Index

Note: Page numbers followed by “f” indicate figures and “t” indicate tables.

A

Arnal UF system 124, 124f

B

Bank filtration (BF) 
chemical processes 131
description 131, 131f
long-lasting filtration technology 130
sand and gravel deposits 130
Beer-Lambert law 59

C

Candle filter 
Clear Kisii 103–104, 103f
colloidal silver coating 105
cost 106
Hong Phuc filter 105
Katadyn product 105
Kisii system 105
lab tests 104
local construction companies 104
maintenance 105
RWD 105
water purification 103–104
Carbon nanotube (CNT) 
iodinated resins 172–173
nanosorbent form 170
renewable energy 170–172
silver particles 170
Ceramic disk filter 
colloidal silver coating 107
cost 108
description 106, 107f
local materials 110
maintenance 108
strengths and weaknesses 110, 110t
Terracotta containers 106, 106f
Thimi filter and TERAFIL 106–107
Ceramic pot filters 
cost 110
description 108, 109f
local materials 110
maintenance 109–110
materials, manufacturing, removal efficiency 109
strengths and weaknesses 110, 110t
untreated vs. treated water product 108, 108f
Chlorinators 
Aquatab concentrations 86, 86t
chlorine tablets 84–85
disadvantages 85–86
emergency response applications 86, 86t
liquid chlorine, disinfectant 83–84
Chlorine tablets 
Aquatab concentrations 85, 86t
diarrheal risk 85
diffusion-induced release, halogens 85
sodium dichloroisocyanurate (NaDCC) 84–85
Chulli treatment method 
device 115, 116f
removal rate, pathogens 115–116
traditional clay ovens 115
water purifier system 115–116
Clear Kisii filters 103–104, 103f
Conventional water treatment plants 178
Costs 
average product cost 15–16
daily labor cost 15
description 11
drinking water, emergency 15
humanitarian relief 11
NGOs and programs 16
relative costs 16–17
treatment system 11

D

Disinfection byproducts (DBPs) 158
Disinfection systems 
chlorinators 83–86
electrochlorination systems 79–83
silver-impregnated activated carbon 74–79
UV light systems 55–74
Distillation technology 
brackish/sea water 24–25
desalinating techniques 26
drinking and cooking 25
energy-balance analysis 26
multistage flash plant 25–26, 26f
potable water 25–26
removal efficiencies 20t, 24–25
symmetric and asymmetric solar systems 26, 28f

E

Electrochlorination systems 
anodic oxidation 82
Cascade Design, Inc. 80, 81f
cost 82–83
electrochemical disinfection, water 81–82
household applications 79–80
Hydrosys AO System® 82, 83f
platinum-and iridium oxide-coated titanium 82
seawater electrolysis, bromate 82
small Ecodis cell 80–81
Emergency water purification 4

F

FilterPen 
cost 115
disposable device 114–115
small size, travelling 114–115, 114f
Forward osmosis (FO) 
commercial products 29
costs 29
emergency use 27–28
evaluation 29
F-specific RNA coliphages (FRNAPH) 163, 164f

G

Granular activated carbon (GAC) filters 
coconut GAC filters 75
silver on dark GAC surfaces 78, 78f
water filtration and bacterial endotoxins 74
Greenhouse gas effect (GHE) 47–48

H

Heat exchangers 
batch-process devices 41
concentric tube/flat type 43–44
flowthrough pasteurizer 42, 42f
mass flow rate 43
thermostatic valves 43
Heterotrophic plate count (HPC) 75
Humanitarian assistance/disaster relief (HA/DR) 
applications 61–63
electrochlorinator, Cascade Design, Inc. 80, 81f
natural disasters and wars 19–20
RO process 20
sizes, UV installations 61–63
surface waters 74–75
UV disinfection, potable water 55

I

Internally displaced person (IDP) 
camps/community 4
diarrhea 1–3
unsafe drinking water 1–3
Iodinated resins 172–173
iWater Cycle 
bicycle to power pumps 128, 129f
cost 128
typhoon victims, bicycle power to filter water 128, 129f

