image REFERENCES

1. V. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning in sensor-based terrain acquisition. IEEE Transactions on Robotics and Automation 6(4):462–472, 1990.

2. F. Preparata and M. Shamos. Computational Geometry, Springer-Verlag, New York, 1985.

3. J. C. Latombe. Robot Motion Planning, Kluwer Academic Publishers, Dordrecht, 1991.

4. Y. Lajoie et al. Gait of a deafferented subject without large myelinated sensory fibers below the neck. Neurology 47(1):109–115, 1996.

5. S. Rossignol et al. Peripheral and spinal mechanisms in neural control of movement. Progress in Brain Research 123:297–309, 1999.

6. M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Pérez, and M. Mason, eds. Robot Motion, MIT Press, Cambridge, MA, 1982.

7. J. Craig. Introduction to Robotics, Mechanics and Control, 2nd ed., Addison-Wesley, Reading, MA, 1989.

8. R. Paul. Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, MA, 1981.

9. A. Bejczy. Robot arm dynamics and control. Technical memorandum 33-669. Technical report, Jet Propulsion Laboratory, Pasadena, CA, 1974.

10. R. H. Taylor. Planning and execution of straight line manipulator trajectories. IBM Journal of Research and Development, 23(4):424–436, 1979.

11. J. Schwartz, J. Hopcroft, M. Sharir, eds. Planning, Geometry, and Complexity. Robot Motion Aspects, Ablex Publishing Corporation, Norwood, NJ, 1986.

12. D. Lipski and F. Preparata. Segments, rectangles, contours. Journal of Algorithms 2:63–76, 1981.

13. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Computers 32(3):108–120, February 1983.

14. J. Reif. A survey of advances in the theory of computational robotics. In Adaptive and Learning Systems. Theory and Applications, K. S. Narendra, ed., Plenum Press, New York, 1986.

15. J. Reif. Complexity of the Mover's Problem and generalizations. In Proceedings, 20th Symposium of the Foundations of Computer Science, 1979.

16. J. Schwartz and M. Sharir. On the “Piano Mover's” problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4:298–351, 1983.

17. V. Lumelsky and A. Stepanov. Effect of uncertainty on continuous path planning for an autonomous vehicle. In 23rd IEEE Conference on Decision and Control, Las Vegas, 1984.

18. J. Schwartz and M. Sharir. On the “Piano Mover's” problem. I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Communications on Pure and Applied Mathematics 34:345–398, 1983.

19. J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion planning for multiple independent objects: PSPACE hardness of the ‘warehouseman's problem’. International Journal of Robotics Research 3(4):76–88, 1984.

20. J. Hopcroft, D. Joseph, and S. Whitesides. On the movement of robot arms in 2-dimensional bounded regions. In Proceedings, 20th IEEE Symposium on Foundations of Computer Science, Chicago, November 1982.

21. C. Ó'Dúnlaing, M. Sharir and C. Yap. Retraction: A new approach to motion planning. In 15th ACM Symposium on the Theory of Computing, Boston, MA, 1983.

22. T. Lozano-Pérez. Automatic planning of manupulator transfer movements. IEEE Transactions on Systems, Man, and Cybernetics SMC-11(10):681–698, 1981.

23. J. O'Rourke. Convex hulls, Voronoi diagrams, and terrain navigation. In Proceedings of the Pecora IX Remote Sensing Symposium, Sioux Falls, SD, 1984.

24. D. Pieper. The kinematics of manipulators under computer control. Ph.D. thesis, Mechanical Engineering Department, Stanford University, 1972.

25. S. Udupa. Collision detection and avoidance in computer controlled manipulators. In Proceedings of 5th Joint International Conference on Artificial Intelligence, Cambridge, MA, 1977.

26. B. Faverjon. Obstacle avoidance using an octree in the configuration space of a manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, March 1984.

27. T. Lozano-Pérez and M. Wesley. An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22:560–570, 1979.

28. H. Moravec. The Stanford cart and the CMU rover. Proceedings of the IEEE 71(7):872–874, July 1983.

29. R. Brooks. Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, 13(3):190–197, 1983.

30. T. Binford. Visual perception by computer. In Proc. IEEE International Conference Systems, Science, and Cybernetics, Miami, FL, 1971.

