Index


  • a
  • ab‐initio MD simulations  42
  • absorption spectra  203
  • acenes  135
  • acoustic phonons  41
  • acoustical‐optical phonon upconversion  111
  • all‐inorganic halide perovskites  208, 213
  • all‐inorganic perovskites (AIP)  25–28, 218
  • alternative divalent metal cation  175
  • ambipolar semiconductor  131
  • amplified spontaneous emission (ASE)  110, 111, 228
  • anti‐crossing energy splitting  68
  • atomic layer deposition (ALD) technique  144
  • Auger rates  110, 111, 227, 236
  • Auger recombination process  227
  • b
  • Bader charge analysis  165
  • bathocuproine diffusion barrier  191
  • Bethe–Salpeter equation (BSE)  27, 47
  • biexciton  72, 73, 228
  • bifunctional alkylphosphonic cross‐linking molecules  241
  • bimolecular (BR) recombination  91, 103, 109–111, 127, 233, 257
  • Block states  225
  • Bloch‐wave electrons  223
  • Bohr equation  7
  • Boltzmann distribution  111, 261, 262
  • Bose–Einstein condensation (BEC)  68
  • bound excitons (BEs)  56, 119, 164, 227, 233
  • Bragg‐reflector cavities  234
  • Brillouin zone (BZ) folding  26, 28–33, 102
  • broadband visible emitters, structure of  57
  • bulk inversion asymmetry (BIA)  36
  • c
  • carbon dioxide (CO2), greenhouse gas  274, 275
  • carrier diffusion lengths  104–107
  • carrier‐exciton scattering  254
  • carrier lifetimes  104, 111, 120–122, 127
  • Cauchy principal integral  123
  • cesium lead halide based perovskite nanocrystals  233
  • chalcogenide solar cells  189
  • charge dynamics  107–108
  • charge recombination layers (CRL)  192
  • charge‐transfer dynamics  115–117
  • chemical vapour deposition (CVD)  190
  • circular pump‐probe technique  265
  • collective vibrational excitations  41
  • compact lasers  223
  • conduction band (CB)  26, 108, 132, 148
  • conduction band minimum (CBM)  30, 102, 140, 163, 169, 279
  • corner‐sharing octahedral network  162
  • Coulomb interaction  72, 229
  • Cu‐In‐Ga‐S/Se (CIGS) chalcogenide layers  106
  • d
  • Debye Waller factor measurements  41
  • defect formation energy  164
  • deformation potential mechanism  41
  • density functional perturbation theory (DFPT)  41
  • density‐functional theory (DFT) method  26, 102, 161, 165
    • MD simulations  42
  • diamagnetic coefficient, e–h pairs  261
  • dielectric confinement effects  45, 73
  • diffusion coefficients  87, 111, 121–122
  • diffusion lengths  87, 89, 93, 104, 105, 121–122, 126, 127, 172
  • diode lasers  223, 225, 228, 229, 239–241
  • diode‐pumped solid‐state (DPSS)  239
  • distributed Bragg reflectors (DBR)  70, 236
  • distributed feedback (DFB)  68, 234
  • donor–acceptor (D–A)  12, 120, 135, 136, 146
  • donor–π–acceptor (D‐π‐A)  135
  • donor–π–donor (D‐π‐D)  135
  • double perovskites  170
  • Dresselhaus effect  36–40
  • drift‐diffusion models  89
  • dual excited states model  108
  • dye‐sensitized solar cells (DSSCs)  85, 87, 90, 93, 94, 139, 174, 189, 282
  • e
  • edge‐sharing octahedral chain network  162
  • e–h pair confinement  224, 229
  • electrical injection, in perovskite  225–228, 239–241
  • electrochemical‐photovoltaic (EC‐PV) configuration  277
  • electrodeposition technique  144
  • electroluminescence (EL)  15, 201, 206–209, 212, 214, 215, 217, 240, 252–260
    • emission intensity  252, 255
  • electroluminescent devices  202, 204, 209, 210, 215, 217, 224