L

Lifesaver Jerrycan 
cost 122
location, hand pump and ultrafiltration filter 121–122, 123f
testing, developing countries 121–122, 122f
ultrafiltration (UF) membranes 121–122
Lifestraw Family 
bacteria and virus reduction 113
configuration 113–114, 113f
cost 114
ultrafiltration-based system 111–113, 112f
Lifestraw Personal 
cleaning 111, 112f
cost 111
description 111, 111f
portable water treatment device 111
Light emitting diode (LED) 69
Liquid chlorine 
advantages 84
degradation process 84
household bleach 83–84, 84t
microorganism inactivation 83–84
treatment device 84
Low-pressure high-output (LPHO) 56

M

Multistage backpack filter 
cost 118
operating removal efficiency 118
system 117, 117f
and UV disinfection device 117, 117f

N

Nanotechnology 
CNT 170
environmental effects 169–170
nanomaterials 169–170
silver particles 170
water treatment applications 169–170
Natural disasters 
characteristics 5
climate change 1, 2f
flow rate 5, 5t
hygiene practices 1–3
morbidity and mortality 1–3
natural disasters types 4
point-of-use (POU) treatment 1
types 4
Natural filtration 
“bank filtration” (BF)  See (Bank filtration (BF))
description 130
design of wells  See (Wells design)
Flehe waterworks, vertical wells 132, 132f
vertical/horizontal collector wells 131–132
Nongovernment organizations (NGOs) 
evaluation, small-scale systems 129–130
local/nonlocal governments 177–178
training/experience 5–6
water treatment devices 5–6, 16

P

Packaged filtration units 
bacterial and contaminant removal 103
candle  See (Candle filter)
ceramic disk  See (Ceramic disk filter)
ceramic pot  See (Ceramic pot filters)
Chulli (Ovens) treatment  See (Chulli treatment method)
device, Lifestraw Personal  See (Lifestraw Personal)
gravity/human suction 103
Lifestraw Family  See (Lifestraw Family)
product, FilterPen 114–115
Perfector-E water purification system 
bacteria and virus removal 126
cost 127
lifespan, UF modules 126
X-Flow technology 126, 126f
Point-of-use (POU) 
bacteria colonization 74
disease and costs 16–17
emergency preparedness plans 179–180
NSF guidelines 64
small-scale community treatment 1
training 6–7
water treatment 179
Pressurized filter units 
description 116
energy sources 116
Lifesaver Jerrycan 121–122
microfiltration (MF) and RO 116
multistage backpack filter  See (Multistage backpack filter)
packaged and portable RO filter  See (Reverse osmosis (RO))
WaterBox 119–121

R

Renewable energy 
energy-recovery pumps 171–172
membrane desalination 171
power source, emergency 170–171
PV cells 171
rural irrigation 171–172
Solar Cube 172
technology devices 171
water purification processes 170–171
wind and solar energies 172
Resource Development International Cambodia (RDIC) 109–110
Reverse osmosis (RO) 
cost 119
device costs 21
energy use 20
filters used 118, 120f
operating removal efficiency 118–119
packaged unit, Pelican case 118, 119f
pressure-driven membrane processes 20
Rural Water Development (RWD) Program 105