31. R. Paul. Modeling trajectory calculation and servoying of a computer controlled arm. Ph.D. thesis, Stanford University, 1972.

32. J. Canny. A new algebraic method for robot motion planning and real geometry. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, 1987.

33. L. Meijdam and A. de Zeeuw. On expectations, information, and dynamic game equilibria. In Dynamic Games and Applications in Economics, T. Basar, ed., Springer-Verlag, New York, 1986.

34. E. Moore. The firing squad synchronization problem. In Sequential Machines: Selected Papers, E. Moore, ed., Reading, Addison-Wesley, MA, 1964.

35. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In Proceedings of the 19th Annual Symposium on Foundation of Computer Science (FOCS), Ann Arbor, MI, 1978.

36. H. Abelson and A. diSessa. Turtle Geometry, MIT Press, Cambridge, MA, 1981.

37. J. Traub, G. Wasilkowski, and H. Wozniakowski. Information, Uncertainty, Complexity, Addison-Wesley, Reading, MA, 1983.

38. L. Euler. Commentationes Arithmeticae Collectae, St. Petersburg Academy, St. Petersburg, 1766.

39. C. Berge. Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

40. Hermann Kern. Labyrinthe—Erscheinungsformen und Deutungen—5000 Jahre Gegenwart eines Urbilds, Prestel-Verlag, Munich, 1982.

41. Hermann Kern. Through the Labyrinth: Designs and Meanings over 5,000 Years, Prestel Publishing, Munich, 2000.

42. O. Ore. Theory of Graphs, American Mathematical Society, Providence, RI, 1962.

43. E. Lucas. Recreations Mathematique, A. Blanchard, Paris, 1892.

44. G. Tarry. Le problem des labyrinthes. Nouvelles Annales de Mathematiques 14:187–189, 1895.

45. A. Fraenkel. Economic traversal of labyrinths. Mathematics Magazine 44:12, 1970.

46. A. Fraenkel. Economic traversal of labyrinths. Mathematics Magazine 43:125–130, 1971.

47. B. Bullock, D. Keirsey, J. Mitchell, T. Nussmeier, and D. Tseng. Autonomous vehicle control: An overview of the Hughes project. In Proceedings of the IEEE Computer Society Conference “Trends and Applications: Automating Intelligent Behavior,” Gaithesburg, MD, May 1983.

48. A. M. Thompson. The navigation system of the JPL robot. In Proceedings of 5th Joint International Conference on Artificial Intelligence, Cambridge, MA, 1977.

49. C. Thorpe. Path relaxation: Path planning for a mobile robot. Technical report CMU-RI-TR-84-5, Carnegie-Mellon University, 1984.

50. D. Keirsey, E. Koch, J. McKisson, A. Meystel, and J. Mitchell. Algorithm for navigation of a mobile robot. In Proceedings of the International Conference on Robotics, Atlanta, GA, 1984.

51. R. Chatila. Path planning and environment learning in a mobile robot system. In Proceedings European Conference on Artificial Intelligence, Torsey, France, 1982.

52. R. Chattergy. Some heuristics for the navigation of a robot. International Journal of Robotics Research 4(1):59–66, 1985.

53. J. Crowley. Navigation for an intelligent mobile robot. IEEE Journal of Robotics and Automation RA-1(1):31–41, 1985.

54. A. Petrov and I. Sirota. Control of a robot manipulator with obstacle avoidance under little information about the environment. In Proceedings of the VIII Congress of IFAC, Vol. XIV, Kyoto, Japan, 1981.

55. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, IROS' 2003, Las Vegas, 2003.

56. V. Lumelsky. A comparative study on the path length performance of maze-searching and robot motion planning algorithms. IEEE Transactions on Robotics and Automation, 7(1):57–66, 1991.

