous solid dispersions (HyNASDs) as alterative to ASD for enhanced release of BCS class II drugs. Eur. J. Pharm. Biopharm., 145, 12.
  192. Raghavan, R., A. Dwivedi, G.C. Campbell Jr., E. Johnston, D. Levorse, J. McCauley, and M. Hussain (1993). A spectroscopic investigation of losartan polymorphs. Pharm. Res., 10, 900.
  193. Randolph, A.D. and M.A. Larson (1971). Theory of Particulate Processes, Academic Press, New York.
  194. Randolph, A.D. and M.A. Larson (1988). Theory of Particulate Processes, 2nd ed., Academic Press, San Diego, CA.
  195. Rashid, A., E.T. White, T. Howes, J.D. Litster, and I. Marziano (2014). Effect of solvent composition and temperature on the solubility of ibuprofen in aqueous ethanol. J.Chem. Eng. Data, 59, 2699–2703.
  196. Rasmusson, G.H., G. Reynolds, N. Steinberg et al. (1986). Azasteroids: structure‐activity relationships for inhibition of 5 alpha‐reductase and of androgen receptor binding. J. Med. Chem., 29, 2298.
  197. Ripperger, S., W. Gosele, and C. Alt (2012). Filtration 1. Fundamentals, ULLMANN’S Encyclopedia of Industrial Chemistry, Wiley‐VCH Verlag Bmbh & Co. KgaA.
  198. Ripperger, S., W. Gosele, C. Alt, and T. Loewe (2013). Filtration 2. Equipment, ULLMANN’S Encyclopedia of Industrial Chemistry, Wiley‐VCH Verlag Bmbh & Co. KGaA.
  199. Rosas, C.B. (1997). Personal communication.
  200. Ruecroft, G., D. Hipkiss, T. Ly, N. Maxted, and P. Cains (2006). Sonocrystalliztion: the use of ultrasound for improved industrial crystallization. Org. Process. Res. Dev., 9, 923–932.
  201. Ruslim, F., H. Nirschl, W. Stahl, and O. Carvin (2007). Optimization of the wash liquor flow rate to improve washing of pre‐deliquored filter cakes. Chem. Eng. Sci., 62, 3951.
  202. Ruthven, D.M. (1984). Principles of Adsorption and Adsorption Processes, Wiley, New York.
  203. Reid, R.C., J.M. Prausnitz, and T.K. Sherwood (1977). The Properties of Gases and Liquids, 3rd ed., McGraw Hill Book Company, New York.
  204. Rosso, J.C., C. Canals, and L. Carbonnel (1975). Formation of water‐acetone clathrate. C.R. Acad. Sc. Paris, Series C, 281, 699–702.
  205. Rouhi, A.M. (2003). The right stuff. Chem. Eng. News, 81 (8), 32–35.
  206. Salman, A.D., M. Ghadiri, and M. Hounslow (eds.) (2007). Handbook of Powder Technology, vol. 12,. Particle breakage, Elsevier B.V.
  207. Sarett, L. (1956). Delta1,4‐3,20‐diketo‐11‐oxygenated‐17,21‐dihydroxy‐pregnadiene 21‐tertiary butyl acetates and 9‐fluoro derivatives thereof. U.S. Patent 2,736,734.
  208. Schenck, L.D., D. Erdemir, L. Gorka et al. (2020). Recent advances in co‐processed APIs and proposal for enabling commercializatin of these transformative technologies. Mol. Pharm., 17, 2232.
  209. Schubert, H. and A. Mersmann (1996). Determination of heterogeneous nucleation rates. Chem. Eng. Res. Des., 74 (A7), 821–827.
  210. Sharma, M.M. (1988). Multiphase reactions in the manufacture of fine chemicals. Chem. Eng. Sci., 43, 1749–1750.
  211. Shah, N., H. Sandhu, D.S. Choi, H. Chokshi, and A.W. Malick (eds.) (2014). Amorphous Solid Dispersion, Theory and Practice, Springer‐Verlag, New York.