S

Silver-impregnated activated carbon 
antibacterial carbon fibers 78–79
biocide, water treatment 74
cartridge filtration systems 74
copper, antimicrobial effects 74–75
cost 79
FTIR spectra 79
home-use GAC filters 74
HPC 75
husk surface, filter candle 75–78, 77f
nano-silver, bacterial reduction 75, 76f
Pentek® 75, 76f
SEM image, GAC 78, 78f
Tata Swach filter and filter candle 75, 76f
water filtration process 75
SkyHydrant 
cost 128
daily cleaning 127–128
description 127–128
series, flow of treated water 127–128, 128f
setup 127–128, 127f
Slow sand filtration (SSF) 
biolayer formation 88, 99
coliforms and E. coli 101
community-scale/smaller systems 91
component, schmutzdecke 92–93
description 88
E. coli removal, two barrel-type 98–99, 98f
effluent and depths, sand 
E. coli change 101, 102f
total coliform change 101, 102f
turbidity change 101, 101f
microbial community structure and ability 101–103
multistage, Pilot System 1 93–94, 95f
performance, in parallel and series 94
Pilot System 2 93–94, 95f
plastic tanks, community-scale 91, 91f
posttreatment devices 101, 102f
posttreatment units 97
raw water 90
removal efficiency 89, 89t
roughing filter/natural settling 101
set up at Fort Magsaysay, Philippines 92, 93f
silver-impregnated activated carbon 97
single-barrel unit typically, household use 91–92, 92f
stress test, two barrels 97
town of Falls City, Oregon 90–91, 90f
turbidity removal 
Pilot System 1 and 2 93–94, 96f
two barrel-type 98–99, 98f
two barrels run in series 
effluent E. coli concentration 100, 100f
effluent turbidity 100, 100f
two filter units run parallel 
E. coli change 99–100, 99f
turbidity change 99–100, 99f
unit, water utilities 89–90, 90f
untreated fresh water 88
UV light 97
Small-scale systems 
Arnal UF system, installed in Mozambique and Ecuador 124, 124f
evaluation 129–130
iWater Cycle  See (iWater Cycle)
refugee/internally displaced person (IDP) camps 122–123
SkyHydrant  See (SkyHydrant)
Sunspring device  See (Sunspring device)
treatment 178–179
Solar cookers 
“box cooker” 33–34, 34f
concentrator 36, 36f
construction and foldability 35
CooKit 35–36, 35f
design and operating parameters 34
foods 33
thermal insulation 34
Solar disinfection (SODIS) 
and titanium dioxide 49–50
Solar pasteurization (SOPAS) 
bottle pasteurizer 38, 39f
commercial devices 41, 41f
cookers 33–36
devices designed, water 36–38
evaluation, SODIS technology 50–51, 52t
GHE 47–48
indicators, water 44–47
1-l PET bottle 38, 39f
multi-use systems 47
planar reflectors 38
puddle pasteurizer 38, 39t
recovery heat exchange devices 41–44
reflectors 40
SODIS devices 40
transparent polypropylene bag 38
water microbiology 31–33
Sunspring device 
cost 125
description 124
MIT kits 125
prefilters 125
solar panels 124–125, 125f
WQA Gold Seal Program 124–125

T

Terracotta containers 106, 106f
Thermotolerant coliforms (THCOL) 163, 164f
Thimi filter 106–107
Trihalomathane (THM) precursor 89

U

Ultraviolet (UV) light systems 
absorbance, nucleotides and nucleic acid 60, 61f
advantages and disadvantages 71–72
Beer-Lambert law 59
bench-scale testing 68
biofouling prevention 73
characteristics, mercury vapor lamps 56, 57t
classification 56
collimated beam apparatus 65–66, 66f
cost per unit water treatment 73–74
discharge, photons 56
disinfection process 73
DNA damage 60
dose and microbial inactivation 65–66
dose-distribution characteristics 68–69
dose-response curves, organisms 68–69, 68f
electromagnetic spectrum 56, 56f
flow rates 72
flowthrough dynamics 70–71
functional system 72–73
HA/DR applications 61–63
hydraulics, reactor 68–69
hypothetical dose distributions 68–69, 68f
inactivation efficiency 60
lamp types 57–59, 58f
LED-based lamps 69–70
log-inactivation values 66–67
maintenance 73
mercury vapor lamps 56
microbial action vs. DNA absorbance 60–61, 62f
photoreactivation 69
photorepair/dark repair 69
power consumption 64
prices 64–65
relative response vs. wavelength 60, 62f
scattering 60
solarization 57–59
spectrophotometer 59
SteriPEN 63–64, 63f
system type 72
thiamine dimer formation 60, 61f
USEPA validation protocol 66–67, 67f
UVT 59
water purification 69–70
Ultraviolet transmittance (UVT) 59

