Contents

Foreword

Author

1    Introduction to Convergent Disciplines in Optical Engineering: Nano, MOEMS, and Biotechnology

References

2    Electro-Optics

2.1    Introduction

2.2    Optical Device Applications

2.2.1    Phased Array Radar

2.2.2    GaAs Field Effect Transistor Technology

2.2.3    Optical Control of Microwave Devices

2.2.3.1    Optical Control of Active Devices: IMPATT Oscillators

2.2.3.2    Illumination Effect on IMPATT Diode Operation

2.2.3.3    Experimental Results on IMPATT Diodes: Optical Tuning

2.2.3.4    Noise Reduction by Optical Means

2.2.3.5    Optically Induced AM/FM Modulation

2.2.3.6    Optical Injection Locking

2.2.4    TRAPATT Oscillators

2.2.4.1    Illumination Effect on TRAPATT Operation

2.2.4.2    Experimental Results: Start-Up Jitter Reduction

2.2.4.3    Frequency Shifting

2.2.4.4    Variation of Output Power

2.2.5    MESFET Oscillator

2.2.6    Transistor Oscillators

2.2.7    Optical Control of Passive Devices: Dielectric Resonator Oscillator

2.2.7.1    Illumination Effects on Dielectric Resonator Oscillator

2.2.7.2    Experimental Results: Optical Tuning

2.2.7.3    FM Modulation

2.2.8    Applications of Optical Control

2.2.9    Future Needs and Trends iv Contents

2.3    Lithium Niobate Devices

2.3.1    Optical Switches

2.3.2    Directional Couplers

2.3.3    Modulators

2.3.4    Polarization Controllers

2.3.5    Integrated Systems

2.4    Applications of Fiber-Optic Systems

2.5    Optical Interconnects for Large-Scale Integrated Circuits and Fiber Transmission Systems

2.5.1    Introduction

2.5.2    Link Design and Packaging

2.5.3    Backplane Interconnects

2.5.4    Power Distribution

2.5.5    Large-Scale Integration Challenges

2.5.6    Advantages of Optical Interconnects

2.5.7    Compatible Source Technology

2.5.8    Receiver and Detector Technology

2.5.9    Integration of Sources and Detectors

2.5.10    Integrated Device Developments

2.6    Optical Interconnect Media

2.6.1    Guided Wave Interconnects

2.6.2    Single-Mode versus Multimode Fibers

2.6.3    Broadcast Interconnects

2.6.4    Free-Space Interconnects

2.6.5    Holographic Interconnects

2.6.6    Guided Wave versus Broadcast Interconnects

2.7    Multiplexing and Demultiplexing: Information Distribution Techniques: WDM Schemes

2.7.1    Prisms

2.7.2    Gratings

2.7.3    Bandpass Filters

2.7.4    TDM Schemes

2.8    Electro-Optic and Acousto-Optic Modulators

2.9    Assessment of Interconnect System Architectures: Optical Networking Architectures

2.9.1    Direct Relay Interconnects

2.9.2    Fiber-Optic Data Busses

2.10    Interconnect Risk Assessments

2.11    Electro-Optic System Applications

2.11.1    Special Application Lighting and Laser Illumination

2.11.2    Vertical Cavity Surface Emitting Lasers for Illumination

2.11.3    Spectral Matching Considerations

2.11.4    High-Brightness Imaging Contents v

2.12    Vertical Cavity Surface Emitting Laser Technology

2.12.1    Introduction

2.12.2    VCSEL Structure

2.12.3    VCSEL Advantages

2.12.4    High-Power CW and QCW VCSEL Arrays

2.12.5    VCSEL Reliability

2.12.6    Single-Mode VCSEL Devices

2.12.7    High-Speed VCSEL Devices

2.12.8    High-Brightness Arrays of Single-Mode Devices

2.12.9    Blue, Green, and UV VCSELs

2.12.10    Narrow Divergence Arrays

2.12.11    VCSEL-Based 1064 nm Low-Noise Laser

2.12.12    Low-Noise Laser Cavity

2.13    Derivation of the Linear Electro-Optic (Pockels) Effect

2.14    Nonlinear Refractive Index

References

3    Acousto-Optics, Optical Computing, and Signal Processing

3.1    Principle of Operation

3.2    Basic Bragg Cell Spectrum Analyzer