  • electron affinity  132, 226
  • electron–hole (e–h) pairs  84, 103, 119, 120, 224, 227, 230, 240, 252, 255
  • electronic band structure  28–33, 102–103
  • electron–phonon coupling mechanisms  41, 62, 89, 240
  • electron selective hole‐blocking materials  139–147
  • electron transfer process  115
  • electron transport layer (ETL)  90, 104, 112, 206, 225
  • energy dispersive X‐ray analyser (EDX)  96, 140
  • energy transfer mechanism  12, 59–60
  • epitaxial single‐crystal (SC) growth techniques  223
  • exciton binding energy  45, 47, 56, 84–86, 94, 103–104, 119, 120, 127, 164, 170, 171, 203, 209, 227, 233, 241, 251, 263
  • exciton vs. free carriers  103
  • exciton–polariton  68
  • extended Hückel tight‐binding model  26
  • extended Huckel theory (EHT)  162
  • external quantum efficiency (EQE)  15, 118, 187
  • external quantum efficiency for electroluminescence (EQEEL)  201, 202
  • f
  • fabrication processes  56
  • Fabry–Perot (FP) cavity architecture  69
  • Fabry–Perot type  236
  • facile solution‐processing  56
  • Faraday configuration  261
  • Fermi gas  233
  • Fermi level  113, 114, 121, 164, 165, 204, 276
  • Fermi‐plasma‐type recombination  233
  • field‐effect transistors (FETs)  10, 15, 55, 87
  • field‐induced circular polarization (FICPO) effect  261
  • field‐induced circularly polarized emission  260, 262–263
  • fill factor (FF)  83, 157, 186
  • film fabrication techniques  90
  • fluorene–dithiophene derivatives  194
  • formamidinium (FA:[HC(NH2)2]+)  25
  • formamidinium (HC(NH2)2 +)  109, 126
  • formamidinium tin iodide (FASnI3)  164
  • fossil fuels  273
  • free exciton (FE)  6, 8, 55, 62, 63, 119, 164
  • Frenkel excitons  225, 227
  • Fröhlich electron–phonon interactions  112
  • Fröhlich polar mechanism  41
  • full width at half maximum (FWHM)  13, 62, 214
  • g
  • GaAs pn‐junction  282
  • generalized gradient approximation (GGA)  162
  • greenhouse gases  273
  • guanidinium (GA:[C(NH2)3]+)  25
  • h
  • half‐width at half maximum (HWHM)  253, 258
  • halide perovskite solar cells (PSCs)
    • absorption and emission properties  118–120
    • carrier lifetimes  121–122
    • diffusion coefficients  121–122
    • diffusion lengths  121–122
    • perovskite tandem photovoltaic device research  188–194
    • recombination constants, surface and bulk regions  126–127
    • surface vs. bulk optical properties  120–121
    • tandem device type and performance limitation  184–188
    • transient spectral features  122–126
  • high content (HC) region  6
  • highest occupied molecular orbital (HOMO)  94, 114, 132, 157
  • high magnetic field optical  260–263
  • hole selective electron‐blocking materials (HTM)  132–139
  • hole transport layer (HTL)  89, 104, 112, 135, 206, 225
  • hot carriers  111–112
  • hot phonon effect  111, 112
  • hybrid optoelectronic‐spintronics (O‐S) device  266, 267
  • hybrid organic perovskites (HOP)  25
  • hybrid perovskites
    • excitons  202–205, 212, 217
    • free carriers  203
    • light‐emitting diodes
      • nanocrystals  209–218
      • n–i–p diodes  206, 208
      • p–i–n diodes  206
      • quantum dots  212, 215
      • quasi‐2D structures  215, 217
      • transparent electrodes  205
    • low excitation intensity  205
    • photoluminescence  204, 205
    • solar cells  201
    • temporally fluctuating photoluminescence  204
    • trap states  204, 212