  212. Sheikh, A.Y., A. Pal, S. Viswanath, and J.C. Tolle (2008). Agglomerative crystallization of ABT‐510 in a partially miscible solvent system. J. Pharm. Sci., 97 (3), 1202.
  213. Sheldon, R.A. (1993). Chirotechnology, Marcel Dekker, Inc., New York.
  214. Shen, T.Y., T. Windholz, A. Rosegay et al. (1963). Nonsterioid antiinflammatory agents. J. Am. Chem. Soc., 85, 488.
  215. Shen, T.Y., R.B. Greenwald, H. Jones, B.O. Linn and B.E. Witzel (1972). Substituted Indenyl acetic acids. U.S. Patent 3,654,349.
  216. Shu, C.‐C. and S.T. Lin (2011). Prediction of drug solubility in mixed solvent systems using the COSMO‐SAC activity coefficient model. Ind. Eng. Chem. Res., 50 (1), 142–147.
  217. Singh, M.R., P. Verma, H.H. Tung, S. Bordawekar, and D. Ramkrishna (2013). Screening crystal morrphologies from crystal structure. Cryst. Growth Des., 13, 1390–1396.
  218. Singh, M.R., J. Chakraborty, N. Nere, H.H. Tung, S. Bordawekar, and D. Ramkrishna (2012). Image‐analysis‐based method for measurement of 3D crystal morphology and polymorph identification using confocal microscopy. Cryst. Growth Des., 12 (7), 3735–3748.
  219. Singh, S., R.S. Baghel, and L. Yadav (2011). A review of solid dispersion. Int. J. Pharm. Life Sci., 2 (9), 1078.
  220. Smoluchowski, M. (1918). von Versuch einer mathematischen theorie der koagulations kinetic kolloider lösungen. Z. physik. Chem., 92, 129–168.
  221. Sohnel, O. and J. Garside (1992). Precipitation: Basic Principles and Industrial Applications, Butterworth Heinemann Ltd., Oxford.
  222. Stoiber, R. and S. Morse (1994). Crystal Identification with the Polarizing Microscope, Chapman and Hall, London and New York.
  223. Stahl, P.H. and G.G. Wermuth (2011). Handbook of Pharmaceutical Salts: Properties, Selection, and Use, 2nd ed., Wiley.
  224. Stukelj, J., S. Svanback, M. Agopov et al. (2019). Direct measurement of amorphous solubility. Anal. Chem., 91, 7411.
  225. Sun, Y., J. Tao, G.G. Zhang, and Y. Lian (2010). Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of Indomethacin and Nifedipine in PVP, PVP/VA and PVAc. J. Pharm. Sci., 99 (9), 4023–4031.
  226. Sun, G., Y. Jin, S. Li, Z. Yang, B. Shi, C. Chang, and Y.A. Abramov (2020). Virtual coformer screening by crystal structure predictions: crucial role of crystallinity in pharmaceutical cocrystallization. J. Phys. Chem. Lett., 11, 8832–8838.
  227. Suwardie, H., P. Wang, D.B. Todd, V. Panchal, M. Yang, and C.G. Gogos (2011). Rheological study of the mixture of acetaminophen and polyethylene oxide for hot‐melt extrusion application. Eur. J. Pharm. Biopharm., 78 (3), 506–512.
  228. Subramaniam, B., R.A. Rajewski, and K. Snavely (1997). Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci., 86, 885–890.
  229. Suslick, K.S. (ed.) (1988). Ultrasound – Its Chemical and Biological Effects, VCH, New York/Weinheim.
  230. Suslick, K.S., S.J. Doktycz, and E.B. Flint (1990). On the origin of sonoluminescence and sonochemistry. Ultrasonics, 28, 280.
  231. Taylor, L.J., D. Papadopoulos, P. Dunn et al. (2004). Predictive milling of pharmaceutical materials using nanoindentation of single crystal. Org. Process Res. Dev., 8, 674.
  232. Tian, Y., H. Booth, E. Meehan, D.S. Jones, S. Li, and G.P. Andrews (2013). Construction of drug‐polymer thermodynamic phase diagrams using flory‐huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol. Pharm., 10, 236–248.