3.2.1    Components of Bragg Cell Receivers: Light Sources

3.2.2    Lenses

3.3    Integrated Optical Bragg Devices

3.3.1    Fourier Transform, Fourier Transform Lens

3.3.2    Dynamic Range

3.4    Noise Characterization of Photodetectors

3.5    Dynamic Range Enhancement

3.6    Photodetector Readout Techniques

3.7    Bulk versus Integrated Optic Bragg Cells

3.8    Integrated Optic Receiver Performance

3.9    Nonreceiver Integrated Optic Bragg Cell Applications

3.10   Optical Logic Gates

3.10.1    Introduction

3.10.2    Interferometer and Quantum Well Devices

3.11   Quantum Well Oscillators

3.11.1    Description of the Quantum Well

3.11.2    Solution of the Exciton Energy

3.11.3    Determination of Ee and Eh

3.11.4    Determination of EB

3.11.5    Effective Well Width Calculations and Computer Simulation

3.11.5.1    Matching of Wave Functions

3.11.5.2    Equating Energy

3.11.5.3    Computer Calculations vi Contents

3.11.6    Summary of Calculation Procedure

3.11.7    Example: Fabrication of MQW Oscillator

3.12   Design Example: Optically Addressed High-Speed, Nonvolatile, Radiation-Hardened Digital Magnetic Memory

3.12.1    History of the Magnetic Crosstie Memory

3.12.2    Fabrication and Operation of the Crosstie Memory

3.12.3    Potential Optical Detection Scheme

3.12.4    Radiation Hardening Considerations

References

4    Fiber-Optic Sensors

4.1    Introduction

4.2    Amplitude Modulation Sensors

4.3    Phase Modulation Sensors

4.4    Fiber-Optic Magnetometer

4.5    Fiber Acoustic/Pressure Sensors

4.6    Optical Fiber Characteristics

4.7    Fiber Transducer Considerations

4.8    Fiber Sensor Laser Selection

4.9    Laser Frequency Stability Considerations

4.10    Couplers and Connectors for Fiber Sensors

4.11    Fiber Sensor Detector Considerations

4.12    Fiber Magnetometer Applications

4.13    Fiber Sensor Operation

4.14    Fiber Sensor Signal Processing

4.14.1    Reference Phase Modulation

4.14.2    Fiber Sensor System Noise

4.15    Environmental Stabilization

4.16    Fiber Sensor System Design Considerations

4.17    Laser Diode Frequency Stability Considerations

4.17.1    Laser Operation

4.17.2    Effect of Modulation and Modulation Depth on Mode Spectrum

4.17.3    Experimental Observations

4.17.4    Guided Index and DFB Laser Operation

4.17.5    Modulation Depth and Signal-to-Noise Considerations

4.17.6    Instability due to Optical Feedback from Distant Reflectors

4.17.7    Stability with Moderate External Feedback

4.17.8    Laser Frequency Stability Considerations in Fiber-Optic Sensors

4.17.9    Achieving Laser Stability through External Control Contents vii

4.17.10    Rare-Earth-Doped Semiconductor Injection Laser Structures

4.17.11    Solutions to Laser Frequency Instability: Summary

4.18    Fiber Sensor Design Example: Fiber-Optic Sonar Dome Pressure Transducer

4.18.1    Identification and Significance of the Problem

4.18.2    Possible Solution for a Sonar Dome Pressure Transducer

4.18.3    Feasibility Analysis

4.18.4    System Sensitivity

4.18.5    Light Source

4.18.6    Photodetectors

4.18.7    Single-Mode Fiber Directional Couplers

4.18.8    Optical Fibers

4.18.9    Reference Branch Phase Modulator

4.18.10    Electronic Circuitry

4.19    Design Example 2: Fiber-Optic-Based Laser Warning Receiver

4.19.1    System Requirements

4.19.2    Laser Threats

4.19.3    Laser Detection

4.19.4    System Configuration

4.19.5    False Alarms and Laser Discrimination

4.19.6    System Summary

References

5    Integrated Optics

5.1    Planar Optical Waveguide Theory