  • hydrogen (H2), photoelectrochemical generation  275, 276
  • hyperfine interaction (HFI)  252
  • i
  • impedance spectroscopy (IS)  95, 121
  • InAs/GaAs material system  224, 240
  • indium tin oxide (ITO)  16, 147, 188, 206
  • ink‐based coatings  191
  • integrated PL intensity (IPL‐IN)  6, 211
  • intensity‐modulated photocurrent spectroscopy (IMPS)  95
  • intensity‐modulated photovoltage spectroscopy (IMVS)  95
  • interatomic forces  41
  • interfacial polarization  93
  • inverse photoelectron spectroscopy (IPES)  113
  • ionization potential (IP)  132, 133
  • irreducible representations (IR)  26, 29, 32, 35
  • j
  • Jaynes–Cummings model  64–66
  • k
  • Klemens relaxation pathway  112
  • Kramers–Kronig relations  123
  • l
  • Landau level transitions  263
  • large polaron screening effect  111
  • lattice strain  28–33
  • lead halide perovskites  35, 64, 201, 203, 233, 252
  • light‐controlled magneto‐resistance  266
  • light‐emitting devices (LEDs)  15, 251, 255
    • all‐inorganic halide perovskites  208, 213
    • electrical injection in perovskite  225–228
    • hybrid perovskites  201
  • linearized augmented plane wave method (LAPW)  165
  • load resistor  185
  • local density approximation (LDA)  35, 162
  • low‐content (LC) region  6
  • lower‐dimensional perovskites  86, 159, 161
  • lower polariton branch (LPB)  68
  • lowest unoccupied molecular orbital (LUMO)  114, 139, 140, 146, 148, 157, 206
  • m
  • magnetic field effect (MFE)  251–260
  • magneto‐absorption spectroscopy  263
  • magneto‐conductivity (MC)  252
  • magneto‐electroluminescence (MEL)  252
  • magneto‐photoconductivity (MPC)  252
  • magneto‐photoluminescence (MPL)  252
  • metal–organic chemical vapor deposition (MOCVD)  223
  • methylammonium (CH3NH3 +)  109, 126
  • methylammonium (MA [CH3NH3]+)  25
  • methylammonium halide perovskites  203
  • molecular beam epitaxy (MBE)  223
  • molecular dynamics (MD)  27, 41–47
  • molecular HTMs  132–135
  • molecular relaxational processes, MA‐based compounds  42
  • monomolecular (MR) recombination  91, 110, 126
  • multidimensional perovskites
    • AMX3 formula  155
    • Goldschmidt tolerance  155
    • HOMO–LUMO energy gap, organic ammonium cation  157
    • layered structures, formation of  157
    • mixed dimensional perovskites  157
    • octahedral factors  155
    • photovoltaics  157, 161
    • Ruddlesden–Popper  156
    • three‐dimensional (3D) perovskites  155
    • two‐dimensional (2D) perovskites  156
    • Pb‐free halide perovskites
      • ASnX3 perovskites  161–164
      • A2SnX6 perovskites, metal deficient structures  165–166
      • bismuth/antimony‐based perovskites  168–169
      • germanium‐based perovskites  166–168
      • Sn2+ and Ge2+ replacements for Pb2+172–174
  • multi‐quantum well (MQW)  62, 66
  • multi‐TCE/three terminal (3‐T) mechanical stack  185–186
  • multi‐TCE/four‐terminal (4‐T) mechanical stack  186
  • multi‐TCE/four‐terminal (4‐T) spectrum split  186–188
  • o
  • ohmic contact  131, 202
  • oleylamine  6
  • open circuit voltage (VOC) limit  132
  • optical resonators  234–239, 242
  • optical phonons  41
  • optical Stark effect (OSE)  65–66
  • optical transitions  56, 102–103
  • optoelectronic properties  55
  • order–disorder mechanisms  42
  • organic–inorganic hybrid perovskites  251
    • magnetic field effect (MFE)  252–260
    • optical  260–263
