Nomenclature

A matrix defined by Eq. (D.29)

A(σ) arbitrary function, Chapter 9

a constants in Eq. (A.7)

aj constants in Eq. (3.13)

asi stable value for ai(tD), Eq. (5.18); constant defined in Eq. (D.26)

B formation volume factor, RB/STB

b length of linear reservoir, ft (m); constants in Eq. (A.7)

b intercept, Eq. (7.13)

b1, b2 intercept of semilog straight line, Chapter 9

bi constant in Eq. (3.35)

C wellbore storage, m3/MPa

CD dimensionless wellbore storage

c compressibility of the fluid, psi−1 (MPa−1)

ct system total compressibility, psi−1 (MPa−1)

D(σ) arbitrary function, Chapter 9

Di constant defined by Eq. (3.36); constant defined by Eq. (5.21); eigenvector defined in Eq. (A.2)

de weighted average dimensionless diffusivity

de effective dimensionless diffusivity of reservoirs, Eq. (4.14)

de1 effective dimensionless diffusivity of section 1, Eq. (4.12)

de2 effective dimensionless diffusivity of section 2, Eq. (4.12)

di dimensionless diffusivity of layers i; element of eigenvector

E objective function, defined by Eq. (8.28)

E1,E2 expression, Eq. (F.22)

Ei exponential integral function

F kh-weighted dimensionless pressure, Eq. (5.3)

f dimensionless pressure difference between the two layers leakage function behind the casing, dimensionless, Chapters 8 and 9

fi dimensionless pressure difference, Eq. (5.2), pD1pD2si1_e

fS steady value of f when time is long

G1,G2 expression, Eq. (8.43)

G, G0, G1, G2 expression, Eqs. (9.54)(9.57)

g expression, Eq. (E.26)

g1,g2 expression, Eqs. (8.61), (8.63)

h total thickness of all the layers, ft (m)

hi thickness of the ith layer, ft (m)

I0, I1 Bessel function of imaginary argument

i0 layer number for separating the two sections

K(x) function, Eq. (9.59)

K0, K1 Bessel function of imaginary argument

k thickness-weighted permeability, md

ki permeability for ith layer, md

ki vertical permeability of layer i, md

k˜isi2_e semipermeability between layer i and layer i+1si3_e, md/ft (m)

k˜Disi4_e dimensionless semipermeability

(kh)t total (kh) product of reservoir, md-ft (μm2 m)

L objective function, Eq. (8.29)

Li coefficients in Eq. (3.37)

L1,L2 expression, Eq. (G.6)

L3,L4 expression, Eq. (8.37)

L1,L2,…,L6 expressions, Eqs. (9.70)(9.75)

L7,L8 expressions, Eqs. (H.42), (9.83)

M expression, Eq. (F.12)

M1,M2,…,M6 expressions, Eqs. (9.62)(9.67)

m slope of straight line, Eq. (7.39)

m slope of straight line, Eq. (7.12)

m1,m2,mt slope of semilog straight line

n total number of layers; total number of measured points, Chapter 9

n1 number of measured points in the early time period, Chapter 9

p pressure, psi (MPa)

pi pressure of layer i, psi (MPa)

p0 original reservoir pressure, psi (MPa)

po observed pressure, psi (MPa)

Δp pressure change from initial trend, pipsi5_e, psi (MPa)

ΔpD pressure difference, dimensionless, Eq. (7.14)

pa, pbi boundary pressure for linear flow, psi (MPa)

pD kh-weighted reservoir pressure (Eq. 3.4), dimensionless

pDi dimensionless pressure of layer i, defined after Eq. (5.1)

ppc critical pressure, psi (MPa)

pw weighted wellbore pressure, psi (MPa)

pwi wellbore pressure for ith layer, psi (MPa)

pwDi dimensionless wellbore pressure of layer i

q total flow rate for the multilayer system, B/D (m3/d)

q0, qsi6_e total flow rate for k˜1=0si7_e and k˜1=si8_e respectively, B/D (m3/d)

qci area crossflow rate, layer defined by Eq. (5.24)

qcD area crossflow rate, dimensionless

qcDi area crossflow rate of layer i, Eq. (4.11)

qcp peak value of area crossflow rate, B/D (m3/d)