5.2    Comparison of “Exact“ and Numerical Channel Waveguide Theories

5.3    Modes of the Channel Waveguide

5.4    Directional Couplers

5.5    Key Considerations in the Specifications of an Optical Circuit

5.5.1    Introduction

5.5.2    Waveguide Building Block and Wavelength Selection

5.5.3    Optical Throughput Loss

5.5.4    Material Growth: MOCVD versus MBE

5.5.5    Microwave and Electronic Circuit Compatibility

5.5.6    Integratability

5.6    Processing and Compatibility Constraints

5.6.1    Introduction

5.6.2    Substrate Specifications

5.6.3    Epitaxial Growth viii Contents

5.6.4    Metallization

5.6.5    Thin-Film Insulators

5.6.6    Photolithography

5.7    Waveguide Building Block Processing Considerations

5.7.1    Introduction

5.7.2    Material Systems: Control of Loss, Refractive Index, and Electro-Optic Effect

5.8    Coupling Considerations

5.8.1    Fiber to Waveguide Coupling

5.8.2    Waveguide to Fiber Coupling

5.8.3    Laser Diode to Waveguide Coupling

5.8.4    Waveguide to Detector Coupling

5.9    Lithium Niobate Technology

5.9.1    Electro-Optic and Photorefractive Effects

5.9.2    Photolithography and Waveguide Fabrication

5.9.3    Implantation and Proton Exchange Techniques

5.10   Semiconductor Waveguide Fabrication Techniques

5.10.1    Ion Implantation

5.10.2    Ion-Implanted Semiconductor Annealing

5.10.3    MOCVD: Growth and Evaluation

5.10.4    MBE: Growth and Evaluation

5.10.5    MBE Development in Space

5.11   GaAs Foundry Capabilities

5.12   Emerging Commercial Devices and Applications

5.12.1    Fiber-Optic Couplers

5.12.2    Performance Testing Issues for Splitters

5.12.3    Passive Optical Interconnects

5.12.4    Configuration of a Curved Transition Waveguide

References

6    Optical Diagnostics and Imaging

6.1    Optical Characterization

6.2    Bandwidth Measurement

6.3    Stability: Temperature and Time Effects

6.4    Measurement of ND(d) Using Capacitance–Voltage Technique

6.5    “Post Office” Profiling

6.6    Spreading Resistance Profiling

6.7    Mobility Measurement

6.8    Cross-Section Transmission Electron Microscopy

6.9    Infrared Reflectivity Measurements

6.10   Other Analysis Techniques

6.11   Biotechnology Applications Contents ix

6.12   Parametric Analysis of Video

6.12.1    Parametric Analysis of Digital Imagery

6.12.1.1    CAD Data Integration

6.12.1.2    Real-Time Data Processing

6.12.1.3    Verification of FE Simulations

6.12.1.4    Complete Workflow in One Software Application

6.13    X-Ray Imaging

6.13.1    Introduction

6.13.2    Flash X-Ray

6.13.3    Typical System Requirements

6.13.4    Scintillators for Flash X-Ray

6.13.5    System Configurations

References

7    MEMS, MOEMS, Nano, and Bionanotechnologies

7.1    Introduction

7.2    MEMS and Nanotechnology

7.2.1    Introduction

7.2.2    Biotechnology

7.2.3    Communications

7.2.4    Accelerometers

7.2.5    Advantages of MEMS and Nano Manufacturing

7.2.6    Developments Needed

7.2.6.1    Limited Options

7.2.6.2    Packaging

7.2.6.3    Fabrication Knowledge Required

7.3    Nanotechnology Applications

7.4    V-Groove Coupler Geometry and Design Considerations

7.5    Bionanotechnology

7.5.1    Introduction

7.5.2    Biology Labs on a Chip

7.5.3    Applications in Bioorganic Chemistry

7.5.3.1    Smell

7.5.3.2    Protein Structure and Folding and the Influence of the Aqueous Environment

7.5.3.3    Evolution and the Biochemistry of Life

7.5.3.4    Biochemical Analysis and Cancer

7.5.4    Bioimaging Applications

7.5.5    Biologically Inspired Computing and Signal Processing

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.72.70