  233. Tiekink, E., J. Vittal, and M. Zaworotko (eds.) (2010). Organic Crystal Engineering: Frontiers in Crystal Engineering, John Wiley & Sons, United Kingdom.
  234. Thompson, L.H. and L.K. Doraiswamy (2000). The rate enhancing effect of ultrasound by inducing supersaturation in a solid‐liquid system. Chem. Eng. Sci., 55, 3085–3090.
  235. Togkalidou, T., H.H. Tung, Y. Sun, A. Andrews, and R.D. Braatz (2004). Parameter estimation and optimization of a loosely bound aggregating pharmaceutical crystallization using in situ infrared and laser backscattering measurements. Ind. Eng. Chem. Res., 43, 6168–6181.
  236. Togkalidou, T., H.‐H. Tung, Y. Sun, A. Andrews, and R.D. Braatz (2002). Solution concentration prediction for pharmaceutical crystallization processes using robust chemometrics and ATR FTIR spectroscopy. Org. Process. Res. Dev., 6, 317–322.
  237. Togkalidou, T., R.D. Braatz, B.K. Johnson, O.A. Davidson, and A.T. Andrews (2001). Experimental design and inferential modeling in pharmaceutical crystallization. AIChE J., 47, 160–168.
  238. Torbacke, M. and A.C. Rasmuson (2001). Influence of different scales of mixing in reaction crystallization. Chem. Eng. Sci., 56, 2459–2473.
  239. Tung, H.‐H. (2021). A unique hybrid solid dispersion composite via co‐processing API and excipients, ACS Spring Symposium, Division of I&EC.
  240. Tung, H.‐H. (2020). High drug loading of pharmaceutical composition. U.S. Patent 10,792,249B2.
  241. Tung, H.‐H. (2018). Amorphous‐based and crystalline‐based solid dispersion, an industrial assessment, AAPS PharmSci 360, November.
  242. Tung, H.‐H. (2013). Industrial perspectives of pharmaceutical crystallization. Org. Process. Res. Dev., 17, 445.
  243. Tung, H.‐H., L. Wang, S. Panmai, and M.T. Riebe (2008a). Effects of energy on the formation of drug nanoparticles under supersaturation. Particles 2008, Orlando, FL, May.
  244. Tung, H.‐H., J. Tabora, N. Variankaval, D. Bakke, and C.‐C. Chen (2008b). Prediction of pharmaceutical solubility via NRTL‐SAC and COSMO‐SAC. J. Pharm. Sci., 4, 1813–1820.
  245. Tung, H.H., A. Epstein, M. Sowa, and J. Grau (1998). Impinging jet crystallization of pharmaceuticals. Proc. Int. Symp. on Industrial Crystallization, ISIC 1998, p138, Tianjin, China.
  246. Tung, H.H., D.M. Hobbs, and E.L. Paul (1992). Reaction system design with solid precipitation. AIChE Annual Meeting, November.
  247. Variankaval, N., C. Lee, J. Xu, R. Calabria, N. Tsou, and R. Ball (2007). Water activity‐mediate control of crystalline phases of an active pharmaceutical ingredient. Org. Process. Res. Dev., 11 (2), 229–236.
  248. Vioglio, P.C., M.R. Chierotti, and R. Gobetto (2017). Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev., 117, 86–110.
  249. Verma, A.R. and P. Krishna (1966). Polymorphism and Polytypism in Crystals, Wiley, New York.
  250. Vippagunta, S.R., H.G. Brittain, and D.J.W. Grant (2001). Crystalline solids. Adv. Drug Deliv., 48, 3–26.
  251. Vishweshwar, P., J. McMahon, J. Bis, and M. Zaworkotko (2005). Pharmaceutical co‐crystals. J. Pharm. Sci., 95 (3), 499.
  252. Volmer, M. (1939). Kinetic der Phasenbildung, Steinkopff, Leipzig.
  253. Wang, L. and R.O. Fox (2004). Comparison of micromixing models for CFD simulation of nanoparticle formation. AIChE J., 50, 2217.
  254. Wang, Y., R. LoBrutto, R.W. Wenslow, and I. Santos (2005). Eutectic composition of a chiral mixture containing a racemic compound. Org. Process Res. Dev., 9, 670–676.