57. W. S. Massey. Algebraic Topology, Harcourt, Brace & World, New York, 1967.

58. V. Lumelsky and A. Stepanov. Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430,1987.

59. V. Lumelsky. Effect of kinematics on dynamic path planning for planar robot arms moving amidst unknown obstacles. IEEE Journal of Robotics and Automation RA-3(3):207–223, 1987.

60. A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst unknown obstacles in a plane: The universal lower bound on the worst path lengths and a classification of algorithms. In Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991.

61. A. Blake and A. Yuille. Active Vision, MIT Press, Cambridge, MA, 1992.

62. M. Crowder. Interactive Image Processing for Machine Vision, Springer, Berlin, 1993.

63. K. Kutulakos, V. Lumelsky, and C. Dyer. Vision-guided exploration: A step toward general motion planning in three dimensions. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, May 1993.

64. T. P. Skewis. Incorporation of vision or range information into robot motion planning: Theoretical and implementation issues. Ph.D. thesis, Department of Electrical Engineering, Yale University, 1990.

65. A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst unknown obstacles in a plane: A new algorithm and a general theory for algorithm development. In Proceedings of the 29th IEEE International Conference on Decision and Control, Honolulu, HI, 1990.

66. I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally convergent navigation algorithm for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, 1996.

67. E. Rivlin and A. Rosenfeld. Navigational functionalities. Computer Vision Graphics and Image Processing—Image Understanding (10), 232–244, 1995.

68. I. Kamon and E. Rivlin. Sensory-based motion plannning with global proofs. IEEE Transactions on Robotics and Automation 27(12):108–112, 1997.

69. S. L. Laubach and J. W. Burdick. An autonomous sensor-based path-planner for planetary microrovers. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, 1999.

70. S. L. Laubach, J. W. Burdick, and L. Matthies. An autonomous path planner implemented on the rocky 7 prototype microrover. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, 1998.

71. H. Noborio. Several path planning algorithms of mobile robot for an uncertain workspace and their evaluation. In Proceedings of the IEEE International Workshop on Intelligent Motion Control, Vol. 1, 1990.

72. N. Rao, S. Iyenger, and G. deSaussure. The visit problem: visibility graph-based solution. In Proceedings of the IEEE International Conference on Robotics and Automation, April 1988.

73. H. Choset, I. Konukseven, and J. Burdick. Mobile robot navigation: issues in implementating the generalized voronoi graph in the plane. In Proceedings of the IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, 1996.

74. H. Choset, I. Konukseven, and J. Burdick. Sensor based planning for a planar rod robot. In Proceedings of the 1996 International Conference on Robotics and Automation, Minneapolis, MN, 1996.

75. N. Rao, S. Iyenger, C. Jorgensen, and C. Weisbin. On terrain acquisition by a finite-sized mobile robot in plane. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, May 1987.

76. I. Kamon, E. Rimon, and E. Rivlin. Range-sensor based navigation in three dimensions. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, 1999.

77. V. Lumelsky and K. R. Harinarayan. Decentralized motion planning for multiple mobile robots: The cocktail party model. Autonomous Robots Journal 4(1):121–135, 1997.

78. D. T. Greenwood. Principles of Dynamics, Prentice-Hall, New York, 1965.

79. Z. Shiller and H. H. Lu. Computation of path constrained time optimal motions along specified paths. ASME Journal of Dynamic Systems, Measurement and Control 114(3):34–40, 1992.

80. J. Bobrow. Optimal robot path planning using the minimum-time criterion. IEEE Journal of Robotics and Automation 4(4):443–450, August 1988.

81. B. Donald and P. Xavier. A provably good approximation algorithm for optimaltime trajectory planning. In Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, May 1989.

82. Z. Shiller and S. Dubowsky. On computing the global time optimal motions of robotic manipulators in the presence of obstacles. IEEE Transactions on Robotics and Automation 7(6):785–797, 1991.

83. C. O'Dunlaing. Motion planning with inertial constraints. Algorithmica 2(4):431–475, 1987.

84. J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane. In Proceedings of the 6th Annual Symposium on Computational Geometry, Berkeley, CA, June 1990.

85. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1):90–99, 1986.

86. R. Volpe and P. Khosla. Artificial potential with elliptical isopotential contours for obstacle avoidance. In Proceedings of the 26th IEEE International Conference on Decision and Control, Los Angeles, 1987.

87. D. Koditschek. Exact robot navigation by means of potential functions: Some topological considerations. In Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, May 1987.

88. J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential fields techniques for robot path planning. IEEE Transactions on Systems, Man, and Cybernetics 22(2):224–241, March 1992.

89. C. De Medio and G. Oriolo. Robot Obstacle Avoidance Using Vortex Fields. In Advances in Robot Kinematics, S. Stifter and J. Lenarcic, eds, Springer-Verlag, New York, 1991.

90. T. Wikman, M. Branicky, and W. Newman. Reflexive collision avoidance: A generalized approach. In Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, May 1993.

91. P. Jacobs, J. P. Laumond, and M. Taix. Efficient motion planners for nonholonomic mobile robots. IEEE International Conference on Intelligent Robots and Systems (IROS), Osaka, Japan, August 1991.

92. J. C. Latombe. A fast path planner for a car-like indoor mobile robot. In Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, 1991.

93. J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, May 1991.

94. A. De Luca and G. Oriolo. Local incremental planning for nonholonomic mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994.

95. T. Fraichard and A. Scheuer. Car-like robots and moving obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994.

96. A. Shkel and V. Lumelsky. The role of time constraints in the design of control for the Jogger's Problem. In 34th IEEE Conference on Decision and Control, New Orleans, 1995.

97. G. Korn and T. Korn. Mathematical Handbook, McGraw-Hill, New York, 1968.

98. L. Hocking. Optimal Control, Clarendon Press, Oxford, 1991.

99. A. Shkel and V. Lumelsky. The Jogger's Problem: Accounting for body dynamics in real-time motion planning. Automatica 33(7):1219–1233, 1997.

100. L. S. Pontryagin. The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1962.

101. Unece: World robotics 2003. Technical report, United Nations Economic Commission for Europe, Geneva, 2003.

102. R. Brooks. Planning collision-free motions for pick-and-place operations. International Journal of Robotics Research 2(4), 1983.

103. V. Milenkovic and B. Huang. Kinematics of major robot linkages. In Proceedings of the 13th International Symposium on Industrial Robots, Chicago, 1983.

104. M. Mason. Compliance and force control for computer controlled manipulators. In Robot Motion, K. S. Narendra, ed., MIT Press, Cambridge, MA, 1982, pp. 305–322.

105. H. Behnke et al., eds. Fundamentals of Mathematics, Vol. II: Geometry, MIT Press, Cambridge, MA, 1974, Chapter 16.

106. E. Cheung and V. Lumelsky. Proximity sensing in robot manipulator motion planning: System and implementation issues. IEEE Journal of Robotics and Automation 5(6):740–751, 1989.

107. V. Lumelsky and K. Sun. A unified methodology for motion planning with uncertainty for 2d and 3d two-link robot arm manipulators. International Journal of Robotics Research 9(5):89–104, 1990.

108. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Computers 32(3):108–120, February 1983.

109. John E. Hopcroft and Gordon Wilfong. Motion of objects in contact. International Journal of Robotics Research 4(4):32–46, 1986.

110. M. H. A. Newman. Elements of the Topology of Plane Sets of Points, Cambridge University Press, Cambridge, 1961.

111. D. McCloy and M. Harris. Robotics: An Introduction, Open University Press Robotics Series, Halsted Press, New York, 1986.

112. M. P. Groover, M. Weiss, R. N. Nagel, and N. G. Odrey. Industrial Robotics: Technology, Programming, and Applications, CAD/CAM, Robotics, and Computer Vision, McGraw-Hill, New York, 1986.

113. A. J. Critchlow. Introduction to Robotics, Macmillan, New York, 1985.

114. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

115. E. Cheung and V. Lumelsky. Real time path planning procedure for a whole-sensitive robot arm manipulator. Robotica 10:339–349, 1992.