qcpi value of area crossflow rate, layer i

qcpiS steady-state peak value of area crossflow rate, layer i, B/D (m3/d)

q˜Dsi9_e total production of the reservoir, B/D (m3/d)

qDi dimensionless production rate of layer i

q˜Disi10_e production rate of layer i, B/D (m3/d)

qi flow rate for the ith layer, B/D (m3/d)

r radius, ft (m)

rw wellbore radius, ft (m)

rwe max effective hole-diameter, ft (m)

rDd dimensionless drainage radius

reD dimensionless reservoir radii

si skin factor of layer i

T dimensionless calculation time, =0τQxdx/Qτsi11_e; formation temperature, K

Tsc temperature of standard state, K

Tpc critical temperature, K

t time, h

t calculation time, =0τqxdx/qtsi12_e, h

tcD dimensionless time of the crosspoint for drawdown

tD dimensionless time, Eq. (4.6)

tp production time, h

Uisi13_e Darcy's velocity in layer i, ft/s (m/s)

v ln1+4tDsi14_e, Eq. (3.40)

vcD crossflow velocity (Eq. 3.19), dimensionless

vcDi dimensionless crossflow velocity of layer i, Eq. (4.10)

vi crossflow velocity per unit area for layer i, ft−1 s−1 (m−1 s−1)

x independent variable

xi,j element of eigenvector, Xj

Xj eigenvector

W matrix defined in Eq. (7.52)

wi dimensionless transmissibility of layer i

ws accumulated w, Eq. (3.15)

ws1,ws2si15_e total dimensionless productivity of sections 1 and 2, Eq. (4.12)

wsi accumulated dimensionless productivity, Eq. (5.19)

Z Z-factor

z Laplace variable or vertical coordinate

Greek Letters

α communication coefficient, Eq. (8.34); leakage coefficient, Chapter 9

α¯si16_e average diffusivity, ft/d

αe weighted average diffusivity, equal to α¯desi17_e

αi diffusivity of layer i, md psi/cp; function of time defined by Eq. (3.13)

αp,αt,αc coefficient for different units, Eqs. (9.28), (9.29), (9.31)

αH, αL critical values for determining whether to unite or separate the two layers

αF,αC,αP,αt unit conversion coefficient

α1,α2 expression, Eq. (F.25)

β constant, Eq. (8.57); constant, Eq. (9.92)

β1,β2 expression, Eqs. (9.52), (9.53)

βi constant in Eq. (7.50)

ɛ ratio of the vertical permeability to the horizontal permeability

ϕi porosity of layer i, fraction

γ 1.781, Euler's constant

γ, γ2 dimensionless productivity of Layer 1 and Layer 2 (Section 5.3)

γg gas gravity

γi constant, defined by Eq. (5.21)

ς expression, Eq. (G.16)

η diffusivity, md-psi/cp (mm2/s); constant, Eq. (I.6)

λ eigenvalue

λ1,λ2 eigenvalue, Eq. (9.51); eigenvalue, Eq. (F.23)

μ viscosity of the fluid, cp (Pa s)

υ expression, Eq. (9.58)

θj expression, Eq. (8.69)

ρi fluid density in layer i, g/mL (kg/m3)

ρ0 fluid density under pressure p0, g/mL (kg/m3)

σ correctness factor porosity, fraction; Laplace space argument, Eq. (8.19)

σi wall resistance for layer i, ft/md (m/md)

τ dimensionless time

τf dimensionless time for the first straight line to end

ω storativity ratio; eigenvalue of equation

ω, ω2 dimensionless storativity of Layer 1 and Layer 2 (Section 5.3)

ξ expression, Eq. (G.16); Boltzmann variable

ΔD 1rDrDrDrDsi18_e, dimensionless radial differential operator

Δr 1rrrrsi19_e, radial differential operator

Subscripts

b caused by boundary

c crossflow or crosspoint

d caused by diffusivity

D dimensionless

e effective value

f flow condition

i,j,k layer or section number or eigenvalue number

L leakage

min minimum

p peak value or production condition

r reference value

s shut-in or steady value

t total value

v vertical value

w wellbore

wf wellbore condition for flowing period

ws wellbore condition for shut in

η caused by diffusivity

Superscript

' value at any location of the reservoir

o observation value

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.218.127.141