  255. Wang, Y., R.M. Wenslow, J.A. McCauley, and L.S. Crocker (2002). Polymorphic behavior of an NK1 receptor antagonist. Int. J. Pharm., 243, 147.
  256. Weissbuch, I., L.J.W. Shimon, E.M. Landau, R. Popovitz‐Biro, L. Addadi, Z. Berkovitch‐Yellin, M. Lahav, and L. Leiserowitz (1995). Understanding and control of nucleation, growth, habit, dissolution and structure of two‐ and three‐dimensional crystals using ‘tailor‐made' auxiliaries. Acta Cryst., B51, 115–148.
  257. Wenslow, R.M., M.W. Baum, K. Hoogsteen, J.A. McCauley, and R.J. Varsolona (2000). A spectroscopic and crystallographic study of polymorphism in an aza‐steroid. J. Pharm. Sci., 89, 1271.
  258. Wilson, D., M. Bunkder, D. Milne et al. (2018). Particle engineering of needle shaped crystals by wet milling and temperature cycling: Optimization for roller compaction. Powder Technol., 339, 641–650.
  259. Winn, D. and M.F. Doherty (2002). Predicting the shape of organic crystals grown from polar solvents. Chem. Eng. Sci., 57 (10), 1805–1813.
  260. Woo, X.Y., R.B.H. Tan, P.S. Chow, and R.D. Braatz (2006). Simulation of mixing effects in antisolvent crystallization using a coupled CFD‐PDF‐PBE approach. Cryst. Growth Des., 6, 1291–1303.
  261. Yang, S.S. and J.L. Guillpry (1972). Polymorphism in sulfonamides. J. Pharm. Sci., 61, 26.
  262. Yang, Y., B. Ahmed, C. Mitchell et al. (2021). Investigation of wet milling and indirect ultrasound as means for controlling nucleation in the continuous crystallization of an active pharmaceutical ingredient. Org. Process. Res. Dev., 25 (9), 2119–2132.
  263. Yang, Y., L. Song, Y. Zhang, and Z. Nagy (2016). Application of wet milling based automated direct nucleation control in continuous cooling crystallization process. Ind. Eng. Chem. Res., 55 (17), 4987–4996.
  264. Yubo, Y., S. Tyler, K. Wilson (2005). Trouble‐Shooting of high residual solvent during drying of biological derived API. 2005 AIChE Annual Meeting.
  265. York, P. (1999). Strategies for particle design using supercritical fluid technologies. Pharm. Sci. Technol., 2 (11), 430–440.
  266. York, P., U.B. Kompella, and B.Y. Shekunov (eds.) (2004). Supercritical Fluid Technology for Drug Product Development, Informa Health Care, New York.
  267. Young, F.R. (1989). Cavitation, McGraw‐Hill, London.
  268. Yu, L. (1995). Inferring thermodynamic stability relationship of polymorphs from melting data. J. Pharm. Sci., 84, 966.
  269. Zeitsch, K. (1990). Centrifugal filtration, chapter 14 in solid‐ liquid separation, 3rd ed., L. Svarovsky (ed.), Butterworths, London, 476–532.
  270. Zernike, J. (1955). Chemical Phase Theory, Uitgevers Maatschappif, Antwerp.
  271. Zhang, S. and D.J. Lamberto (2014). Development of new laboratory tools for assessment of granulation behavior during bulk active pharmaceutical ingredient drying. J. Pharm. Sci., 103 (1), 152160.
  272. Zhou, X., M. Fujiwara, X.Y. Woo, E. Rusli, H.H. Tung, C. Starbuck, O. Davidson, Z.H. Ge, and R.D. Braatz (2006). Direct design of pharmaceutical antisolvent crystallization through concentration control. Cryst. Growth Des., 6, 892–898.
  273. Zlokarnik, M. (2001). Stirring: Theory and Practice, WILEY‐VCH, Weinheim, Germany.
  274. Zwieterling, T.N. (1958). Suspending of solid particles in liquid by agitators. Chem. Eng. Sci., 8, 244.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.137.157.45