    • spin‐polarized carriers dynamics  263–265
  • organic light‐emitting diodes (OLEDs)  205, 206, 211, 223
  • organic photovoltaic (OPV) materials  91
  • organometallic complex HTMs  136–138
  • oxygen evolution reaction (OER)  277
  • p
  • (PEA)2(MA)n‐1PbnI3n+1 perovskites
    • energy transfer schemes  217
    • unit cell structure  216
  • PEC electrode materials  276–277
  • PEC‐PV tandem system  282–285
  • perovskite/charge transport layer interfaces  112–115
  • perovskite gain media  234–239
  • perovskite laser
    • electrical injection  239–241
    • gain media  234–239
    • light emitting diodes  225–228
    • optical resonators  234–239
    • thin film soild‐state perovskites optical gain  228, 233
  • perovskites
    • non‐saturated organic moiety BC  16–18
    • saturated organic moiety
      • bulk perovskites  5, 8
      • conductivity measurements  15
      • electroluminescence spectra  15
      • field‐effect transistors (FETs)  15
      • low‐dimensional (LD) perovskites  15
      • photoconductivity measures  15
      • 3D and q‐2D systems  13, 15
    • structures  18
  • perovskite solar cells (PSCs)  157
    • hole selective electron‐blocking materials  132–139
    • electron selective hole‐blocking materials  139–147
  • perovskite tandem photovoltaic device research  188–194
  • phonon spectroscopy techniques  41
  • photoanode–photocathode strategy  278–281
  • photobleaching (PB)  63, 108
  • photoconductivity (PC)  15, 115
  • photoconversion efficiency (PCE)  131
  • photo/electrochemical CO2 reduction  287
  • photoelectrochemical generation  275, 276
  • photoelectron spectroscopy (PES)  113, 204
  • photoexcited species  103–104
  • photoinduced absorption (PIA)  123
  • photoluminescence (PL)  5, 58, 60, 91, 103, 159, 204, 227, 232, 252–260
  • photoluminescence intensity (IPL‐IN)  12
  • photoluminescence quantum yield (PLQY)  202
  • photophysical processes  108–111
  • photovoltaic devices  40, 42, 189, 201, 255
  • photovoltaic‐electrocatalyst (PV‐EC)  278, 285–287
  • photovoltaic process  93
  • picosecond pump–probe spectroscopy  260, 263–265
  • PL band position (PL‐BP)  6, 9, 14
  • polariton bottleneck  68, 70
  • polariton lasers  56, 64, 68, 74
  • polarization mechanism  95
  • polycrystalline thin films  102
  • polyethylenimine hydriodide (PEI HI)  160
  • polymeric HTMs  132, 135–136
  • polymer solar cell  186
  • polymethyl methacrylate (PMMA)  6
  • post‐annealing temperature  255
  • power conversion efficiency (PCE)  108, 138, 157, 172, 184, 202, 251, 283
  • proton exchange membrane (PEM) electrolyzer  286
  • p‐type electron‐blocking hole selective layer (HTM)  131
  • p‐type hole transport layer (HTL)  225
  • pump–probe correlation technique  101, 251
  • q
  • quantum dots (QDs)  6, 58, 111, 147, 212–215, 224
  • quantum tunneling process  94
  • quantum wells (QW)  8, 11, 36, 55, 62, 72, 156, 223
    • nanoplatelets  229
  • quasiparticle self‐consistent GW (QSGW) method  163
  • quasi two dimensional (q‐2D)  6, 10
  • quasi‐2D perovskite LEDs  215–217
  • r
  • Rabi energy  64, 66, 67
  • Rabi splitting  68, 70, 72
  • Rashba–Dresselhaus effects  37, 39, 40, 251
  • recombination constants  108–111
  • Ruddlesden–Popper  25, 45, 156, 215
  • s
  • self‐trapped excitons (STE)  59, 61–63
  • semiconductor light emitters  223
  • semiconductor systems  64