W

WaterBox 119–121, 121f
Water infrastructure development 
developed countries 176–177
developing countries 
emergency response phases 177–178
located improved water source 177–178
peri-urban and rural areas 178–179
rural areas 179
urban areas 178
government involvement 
available packaged filtration systems 181–182, 185t
country’s water resources 181
performance and ease of use 182
sustainability and social acceptability 182
types, emergency filtration 181–182, 183t
watershed management policy 181
investment costs 182
packaged filtration systems 181–182, 185t
POU and packaged technologies 179–180
sanitation services and hygiene 180–181
structural resilience, systems 175–176
types, emergency filtration 181–182, 183t
watershed management policy 180–181
weather-related events 175–176
Water pasteurization indicators (WAPI) 
boiling water 32–33
description 31
destruction, microbes 33
folded stainless steel 46–47
measurement and equipment 31
recording thermometer 44
semi-log plot, time vs. temperature 32, 32f
snap disks 45–46, 46f
SODIS 33
SOPAS 33, 45
temperature, microbes 31, 32t
views 45, 45f
Water quality 
parameters, disaster relief 4, 4t
quantity indicators 4
survival water needs 3, 3t
Water treatment technologies 
acute response/long-term application 7
characteristics 5
cost 8
decision tree 7, 9f
disaster relief programs 6
emergency devices 7
energy source/disinfection byproducts 169
flowchart 7, 8f
flow rate 5, 5t
iodinated resins 172–173
matrix 7, 10f
nanotechnology 169–170
NGOs 5–6
POU uptake 6–7
power sources 9
renewable energy 170–172
source and quality 7
technologies and descriptions, scores 9–11, 12t
Wells design 
atrazine concentration and collector well 163, 164f
bank filtration site, river and aquifer 154, 155f
bedrock wells 149
changes, well radius function 132–133, 133f
characteristics, unconsolidated materials 147–148
climate change effects 150–151
continuous screen slot sizes, Northern Gravel Company 145, 147t
DBPs and TOC 158
developing countries 149
drawdown 148–149
drug diclofenac and EDTA, bank filtration site 163–164, 165f
EDTA concentration, Rhine River 163–164, 165f
floods 151
flow paths, water pumped 164–166, 167f
grain size distribution curves, Northern Gravel Company 145, 146f
log removal, LWC collector well 160–161, 161f
log removal values, aerobic spores B. subtilis 160–161, 162f
LWC collector well and laterals 158, 158f
microorganisms/contaminants removal 161–162
motor mount, turbine pump 134, 135f
MS-2 and PRD1 phages, Rhine River 163, 163f
natural backfill and artificial (gravel) pack 144–145
nonpumping water table 144
observed and simulated temperature 154, 156–158, 156f
optimum screen entrance velocities, aquifer 139, 143t
organic carbon, oxygen, sulfate and nitrate 156–158, 157f
pipe outlet, submersible pump 134, 135f
pipe schedules 139, 143t
pretreatment, surface water 166–167
PVC screens, screen open areas 139, 142t
removal, B. subtilis spores 160–161, 162f
riverbank filtration 149–150
sand pumping 147
sanitary seal, well head with submersible pump 134, 135f
screen entrance velocity 145–147
screen open areas, stainless steel screens 139, 141t
Sieve analysis data, heterogeneous and homogeneous medium 136–139, 137f, 138f
simulated and observed concentrations, oxygen 154–158, 156f
Siphon tubes, pumpless wells 149–150, 151f
size distribution, materials 136
submersible and vertical turbine pumps 132–134, 133t, 134f
surface waters 150–151
temperature profile, river and collector well 151–154, 153f
THCOL, SSRC, SOMCPH and FRNAPH 163, 164f
THMFP, HAA6FP and TOXFP 160, 161f
TOC reduction, river water after passage 158–160, 159f, 160f
tubular well, sand and gravel aquifer 144, 145f
turbidity reduction through BF wells 151, 152f
two different layers, screen tailoring 139, 140f
typical gravel pack well, sand and gravel formations 147–148, 148f
unconsolidated formations 132–133
well development, surging 149, 150f
well gravel pack material, Northern Gravel Company 145, 147t
wells location inside bends, Elbe River 164–166, 166f

X

X-Flow technology 126, 126f
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
13.59.136.170