116. N. Sliwa and R. Will. A flexible telerobotic system for space operations. In Proceedings of the Space Telerobotics Workshop, Pasadena, CA, 1987.

117. T. Matsui and M. Tsukamoto. An integrated robot teleoperation method using multimedia display. In Proceedings of the 5th International Symposium of Robotics Research, Tokyo, Japan, 1989.

118. S. Hayati, T. Lee, K. Tso, P. Backes and J. Lloyd. A testbed for a unified teleoperated-autonomous dual-arm robotic system. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, 1990.

119. Thomas B. Sheridan. Telerobotics, Automation, and Human Supervisory Control, MIT Press, Cambridge, MA, 1992.

120. S. Seaney and B. Stankovic. Design and construction of the human tester algorithm experiment booth. Technical report, University of Wisconsin—Madison, Robotics Laboratory, 1992. Also, Technical report RL-92004.

121. Fei Liu. Multivariate analysis of human performance in motion planning. Technical report, MS thesis, University of Wisconsin—Madison, Department of Mechanical Engineering, 1997. Also Technical report RL-97003.

122. A. Basilevsky. Statistical Factor Analysis and Related Methods, John Wiley & Sons, New York, 1994.

123. I. T. Jolliffe. Principal Components Analysis, Springer-Verlag, New York, 1986.

124. J. Hajek. A Course in Nonparametric Statistics, Holden-Day, San Francisco, 1969.

125. R. Bradley. Distribution-Free Statistical Tests, Prentice-Hall, Englewood Cliffs, NJ, 1986.

126. H. Lindman. Analysis of Variance in Experimental Design, Springer-Verlag, New York, 1992.

127. J. Tukey D. Hoaglin, and F. Mosteller. Fundamentals of Exploratory Analysis of Variance, John Wiley & Sons, New York, 1991.

128. J. Bray and S. Maxwell. Multivariate Analysis of Variance, Sage Publications, Thousand Oaks, CA, 1985.

129. G. Dunteman. Introduction to Multivariate Analysis, Sage Publications, Thousand Oaks, CA, 1984.

130. I. Bernstein. Applied Multivariate Analysis, Springer-Verlag, New York, 1988.

131. D. Hand and C. Taylor, Multivariate Analysis of Variance and Repeated Measures, Chapman and Hall, New York, 1987.

132. M. Crowder. Analysis of Repeated Measures, Chapman and Hall, New York, 1990.

133. V. Lumelsky and E. Cheung. Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 23(5):194–203, 1993.

134. E. Cheung and V. Lumelsky. A sensitive skin system for motion control of robot arm manipulators. Journal of Robotics and Autonomous Systems 10:9–32, 1992.

135. D. Um, B. Stankovic, K. Giles, T. Hammond and V. Lumelsky. A modularized sensitive skin for motion planning in an uncertain environment. In Proceedings of the 1998 IEEE Conference on Robotics and Automation, Leuven, Belgium, May 1998.

136. C. Miyazaki, A. Hirai, M. Fujie and V. Lumelsky. Development of proximity sensing system for obstacle detection. In Conference of the Japanese Society of Instrument and Control Engineers (SICE), Kanazawa, Japan, 1993.

137. V. Lumelsky, M. Shur, and S. Wagner. Sensitive Skin. World Scientific, Singapore, 2000.

138. S. Périchon-Lacour, Z. Huang, Z. Suo, and S. Wagner. Stretchable gold conductors on elastomeric substrates. Applied Physics Letters 82(15):2404–2406, 2003.

139. S. Wagner, S. Périchon-Lacour, P.-H. I. Hsu, J.C. Sturm and Z. Suo. Stretchable and deformable macroelectronics. In 61st IEEE Device Research Conference Digest, 2003.

140. D. Um and V. Lumelsky. Fault tolerance via analytic redundancy for a modularized sensitive skin. International Journal of Robotics and Automation, 15(4):99–108, 2000.

Sensing, Intelligence, Motion, by Vladimir J. Lumelsky
Copyright © 2006 John Wiley & Sons, Inc.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.222.240.21