  • Shockley–Queisser limit  83, 117, 127, 183, 186
  • Shockley–Read–Hall (SRH)  120
  • single‐junction photovoltaic devices  202
  • single TCE/two‐terminal (2‐T) monolithic stack  184–185
  • site inversion asymmetry (SIA)  36
  • Sn‐based materials  15, 267
  • solar energy  183, 273, 274, 288
  • solar to hydrogen (STH) conversion efficiency  277, 285
  • space‐charge‐limited‐current (SCLC)  121
  • spin‐coating technique  253
  • spin‐mixing process  258–260
  • spin‐mixing rates  252
  • spin–orbit coupling (SOC)  27, 33–36, 162, 251, 252
    • loss of inversion symmetry  36–40
  • spin‐polarized carrier
    • carrier dynamics  263–265
    • transient dynamics measurements  266
  • spin relaxation time, determination of  265
  • Spiro‐OMeTAD  112, 113
    • hole selective contact materials  132
  • stimulated emission (SE)  64, 108, 230, 233, 234
  • stimulated scattering process  68
  • stochastic reorientations  41
  • strong exciton‐photon coupling  55–74
  • structural instabilities  40
  • surface plasmon polariton (SPP)  72
  • surface recombination velocity (SRV)  120
  • symmetrized linear combinations of atomic orbitals (SLCAO)  26, 31
  • t
  • tandem cell configurations  277, 285
    • PEC‐PV tandem system  282–285
    • photoanode–photocathode strategy  278–281
    • photo/electrochemical CO2 reduction reaction  287
    • photovoltaic‐electrocatalyst (PV‐EC) structure  285
  • thin film soild‐state perovskites, optical gain  228–233
  • three‐dimensional (3D) hybrid perovskites  202
  • three‐dimensional organic–inorganic hybrid perovskites (3D‐OIHPs)  55, 251, 252
  • time‐dependent process  95
  • time‐of‐flight (ToF)  121
  • time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS)  96
  • transient absorption (TA) spectroscopy  101, 107, 217
  • transient absorption spectroscopy (TAS)  66
  • transient reflectivity (TR) spectra  123, 124
  • transparent conducting electrodes (TCE)  184, 185
  • transparent conducting oxide (TCO)  184
  • transverse electric (TE) mode  72
  • transverse magnetic (TM) mode  72
  • trapping mechanism  95
  • trivalent metal cations  175, 177
  • two‐dimensional (2D) hybrid perovskites  209, 215
  • two‐photon absorption (TPA) coefficients  123
  • u
  • ultrafast optical spectroscopy (UOS)  108
  • ultraviolet photoelectron spectroscopy (UPS)  113, 204
  • universal plot  258–260
  • upper polariton branch (UPB)  68
  • Urbach energy  84
  • w
  • Wannier–Mott exciton emission  86, 119, 225, 227
  • whispering gallery mode (WGM)  234, 236
  • white light emission (WLE), 2D‐OIHPs  59
    • broadband defect emission  60–61
    • broadband visible emission  57–58
    • energy transfer mechanism  59–60
    • organic framework  63
    • self‐trapped excitons  61–63
  • working mechanisms, PSCs
    • charge extraction/injection interfacial effects  93–95
    • charge generation  84–86
    • charge recombination  89–93
    • charge transport  86–89
    • fill factor  83
    • ionic mechanisms  95–96
    • open circuit potential  83
    • perovskite photovoltaics  83
    • recombination mechanisms  90
    • short circuit current  83
  • x
  • X‐ray diffraction (XRD) analysis  159
  • X‐ray photoelectron spectroscopy (XPS)  113
  • y
  • yellow non‐perovskite phase  40
  • z
  • Zeeman interaction  260
  • Zeeman splitting  261
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.86.138